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Preface

A good decision rule for us has been, “if Peter Whittle wrote it, read it.”

Whittle’s book, Prediction and Regulation by Linear Least Squares Methods

(originally published in 1963, revised and reprinted in 1983), taught early

builders and users of rational expectations econometrics, including us, the

classical time series techniques that are perfect for putting the idea of ratio-

nal expectations to work. When we became aware of Whittle’s 1990 book,

Risk Sensitive Control, and later his 1996 book, Optimal Control: Basics and

Beyond, we eagerly worked through them. These and other books on robust

control theory, such as Başar and Bernhard’s 1995 H∞−Optimal Control

and Related Minimax Design Problems: A Dynamic Game Approach, pro-

vide tools for approaching the ‘soft’ but important question of how to make

decisions when you don’t fully trust your model.

Work on robust control theory opens up the possibility of rigorously an-

alyzing how agents should cope with fear of model misspecification. While

Whittle mentioned a few economic examples, the methods that he and other

authors of robust and risk-sensitive control theories had developed were de-

signed mainly for types of problems that differ significantly from economic

problems. Therefore, we soon recognized that we would have to modify and

extend aspects of risk-sensitive and robust control methods if we were to apply

them to economic problems. That is why we started the research that un-

derlies this book. We do not claim to have attained a general theory of how

to make economic decisions in the face of model misspecification, but only to

have begun to study this difficult and important problem that has concerned

every researcher who has estimated and tried to validate a rational expecta-

tions model, every central banker who has knowingly used dubious models to

guide his monetary policy decisions, and every macroeconomist whose speci-

fication doubts have made him regard formal estimation as wrongheaded and

who has instead “calibrated” the parameters of a complete, but admittedly

highly stylized, model.

– xiii –
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– xv –





Part I

Motivation and main ideas





Chapter 1
Introduction

Knowledge would be fatal, it is the uncertainty that charms one. A mist

makes things beautiful.

— Oscar Wilde, The Picture of Dorian Gray, 1891

1.1. Generations of control theory

Figure 1.1.1 reproduces John Doyle’s cartoon about developments in optimal

control theory since World War II.1 Two scientists in the upper panels use

different mathematical methods to devise control laws and estimators. The

person on the left uses classical methods (Euler equations, z -transforms, lag

operators) and the one on the right uses modern recursive methods (Bellman

equations, Kalman filters). The scientists in the top panels completely trust

their models of the transition dynamics. The, shall we say, gentleman in the

lower panel shares the objectives of his predecessors from the 50s, 60s, and

70s, but regards his model as an approximation to an unknown and unspec-

ified model that he thinks actually generates the data. He seeks decision

rules and estimators that work over a nondenumerable set of models near his

approximating model. The H∞ in his postmodern tattoo and the θ on his

staff are alternative ways to express doubts about his approximating model

by measuring the discrepancy of the true data generating mechanism from his

approximating model. As we shall learn in later chapters, the parameter θ is

interpretable as a penalty on a measure of discrepancy (entropy) between his

approximating model and the model that actually generates the data. The

H∞ refers to the limit of his objective function as the penalty parameter θ

approaches a “break down point” that bounds the set of alternative models

against which the decision maker can attain a robust decision rule.

1.2. Control theory and rational expectations

Classical and modern control theory supplied perfect tools for applying Muth’s

(1961) concept of rational expectations to a variety of problems in dynamic

economics. A significant reason that rational expectations initially diffused

slowly after Muth’s (1961) paper is that in 1961 few economists knew the

tools lampooned in the top panel of figure 1.1.1. Rational expectations took

1 John Doyle consented to let us reproduce this drawing, which appears in Zhou, Doyle,

and Glover (1996). We changed Doyle’s notation by making θ (Doyle’s µ) the free param-

eter carried by the post-modern control theorist.

– 3 –



4 Introduction

Figure 1.1.1: A pictorial history of control theory (cour-

tesy of John Doyle). Beware of a theorist bearing a free

parameter, θ .

hold in the 1970s only after a new generation of macroeconomists had learned

those tools. Ever since, macroeconomists and rational expectations econo-

metricians have gathered inspiration and ideas from classical and recursive

control theory.2

When macroeconomists were beginning to apply classical and modern

control and estimation theory in the late 1970s, control theorists and applied

mathematicians were seeking ways to relax the assumption that the decision

maker trusts his model. They sought new control and estimation methods

to improve adverse outcomes that came from applying classical and modern

control theory to a variety of engineering and physical problems. They thought

that model misspecification explained why actual outcomes were sometimes

much worse than control theory had promised and therefore sought decision

rules and estimators that acknowledged model misspecification. That is how

robust control and estimation theory came to be.

2 See Stokey and Lucas with Prescott (1989), Ljungqvist and Sargent (2004), and

Hansen and Sargent (1991) for many examples.
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1.3. Misspecification and rational expectations

To say that model misspecification is as much of a problem in economics as

it is in physics and engineering is an understatement. This book borrows,

adapts, and extends tools from the literature on robust control and estima-

tion to model decision makers who regard their models as approximations.

We assume that a decision maker has created an approximating model by a

specification search that we do not model. The decision maker believes that

data will come from3 an unknown member of a set of unspecified models near

his approximating model.4 Concern about model misspecification induces a

decision maker to want decision rules that work over that set of nearby models.

If they lived inside rational expectations models, decision makers would

not have to worry about model misspecification. They should trust their

model because subjective and objective probability distributions (i.e., models)

coincide. Rational expectations theorizing removes agents’ personal models

as elements of the model.5

Although the artificial agents within a rational expectations model trust

the model, a model’s author often doubts it, especially when calibrating it

or after performing specification tests. There are several good reasons for

wanting to extend rational expectations models to acknowledge fear of model

misspecification.6 First, doing so accepts Muth’s (1961) idea of putting econo-

metricians and the agents being modeled on the same footing: because econo-

metricians face specification doubts, the agents inside the model might too. 7

Second, in various contexts, rational expectations models underpredict prices

3 Or, in the case of the robust filtering problems posed in chapter 17, have come from.
4 We say “unspecified” because of how these models are formed as statistical perturba-

tions to the decision maker’s approximating model.
5 In a rational expectations model, each agent’s model (i.e., his subjective joint probabil-

ity distribution over exogenous and endogenous variables) is determined by the equilibrium.

It is not something to be specified by the model builder. Its early advocates in econometrics

emphasized the empirical power that followed from the fact that the rational expectations

hypothesis eliminates all free parameters associated with people’s beliefs. For example, see

Hansen and Sargent (1980) and Sargent (1981).
6 In chapter 16, we explore several mappings, the fixed points of which restrict a robust

decision maker’s approximating model. As is usually the case with rational expectations

models, we are silent about the process by which an agent arrives at an approximating

model. A qualification to the claim that rational expectations models do not describe the

process by which agents form their models comes from the literature on adaptive learning.

There, agents who use recursive least squares learning schemes eventually come to know

enough to behave as they should in a self-confirming equilibrium. Early examples of such

work are Bray (1982), Marcet and Sargent (1989), and Woodford (1990). See Evans and

Honkapohja (2001) for new results.
7 This argument might offend someone with a preference against justifying modeling

assumptions on behavioral grounds.
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of risk from asset market data. For example, relative to standard rational

expectations models, actual asset markets seem to assign prices to macroeco-

nomic risks that are too high. The equity premium puzzle is one manifestation

of this mispricing.8 Agents’ caution in responding to concerns about model

misspecification can raise prices assigned to macroeconomic risks and lead to

reinterpreting them as compensation for bearing model uncertainty instead of

risks with known probability distributions. This reason for studying robust

decisions is positive and is to be judged by how it helps explain market data.

A third reason for studying the robustness of decision rules to model misspeci-

fication is normative. A long tradition dating back to Friedman (1953), Bailey

(1971), Brainard (1967), and Sims (1971, 1972) advocates framing macroe-

conomic policy rules and interpreting econometric findings in light of doubts

about model specification, though how those doubts have been formalized in

practice has varied.9

1.4. Our extensions of robust control theory

Among ways we adapt and extend robust control theory so that it can be

applied to economic problems, six important ones are discounting; a reinter-

pretation of the “worst-case shock process”; extensions to several multi-agent

settings; stochastic interpretations of perturbations to models; a way of cali-

brating plausible fears of model misspecification as measured by the parameter

θ in figure 1.1.1; and formulations of robust estimation and filtering problems.

1.4.1. Discounting

Most presentations of robustness in control theory treat undiscounted prob-

lems, and the few formulations of discounting that do appear differ from

the way economists would set things up.10 In this book, we formulate dis-

counted problems that preserve the recursive structure of decision problems

that macroeconomists and other applied economists use so widely.

8 A related finding is that rational expectations models impute low costs to business

cycles. See Hansen, Sargent, and Tallarini (1999), Tallarini (2000), and Alvarez and Jer-

mann (2004). Barillas, Hansen, and Sargent (2007) argue that Tallarini’s and Alvarez

and Jermann’s measures of the costs of reducing aggregate fluctuations are flawed if what

they measure as a market price of risk is instead interpreted as a market price of model

uncertainty.
9 We suspect that his doubts about having a properly specified macroeconomic model

explains why, when he formulated comprehensive proposals for the conduct of monetary

and fiscal policy, Friedman (1953, 1959) did not use a formal Bayesian expected utility

framework, like the one he had used in Friedman and Savage (1948).
10 Compare the formulations in Whittle (1990) and Hansen and Sargent (1995).
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1.4.2. Representation of worst-case shock

As we shall see, in existing formulations of robust control theory, shocks that

represent misspecification are allowed to feed back on endogenous state vari-

ables that are influenced by the decision maker, an outcome that in some

contexts appears to confront the decision maker with peculiar incentives to

manipulate future values of some of those shocks by adjusting his current

decisions. Some economists11 have questioned the plausibility of the notion

that the decision maker is concerned about any misspecifications that can

be represented in terms of shocks that feed back on state variables under his

partial control. In chapter 7, we use the “Big K , little k trick” from the

literature on recursive competitive equilibria to reformulate misspecification

perturbations to an approximating model as exogenous processes that cannot

be influenced by the decision maker. As we illustrate in the analysis of the

permanent income model of chapter 10, this reinterpretation of the worst-case

shock process is useful in a variety of economic models.

1.4.3. Multiple agent settings

In formulations from the control theory literature, the decision maker’s model

of the state transition dynamics is a primitive part of (i.e., an exogenous input

into) the statement of the problem. In multi-agent dynamic economic prob-

lems, it is not. Instead, parts of the decision maker’s transition law governing

endogenous state variables, such as aggregate capital stocks, are affected by

other agents’ choices and therefore are equilibrium outcomes. In this book, we

describe ways of formulating the decision maker’s approximating model when

he and possibly other decision makers are concerned about model misspecifica-

tion, perhaps to differing extents. We impose a common approximating model

on all decision makers, but allow them to express different degrees of mistrust

of that model and to have different objectives. As we explain in chapters 12,

15, and 16, this is a methodologically conservative approach that adapts the

concept of a Nash equilibrium to incorporate concerns about robustness. The

hypothesis of a common approximating model preserves much of the disci-

pline of rational expectations, while the hypothesis that agents have different

interests and different concerns about robustness implies a precise sense in

which ex post they behave as if they had different models. We thereby attain

a disciplined way of modeling apparent heterogeneity of beliefs. 12

11 For example, Christopher Sims expressed this view to us.
12 Brock and deFontnouvelle (2000) describe a related approach to modeling heterogene-

ity of beliefs.
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1.4.4. Explicitly stochastic interpretations

Much of this book is about linear-quadratic problems for which a convenient

certainty equivalence result described in chapter 2 permits easy transitions be-

tween nonstochastic and stochastic versions of a problem. Chapter 3 describes

the relationship between stochastic and nonstochastic setups.

1.4.5. Calibrating fear of misspecification

Rational expectations models presume that decision makers know the correct

model, a probability distribution over sequences of outcomes. One way to jus-

tify this assumption is to appeal to adaptive theories of learning that endow

agents with very long histories of data and allow a Law of Large Numbers to

do its work.13 But after observing a short time series, a statistical learning

process will typically leave agents undecided among members of a set of mod-

els, perhaps indexed by parameters that the data have not yet pinned down

well. This observation is the starting point for the way that we use detec-

tion error probabilities to discipline the amount of model uncertainty that a

decision maker fears after having studied a data set of length T .

1.4.6. Robust filtering and estimation

Chapter 17 describes a formulation of some robust filtering problems that

closely resemble problems in the robust control literature. This formulation

is interesting in its own right, both economically and mathematically. For

one thing, it has the useful property of being the dual of a robust control

problem. However, as we discuss in detail in chapter 17, this problem builds

in a peculiar form of commitment to model distortions that had been chosen

earlier but that one may not want to consider when making current decisions.

For that reason, in chapter 18, we describe a class of robust filtering and

estimation problems without commitment to those prior distortions. Here

the decision maker carries along the density of the hidden states given the

past signal history computed under the approximating model, then considers

hypothetical changes in this density and in the state and signal dynamics

looking forward.

13 For example, see work summarized by Fudenberg and Levine (1998), Evans and

Honkapohja (2001), and Sargent (1999a). The justification is incomplete because economies

where agents use adaptive learning schemes typically converge to self-confirming equilibria,

not necessarily to full rational expectations equilibria. They may fail to converge to rational

expectations equilibria because histories can contain an insufficient number of observations

about off-equilibrium-path events for a Law of Large Numbers to be capable of eradicating

erroneous beliefs. See Cho and Sargent (2007) for a brief introduction to self-confirming

equilibria and Sargent (1999a) for a macroeconomic application.
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1.5. Robust control theory, shock serial correlations,
and rational expectations

Ordinary optimal control theory assumes that decision makers know a

transition law linking the motion of state variables to controls. The opti-

mization problem associates a distinct decision rule with each specification

of shock processes. Many aspects of rational expectations models stem from

this association.14 For example, the Lucas critique (1976) is an application of

the finding that, under rational expectations, decision rules are functionals of

the serial correlations of shocks. Rational expectations econometrics achieves

parameter identification by exploiting the structure of the function that maps

shock serial correlation properties to decision rules.15

Robust control theory alters the mapping from shock temporal properties

to decision rules by treating the decision maker’s model as an approximation

and seeking a single rule to use for a set of vaguely specified alternative models

expressed in terms of distortions to the shock processes in the approximating

model. Because they are allowed to feed back arbitrarily on the history of the

states, such distortions can represent misspecified dynamics.

As emphasized by Hansen and Sargent (1980, 1981, 1991), the economet-

ric content of the rational expectations hypothesis is a set of cross-equation

restrictions that cause decision rules to be functions of parameters that char-

acterize the stochastic processes impinging on agents’ constraints. A concern

for model misspecification alters these cross-equation restrictions by inspir-

ing the robust decision maker to act as if he had beliefs that seem to twist

or slant probabilities in ways designed to make his decision rule less fragile

to misspecification. Formulas presented in chapters 2 and 7 imply that the

Hansen-Sargent (1980, 1981) formulas for those cross-equation restrictions

also describe the behavior of the robust decision maker, provided that we use

appropriately slanted laws of motion in the Hansen-Sargent (1980) forecasting

formulas. This finding shows how robust control theory adds a concern about

misspecification in a way that preserves the econometric discipline imposed

by rational expectations econometrics.

1.6. Entropy in specification analysis

The statistical and econometric literatures on model misspecification supply

tools for measuring discrepancies between models and for thinking about de-

cision making in the presence of model misspecification.

14 Stokey and Lucas with Prescott (1989) is a standard reference on using control theory

to construct dynamic models in macroeconomics.
15 See Hansen and Sargent (1980, 1981, 1991).
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Where y∗ denotes next period’s state vector, let the data truly come

from a Markov process with one step transition density f(y∗|y) that we as-

sume has invariant distribution µ(y). Let the econometrician’s model be

fα(y∗|y) where α ∈ A and A is a compact set of values for a parameter

vector α . If there is no α ∈ A such that fα = f , we say that the econo-

metrician’s model is misspecified. Assume that the econometrician estimates

α by maximum likelihood. Under some regularity conditions, the maximum

likelihood estimator α̂o converges in large samples to16

plim α̂o = argminα∈A

∫
I (fα, f) (y) d µ (y) (1.6.1)

where I(fα, f)(y) is the conditional relative entropy of model f with respect

to model fα , defined as the expected value of the logarithm of the likelihood

ratio evaluated with respect to the true conditional density f(y∗|y)

I (fα, f) (y) =

∫
log

(
f (y∗|y)
fα (y∗|y)

)
f (y∗|y) dy∗. (1.6.2)

It can be shown that I(fα, f)(y) ≥ 0. Figure 1.6.1 depicts how the

probability limit α̂o of the estimator of the parameters of a misspecified model

makes I(fα, f) =
∫
I(fα, f)(y)dµ(y) as small as possible. When the model is

misspecified, the minimized value of I(fα, f) is positive.

A
I(fαo

, f)�

�

fαo

f

Figure 1.6.1: Econometric specification analysis. Sup-

pose that the data generating mechanism is f and that the

econometrician fits a parametric class of models fα ∈ A to

the data and that f /∈ A . Maximum likelihood estimates

of α eventually select the misspecified model fαo
that is

closest to f as measured by entropy I(fα, f).

Sims (1993) and Hansen and Sargent (1993) have used this framework to

deduce the consequences of various types of misspecification for estimates of

16 Versions of this result occur in White (1982, 1994), Vuong (1989), Sims (1993), Hansen

and Sargent (1993), and Gelman, Carlin, Stern, and Rubin (1995).
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parameters of dynamic stochastic models.17 For example, they studied the

consequences of using seasonally adjusted data to estimate models populated

by decision makers who actually base their decisions on seasonally unadjusted

data.

1.7. Acknowledging misspecification

To study decision making in the presence of model misspecification, we turn

the analysis of section 1.6 on its head by taking fαo
as a given approximat-

ing model and surrounding it with a set of unknown possible data generating

processes, one unknown element of which is the true process f . See figure

1.7.1. Because he doesn’t know f , a decision maker bases his decisions on

the only explicitly specified model available, namely, the misspecified fαo
.

We are silent about the process through which the decision maker discovered

his approximating model fαo
(y∗|y).18 We also take for granted the decision

maker’s parameter estimates αo .19 We impute some doubts about his model

to the decision maker. In particular, the decision maker suspects that the

data are actually generated by another model f(y∗|y) with relative entropy

I(fαo
, f)(y). The decision maker thinks that his model is a good approxi-

mation in the sense that I(fαo
, f)(y) is not too large, and wants to make

decisions that will be good when f 6= fαo
. We endow the decision maker

with a discount factor β and construct the following intertemporal measure

of model misspecification:20

I (fαo
, f) = Ef

∞∑

t=0

βtI (fαo
, f) (yt)

where Ef is the mathematical expectation evaluated with respect to the dis-

tribution f . Our decision maker confronts model misspecification by seek-

ing a decision rule that will work well across a set of models for which

I(fαo
, f) ≤ η0 , where η0 measures the set of models F surrounding his

approximating model fα . Figure 1.7.1 portrays the decision maker’s view of

the world. The decision maker wants a single decision rule that is reliable for

all models f in the set displayed in figure 1.7.1.21 This book describes how he

17 Also see Vuong (1989).
18 See Kreps (1988, chapter 11) for an interesting discussion of the problem of model

discovery.
19 In chapter 9, we entertain the hypothesis that the decision maker has estimated his

model by maximum likelihood using a data set of length T and use Bayesian detection error

probabilities to guide the choice of a set of models against which he wants to be robust.
20 Hansen and Sargent (2005b, 2007a) provide an extensive discussion of reasons for

adopting this measure of model misspecification.
21 ‘Reliable’ means good enough, but not necessary optimal, for each member of a set of
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can form such a robust decision rule by solving a Bellman equation that tells

him how to maximize his intertemporal objective over decision rules when a

hypothetical malevolent nature minimizes that same objective by choosing a

model f .22 That is, we use a max-min decision rule. Positing a malevolent

nature is just a device that the decision maker uses to perform a systematic

analysis of the fragility of alternative decision rules and to construct a lower

bound on the performance that can be attained by using them. A decision

maker who is concerned about robustness naturally seeks to construct bounds

on the performance of potential decision rules, and the malevolent agent helps

the decision maker do that.

η

�

�

fαo

f

I(fαo
, f) ≤ η

Figure 1.7.1: Robust decision making: A decision maker

with model fαo
suspects that the data are actually gener-

ated by a nearby model f , where I(fαo
, f) ≤ η .

1.8. Why entropy?

To assess the robustness of a decision rule to misspecification of an approx-

imating model requires a way to measure just how good an approximation

that model is. In this book, we use the relative entropy to measure discrep-

ancies between models. Of course, relative entropy is not the only way we

models. The Lucas critique, or dynamic programming, tells us that it is impossible to find

a single decision rule that is optimal for all f in this set. Note how the one-to-one mapping

from transition laws f to decision rules that is emphasized in the Lucas critique depends

on the decision maker knowing the model f . We shall provide a Bayesian interpretation

of a robust decision rule by noting that, ex post , the max-min decision rule is optimal for

some model within the set of models.
22 See Milnor (1951, 1954) for an early formal use of the fiction of a malevolent agent.
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could measure discrepancies between alternative probability distributions. 23

But in using relative entropy, we follow a substantial body of work in applied

mathematics that reaps benefits from entropy in terms of tractability and

interpretability. In particular, using entropy to measure model discrepancies

enables us to appeal to the following outcomes:

1. In the general nonlinear case, using entropy to measure model discrepan-

cies means that concerns about model misspecification can be represented

in terms of a continuation value function that emerges as the indirect util-

ity function after minimizing the decision maker’s continuation value with

respect to the transition density, subject to a penalty on the size of con-

ditional entropy. That indirect utility function implies a tractable “risk-

sensitivity” adjustment to continuation values in Bellman equations. In

particular, we can represent a concern about robustness by replacing

EtV (xt+1) in a Bellman equation with −θ logEt

(
exp

(
−V (xt+1)

θ

))
, where

θ > θ > 0 is a parameter that measures the decision maker’s concern

about robustness to misspecification. (We shall relate the lower bound

θ to H∞ control theory in chapter 8.) The simple logEt exp form of

this adjustment follows from the decision to measure model discrepancy

in terms of entropy.

2. In problems with quadratic objective functions and linear transition laws,

using relative entropy to measure model misspecification leads to a sim-

ple adjustment to the ordinary linear-quadratic dynamic programming

problem. Suppose that the transition law for the state vector in the

approximating model is xt+1 = Axt + But + Cεt+1 , where εt+1 is an

i.i.d. Gaussian vector process with mean 0 and identity covariance. Us-

ing relative entropy to measure discrepancies in transition laws implies

a worst-case model that perturbs the distribution of εt+1 by enhancing

its covariance matrix and appending a mean vector wt+1 that depends

on date t information. Value functions remain quadratic and the distri-

bution associated with the perturbed model remains normal. Because a

form of certainty equivalence prevails,24 it is sufficient to keep track of

the mean distortion when solving the control problem. This mean distor-

tion contributes .5wt+1 ·wt+1 to the relative entropy discrepancy between

the approximating model and the alternative model. As a consequence,

a term θw′
t+1wt+1 is appended to the one-period return function when

computing the robust control and a worst-case conditional mean.

23 Bergemann and Schlag (2005) use Prohorov distance rather than entropy to define the

set of probability models against which decision makers seek robustness.
24 See page 33.
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3. As we shall see in chapter 9, entropy connects to a statistical theory for

discriminating one model from another. The theory of large deviations

mentioned in chapter 3 links statistical discrimination to a risk-sensitivity

adjustment.25

1.9. Why max-min?

We answer this question by posing three other questions.

1. What does it mean for a decision rule to be robust? A robust decision

rule performs well under the variety of probability models depicted in

figure 1.7.1. How might one go about investigating the implications of

alternative models for payoffs under a given decision rule? A good way

to do this is to compute a lower bound on value functions by assessing

the worst performance of a given decision rule over a range of alternative

models. This makes max-min a useful tool for searching for a robust

decision rule.

2. Instead of max-min, why not simply ask the decision maker to put a prior

distribution over the set of alternative models depicted in figure 1.7.1?

Such a prior would, in effect, have us form a new model – a so-called

hypermodel – and thereby eliminate concerns about the misspecification

of that model. Forming a hypermodel would allow the decision maker to

proceed with business as usual, albeit with what may be a more complex

model and a computationally more demanding control problem. We agree

that this “model averaging” approach is a good way to address some well-

structured forms of model uncertainty. Indeed, in chapter 18 we shall use

model averaging and Bayesian updating when we study problems that call

for combined estimation and control. But the set of alternative models

can be so vast that it is beyond the capacity of a decision maker to conjure

up a unique well behaved prior. And even when he can, a decision maker

might also want decisions to be robust to whatever prior he could imagine

over this set of models.

More is at issue than the choice of the prior distribution to assign to dis-

tinct well specified models. The specification errors that we fear might

be more complex than can be represented with a simple model averag-

ing approach. It is reasonable to take the view that each of the distinct

models being averaged is itself an approximation. The decision maker

might lack precise ideas about how to describe the alternative specifi-

cations that worry him and about how to form prior distributions over

25 Anderson, Hansen, and Sargent (2003) extensively exploit these connections.
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them. Perhaps he can’t articulate the misspecifications that he fears, or

perhaps the set of alternative models is too big to comprehend. 26

Our answer to this second question naturally leads to a reconsideration

of the standard justification for being a Bayesian.

3. “Why be a Bayesian?” Savage (1954) gave an authoritative answer by

describing axioms that imply that a rational person can express all of his

uncertainty in terms of a unique prior. However, Schmeidler (1989) and

Gilboa and Schmeidler (1989) altered one of Savage’s axioms to produce

a model of what it means to be a rational decision maker that differs

from Savage’s Bayesian model. Gilboa and Schmeidler’s rational decision

maker has multiple priors and behaves as a max-min expected utility

decision maker: the decision maker maximizes and assumes that nature

chooses a probability to minimize his expected utility. We are free to

appeal to Gilboa and Schmeidler’s axioms to rationalize the form of max-

min expected utility decision making embedded in the robust control

theories that we study in this book.27

1.10. Is max-min too cautious?

Our doubts are traitors, And make us lose the good we oft might win, By

fearing to attempt.

— William Shakespeare, Measure for Measure, act 1 scene 4

Our use of the detection error probabilities of chapter 9 to restrict the penalty

parameter θ in figure 1.1.1 protects us against the objection that the max-

min expected utility theory embedded in robust control theory is too cautious

because, by acting as if he believed the worst-case model, the decision maker

puts too much weight on a “very unlikely” scenario.28 We choose θ so that

the entropy ball that surrounds the decision maker’s approximating model in

26 See Sims (1971) and Diaconis and Freedman (1986) for arguments that forming an

appropriate prior is difficult when the space of submodels and the dimensions of parameter

spaces are very large.
27 Hansen and Sargent (2001) and Hansen, Sargent, Turmuhambetova, and Williams

(2006) describe how stochastic formulations of robust control “constraint problems” can

be viewed in terms of Gilboa and Schmeidler’s max-min expected utility model. Interest-

ing theoretical work on model ambiguity not explicitly connected to robust control theory

includes Dow and Werlang (1994), Ghirardato and Marinacci (2002), Ghirardato, Mac-

cheroni, and Marinacci (2004), Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2003),

and Rigotti and Shannon (2003, 2005), and Strzalecki (2007).
28 Bewley (1986, 1987, 1988), Dubra, Maccheroni, and Ok (2004), Rigotti and Shannon

(2005), and Lopomo, Rigotti, and Shannon (2004) use an alternative to the max-min ex-

pected utility model but still one in which the decision maker experiences ambiguity about

models. In their settings, incomplete preferences are expressed in terms of model ambiguity
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figure 1.7.1 has the property that the perturbed models on and inside the ball

are difficult to distinguish statistically from the approximating model with

the amount of data at hand. This way of calibrating θ makes the likelihood

function for the decision maker’s worst-case model fit the available data almost

as well as his approximating model. Moreover, by inspecting the implied

worst-case model, we can evaluate whether the decision maker is focusing on

scenarios that appear to be too extreme.

1.11. Aren’t you just picking a plausible prior?

By interchanging the order in which we maximize and minimize, chapter 7 de-

scribes an ex post Bayesian interpretation of a robust decision rule. 29 Friendly

critics have responded to this finding by recommending that we view robust

control as simply a way to select a plausible prior in an otherwise standard

Bayesian analysis.30 Furthermore, one can regard our chapter 9 detection

error probability calculations as a way to guarantee that the prior is plausible

in light of the historical data record at the disposal of the decision maker.

We have no objection to this argument in principle, but warn the reader

that issues closely related to the Lucas (1976) critique mean that it has to be

handled with care, as in any subjectivist approach. Imagine a policy inter-

vention that alters a component of a decision maker’s approximating model

for, e.g., a tax rate, while leaving other components unaltered. In general,

all equations of the decision maker’s worst-case transition law that emerge

from the max-min decision process will vary with such interventions. The de-

pendence of other parts of the decision maker’s worst-case model on subcom-

ponents of the transition law for the approximating model that embody the

policy experiment reflects the context-specific nature of the decision maker’s

worst-case model. Therefore, parts of the ex post worst-case “prior” that de-

scribe the evolution of variables not directly affected by the policy experiment

will depend on the policy experiment. The sense in which robust control is

just a way to pick a plausible prior is subtle.

Another challenge related to the Lucas critique pertains when we apply

robust control without availing ourselves of the ex post Bayesian interpreta-

and there is a status quo allocation that plays a special role in shaping how the decision

maker ranks outcomes. Some advocates of this incomplete preferences approach say that

they like it partly because it avoids what they say is an undue pessimism that characterizes

the max-min expected utility model. See Fudenberg and Levine (1995) for how max-min

can be used to attain an interesting convergence result for adaptive learning.
29 We introduce this argument because it provides a sense in which our robust decision

rules are admissible in the statistical decision theoretic sense of being undominated.
30 Christopher A. Sims has made this argument on several occasions.
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tion. Throughout this book, whenever we consider changes in the economic

environment, we imitate rational expectations policy analysis by imputing

common approximating models, one before the policy change, the other after,

to all agents in the model and the econometrician (e.g., see chapter 14). It

is natural to doubt whether decision makers would fully trust their statistical

models after such policy changes.

1.12. Why not learn the correct specification?

For much of this book, but not all, we attribute an enduring fear of misspecifi-

cation to our decision maker. Wouldn’t it be more realistic to assume that the

decision maker learns to detect and discard bad specifications as data accrue?

One good answer to this question is related to some of the points made

in section 1.9. In chapter 9, we suggest calibrating the free parameter θ

borne by the “gentleman” in the bottom panel of figure 1.1.1 so that, even

with nondogmatic priors, it would take long time series to distinguish among

the alternative specifications about which the decision maker is concerned.

Because our decision maker discounts the future, he cannot avoid facing up

to his model specification doubts simply by waiting for enough data. 31 Thus,

one answer is that, relative to his discount factor, it would take a long time

for him to learn not to fear model misspecification.

However, we agree that it is wise to think hard about what types of

misspecification fears you can expect learning to dispel in a timely way, and

which types you cannot. But what are good ways to learn when you dis-

trust your model? Chapters 17 and 18 are devoted to these issues. 32 We

present alternative formulations of robust estimation and filtering problems

and suggest ways to learn in the context of distrusted approximating models.

Our approach allows us to distinguish types of model misspecification fears

that a decision maker can eventually escape by learning from types that he

cannot.33

31 As we shall see, one reason that it takes a very long data set to discriminate between

the models that concern the decision maker is that often they closely approximate each

other at high frequencies and differ mostly at very low frequencies. Chapter 8 studies

robustness from the viewpoint of the frequency domain.
32 Also see Hansen and Sargent (2005b, 2007a, 2007b).
33 Epstein and Schneider (2006) also make this distinction. In the empirical model of

Hansen and Sargent (2007b), a representative consumer’s learning within the sample period

reduces his doubts about the distribution of some unknown parameters, but does little to

diminish his doubts about the distribution over difficult to distinguish submodels, one of

which confronts him with long-run risk in the growth rate of consumption.
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1.13. Is the set of perturbed models too limited?

Parts of this book are devoted to analyzing situations in which the deci-

sion maker’s approximating model and the statistical perturbations to it that

bother him all take the form of the stochastic linear evolution

xt+1 = Axt +But + C (εt+1 + wt+1) (1.13.1)

where xt is a state vector, ut a control vector, εt+1 an i.i.d. Gaussian shock

with mean 0 and covariance I , and wt+1 is a vector of perturbations to the

mean of εt+1 . Under the approximating model, wt+1 = 0, whereas under

perturbed models, wt+1 is allowed to be nonzero and to feed back on the

history of past xt ’s.

Some critics have voiced the complaint that this class of perturbations ex-

cludes types of misspecified dynamics that ought to concern a decision maker,

such as unknown parameter values, misspecfication of higher moments of the

εt+1 distribution, and various kinds of “structured uncertainty.” We think

that this complaint is misplaced for the following reasons:

1. For the problems with quadratic objective functions and approximating

models like (1.13.1) with wt+1 = 0, restricting ourselves to perturbations

of the form (1.13.1) turns out not to be as restrictive as it might at first

seem. In chapters 3 and 7, we permit a much wider class of alternative

models that we formulate as absolutely continuous perturbations to the

transition density of state variables. We show that when the decision

maker’s objective function is quadratic and his approximating model is

linear with Gaussian εt+1 , then he chooses a worst-case model that is of

the form (1.13.1) with a C that is usually only slightly larger and a wt+1

that is a linear function of xt . We shall explain why he makes little or

no error by ignoring possible misspecification of the volatility matrix C .

2. In section 19.2 of chapter 19, we show how more structured kinds of

uncertainty can be accommodated by slightly reinterpreting the decision

maker’s objective function.

3. When the approximating model is a linear state evolution equation with

Gaussian disturbances and the objective function is quadratic, worst case

distributions are also jointly Gaussian. However, making the approximat-

ing model be non-Gaussian and non-linear or making the objective func-

tion be not quadratic leads to non-Gaussian worst-case joint probability

distributions, as chapter 3 indicates. Fortunately, by extending the meth-

ods of chapters 17 and 18, as Hansen and Sargent (2005, 2007a) do, we

know how to model robust decision makers who learn about non-linear
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models with non-Gaussian shock distributions while making decisions.

The biggest hurdles in carrying out quantitative analyses like these are

computational. Most of the problems studied in this book are designed

to be easy computationally by staying within a linear-quadratic-Gaussian

setting. But numerical methods allow us to tackle analogous problems

outside the LQG setting.34

1.14. Is robust control theory positive or normative?

Robust control and estimation theory has both normative and positive eco-

nomic applications. In some contexts, we take our answer to question (2) in

the preceding section to justify a positive statement about how people actually

behave. For example, we use this interpretation when we apply robust control

and estimation theory to study asset pricing puzzles by constructing a robust

representative consumer whose marginal evaluations determine market prices

of risk (see Hansen, Sargent, and Tallarini (1999), Hansen, Sargent, and Wang

(2002), and chapter 13).

Monetary policy authorities and other decision makers find themselves

in situations where their desire to be cautious with respect to fears of model

misspecification would inspire them to use robust control and estimation tech-

niques.35 Normative uses of robust control theory occur often in engineering.

1.15. Other lessons

Our research program of refining typical rational expectations models to at-

tribute specification doubts to the agents inside of them has broadened our

own understanding of rational expectations models themselves. Struggling

with the ideas in this book has taught us much about the structure of re-

cursive models of economic equilibria,36 the relationship between control and

estimation problems, and Bayesian interpretations of decision rules in dy-

namic rational expectations models. We shall use the macroeconomist’s Big

K , little k trick with a vengeance.

The 1950s-1960s control and estimation theories lampooned in the top

panel of figure 1.1.1 have contributed enormously to the task of constructing

dynamic equilibrium models in macroeconomics and other areas of applied

economic dynamics. We expect that the robust control theories represented

34 See Cogley, Colacito, Hansen, and Sargent (2007) for an example.
35 Blinder (1998) expresses doubts about model misspecification that he had when he

was vice chairman of the Federal Reserve System and how he coped with them.
36 For example, see chapter 12.
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in the bottom panel of that figure will also bring many benefits that we cannot

anticipate.

1.16. Topics and organization

This monograph displays alternative ways to express and respond to a deci-

sion maker’s doubts about model specification. We study both control and

estimation (or filtering) problems, and both single- and multiple-agent set-

tings. As already mentioned, we adapt and extend results from the robust

control literature in two important ways. First, unlike the control literature,

which focuses on undiscounted problems, we formulate discounted problems.

Incorporating discounting involves substantial work, especially in chapter 8,

and requires paying special attention to initial conditions. Second, we analyze

three types of economic environments with multiple decision makers who are

concerned about model misspecification: (1) a competitive equilibrium with

complete markets in history-date contingent claims and a representative agent

who fears model misspecification (chapters 12 and 13); (2) a Markov perfect

equilibrium of a dynamic game with multiple decision makers who fear model

misspecification (chapter 15); and (3) a Stackelberg or Ramsey problem in

which the leader fears model misspecification (chapter 16). Thinking about

model misspecification in these environments requires that we introduce an

equilibrium concept that extends rational expectations. We stay mostly, but

not exclusively, within a linear-quadratic framework, in which a pervasive cer-

tainty equivalence principle allows a nonstochastic presentation of most of the

control and filtering theory.

This book is organized as follows. Chapter 2 summarizes a set of prac-

tical results at a relatively nontechnical level. A message of this chapter

is that although sophisticated arguments from chapters 7 and 8 are needed

fully to justify the techniques of robust control, the techniques themselves

are as easy to apply as the ordinary dynamic programming techniques that

are now widely used throughout macroeconomics and applied general equi-

librium theory. Chapter 2 uses linear-quadratic dynamic problems to convey

this message, but the message applies more generally, as we shall illustrate in

chapter 3. Chapter 3 tells how the key ideas about robustness generalize to

models that are not linear quadratic.

Chapters 4 and 5 are about optimal control and filtering when the deci-

sion maker trusts his model. These chapters contain a variety of useful results

for characterizing the linear dynamic systems that are widely used in macroe-

conomics. Chapter 4 sets forth important principles by summarizing results

about the classic optimal linear regulator problem. This chapter builds on
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the survey by Anderson, Hansen, McGrattan, and Sargent (1996) and culmi-

nates in a description of invariant subspace methods for solving linear optimal

control and filtering problems and also for solving dynamic linear equilibrium

models. Later chapters apply these methods to various problems: to compute

robust decision rules as solutions of two-player zero-sum games; to compute

robust filters via another two-player zero-sum game; and to compute equilib-

ria of robust Stackelberg or Ramsey problems in macroeconomics. Chapter 5

emphasizes that the Kalman filter is the dual (in a sense familiar to economists

from their use of Lagrange multipliers) of the basic linear-quadratic dynamic

programming problem of chapter 4 and sets the stage for a related duality

result for a robust filtering problem to be presented in chapter 17.

The remaining chapters are about making wise decisions when a decision

maker distrusts his model. Within a one-period setting, chapter 6 introduces

two-player zero-sum games as a way to induce robust decisions. Although

the forms of model misspecifications considered in this chapter are very sim-

ple relative to those considered in subsequent chapters, the static setting of

chapter 6 is a good one for addressing some important conceptual issues. In

particular, in this chapter we state multiplier and constraint problems, two

different two-player zero-sum games that induce robust decision rules. We use

the Lagrange multiplier theorem to connect the problems.

Chapters 7 and 8 extend and modify results in the control literature to for-

mulate robust control problems with discounted quadratic objective functions

and linear transition laws. Chapter 7 represents things in the time domain,

while chapter 8 works in the frequency domain. Incorporating discounting

requires carefully restating the control problems used to induce robust deci-

sion rules. Chapters 7 and 8 describe two ways to alter the discounted linear

quadratic optimal control problem in a way to induce robust decision rules:

(1) to form one of several two-player zero-sum games in which nature chooses

from a set of models in a way that makes the decision maker want robust de-

cision rules; and (2) to adjust the continuation value function in the dynamic

program in a way that encodes the decision maker’s preference for a robust

rule. The continuation value that works comes from the minimization piece

of one of the two-player zero-sum games in (1). In category (1), we present

a detailed account of several two-player zero-sum games with different timing

protocols, each of which induces a robust decision rule. As an extension of cat-

egory (2), we present three specifications of preferences that express concerns

about model misspecification. Two of them are expressed in the frequency

domain: the H∞ and entropy criteria. The entropy objective function sum-

marizes model specification doubts with a single parameter. That parameter

relates to a Lagrange multiplier in a two-player zero-sum constraint game, and
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also to the risk-sensitivity parameter of Jacobson (1973) and Whittle (1990),

as modified for discounting by Hansen and Sargent (1995).

Chapters 7 and 8 show how robustness is induced by using max-min

strategies: the decision maker maximizes while nature minimizes over a set

of models that are close to the approximating model. There are alternative

timing protocols in terms of which a two-player zero-sum game can be cast.

A main finding of chapter 7 is that zero-sum games that make a variety of

different timing protocols share outcomes and representations of equilibrium

strategies. This important result lets us use recursive methods to compute

our robust rules and also facilitates computing equilibria in multiple-agent

economics.

Arthur Goldberger and Robert E. Lucas, Jr., warned applied economists

to beware of theorists bearing free parameters (see figure 1.1.1). Relative to

settings in which decision makers completely trust their models, the multiplier

and constraint problems of chapters 7 and 8 each bring one new free parameter

that expresses a concern about model misspecification, θ for the multiplier

problem and η for the constraint problem. Each of these parameters measures

sets of models near the approximating model against which the decision maker

seeks a robust rule. Chapter 9 proposes a way to calibrate these parameters

by using the statistical theory for discriminating models.37 We apply this

theory in chapters 10 and 14.

Chapter 10 uses the permanent income model of consumption as a labo-

ratory for illustrating some of the concepts from chapters 7 and 8. Because he

prefers smooth consumption paths, the permanent income consumer’s savings

are designed to attenuate the effects of income fluctuations on his consump-

tion. A robust consumer engages in a kind of precautionary savings because

he suspects error in the specification of the income process. We will also use

the model of chapter 10 as a laboratory for asset pricing in chapter 13. But

first, chapters 11 and 12 describe how to decentralize the solution of a plan-

ning problem with a competitive equilibrium. Chapter 11 sets out a class of

dynamic economies and describes two decentralizations, one with trading of

history-date contingent commodities once and for all at time zero, another

with sequential trading of one-period Arrow securities. In that sequential

setting, we give a recursive representation of equilibrium prices. Chapter 11

describes a setting where the representative agent has no concern about model

misspecification, while chapter 12 extends the characterizations of chapter 11

to situations where the representative decision maker fears model misspecifi-

cation.

Chapter 13 builds on the chapter 12 results to show how fear of model

37 See Anderson, Hansen, and Sargent (2003).



Topics and organization 23

misspecification affects asset pricing. We show how, from the vantage point

of the approximating model, a concern for robustness induces a multiplicative

adjustment to the stochastic discount factor. The adjustment measures the

representative consumer’s fear that the approximating model is misspecified.

The adjustment for robustness resembles ones that financial economists use

to construct risk neutral probability measures for pricing assets. We describe

the basic theory within a class of linear quadratic general equilibrium models

and then a calibrated version of the permanent income model of chapter 10.

A remarkable observational equivalence result identifies a locus of pairs of

discount factors and robustness multipliers, all of which imply identical real

allocations.38 Nevertheless, prices of risky assets vary substantially across

these pairs. In chapter 14, we revisit some quantitative findings of Tallarini

(2000) and reinterpret asset pricing patterns that he imputed to very high risk

aversion in terms of a plausible fear of model misspecification. We measure

a plausible fear of misspecification by using the detection error probabilities

introduced in chapter 9.

Chapters 15 and 16 describe two more settings with multiple decision

makers and introduce an equilibrium concept that extends rational expecta-

tions in what we think is a natural way. In a rational expectations equilibrium,

all decision makers completely trust a common model. Important aspects of

that common model, those governing endogenous state variables, are equilib-

rium outcomes. The source of the powerful cross-equation restrictions that

are the hallmark of rational expectations econometrics is that decision makers

share a common model and that this model governs the data.39 To preserve

that empirical power in an equilibrium with multiple decision makers who fear

model misspecification, we impose that all decision makers share a common

approximating model.40 The model components that describe endogenous

state variables are equilibrium outcomes that depend on agents’ robust deci-

sion making processes, i.e., on the solutions to their max-min problems.

Chapter 15 describes how to implement this equilibrium concept in the

context of a two-player dynamic game in which the players share a common

38 This result establishes a precise sense in which, so far as real quantities are concerned,

increased fear of model misspecficiation acts just like reduced discounting of the future, so

that its effects on real quantities can be offset by increasing the rate at which future payoffs

are discounted.
39 The restriction that they share a common model is the feature that makes free pa-

rameters governing expectations disappear. This is what legitimizes a law of large numbers

that underlies rational expectations econometrics.
40 In the empirical applications of Hansen, Sargent, and Tallarini (1999) and Anderson,

Hansen, and Sargent (2003), we also maintain the second aspect of rational expectations

modeling, namely, that the decision makers’ approximating model actually does generate

the data.
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approximating model and each player makes robust decisions by solving a two-

player zero-sum game, taking the approximating model as given. We show

how to compute the approximating model by solving pairs of robust versions of

the Bellman equations and first-order conditions for the two decision makers.

While the equilibrium imposes a common approximating model, the worst-

case models of the two decision makers differ because their objectives differ.

In this sense, the model produces endogenous ex post heterogeneity of beliefs.

In chapter 16, we alter the timing protocol to study a control problem,

called a Ramsey problem, where a leader wants optimally to control followers

who are forecasting the leader’s controls. We describe how to compute a

robust Stackelberg policy when the Stackelberg leader can commit to a rule.

We accomplish that by using a robust version of the optimal linear regulator

or else one of the invariant subspace methods of chapter 4.

Chapter 17 extends the analysis of filtering from chapter 5 by describing

a robust filtering problem that is dual to the control problem of chapter 7. 41

This recursive filtering problem requires that a time t decision maker must

respect distortions to the distribution of the hidden state that he inherits

from past decision makers. As a consequence, in this problem, bygones are

not bygones:42 the decision makers concerns about past returns affect his

estimate of the current value of a hidden state vector.

Chapter 18 uses a different criterion than chapter 17 and finds a different

robust filter. We think that the chapter 18 filter is the appropriate one for

many problems and give some examples. The different filters that emerge from

chapters 17 and 18 illustrate how robust decision rules are ‘context specific’

in the sense that they depend on the common objective function in the two-

player zero-sum game that is used to induce a robust decision rule. This

theme will run through this book.

Chapter 19 concludes by confronting some of the confining aspects of

our work, some criticisms that we have heard, and opportunities for further

progress.

41 We originally found this problem by stating and solving a conjugate problem of a kind

familiar to economists through duality theory. By faithfully following where duality leads,

we discovered a filtering problem that is peculiar (but not necessarily uninteresting) from

an economic standpoint. A sketch of this argument is presented in appendix A of chapter

17.
42 But see the epigraph from William Stanley Jevons quoted at the start of chapter 18.



Chapter 2
Basic ideas and methods

There are two different drives toward exactitude that will never attain

complete fulfillment, one because “natural” languages always say some-

thing more than formalized languages can – natural languages always

involve a certain amount of noise that impinges on the essentiality of

the information – and the other because, in representing the density and

continuity of the world around us, language is revealed as defective and

fragmentary, always saying something less with respect to the sum of

what can be experienced.

— Italo Calvino, Six Memos for the Next Millennium, 1996

2.1. Introduction

A model maps a sequence of decisions into a sequence of outcomes. Standard

control theory tells a decision maker how to make optimal decisions when his

model is correct. Robust control theory tells him how to make good decisions

when his model approximates a correct one. This chapter summarizes meth-

ods for computing robust decision rules when the decision maker’s criterion

function is quadratic and his approximating model is linear.1 After describ-

ing possible misspecifications as a set of perturbations to an approximating

model, we modify the Bellman equation and the Riccati equation associated

with the standard linear-quadratic dynamic programming problem to incor-

porate concerns about misspecification of the transition law. The adjustments

to the Bellman equation have alternative representations, each of which has

practical uses in contexts that we exploit extensively in subsequent chapters.

This chapter concentrates mainly on single-agent decision theory, but chap-

ters 11, 15, and 16 extend the theory to environments with multiple decision

makers, all of whom are concerned about model misspecification. In the pro-

cess, we describe equilibrium concepts that extend the notion of a rational

expectations equilibrium to situations in which decision makers have differ-

ent amounts of confidence in a common approximating model.2 Chapter 3

1 Later chapters provide technical details that justify assertions made in this chapter.
2 Chapter 11 discusses competitive equilibria in representative agent economies; chapter

15 injects motives for robustness into Markov perfect equilibria for two-player dynamic

games; and chapter 16 studies Stackelberg and Ramsey problems. In Ramsey problems,

a government chooses among competitive equilibria of a dynamic economy. A Ramsey

problem too ends up looking like a single-agent problem, the single agent being a benevolent

government that faces a peculiar set of constraints that represent competitive equilibrium

allocations.

– 25 –
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studies models with more general return and transition functions and shows

that many of the insights of this chapter apply beyond the linear-quadratic

setting. The LQ setting is computationally tractable, but also reveals most

of the conceptual issues that apply with more general functional forms.

2.2. Approximating models

We begin with the single-agent linear-quadratic problem. Let yt be a state

vector and ut a vector of controls. A decision maker’s model takes the form

of a linear state transition law

yt+1 = Ayt +But + Cε̌t+1, (2.2.1)

where {ε̌t} is an i.i.d. Gaussian vector process with mean 0 and identity

contemporaneous covariance matrix. The decision maker thinks that (2.2.1)

approximates another model that governs the data but that he cannot specify.

How should we represent the notion that (2.2.1) is misspecified? The i.i.d.

random process ε̌t+1 can represent only a very limited class of approximation

errors and in particular cannot depict such examples of misspecified dynamics

as are represented in models with nonlinear and time-dependent feedback of

yt+1 on past states. To represent dynamic misspecification,3 we surround

(2.2.1) with a set of alternative models of the form

yt+1 = Ayt +But + C (εt+1 + wt+1) , (2.2.2)

where {εt} is another i.i.d. Gaussian process with mean zero and identity

covariance matrix and wt+1 is a vector process that can feed back in a possibly

nonlinear way on the history of y

wt+1 = gt (yt, yt−1, . . .) , (2.2.3)

where {gt} is a sequence of measurable functions. When (2.2.2) generates

the data, it is as though the errors ε̌t+1 in model (2.2.1) were conditionally

distributed as N (wt+1, I) rather than as N (0, I). Thus, we capture the idea

3 In chapters 3 and 6, we allow a broader class of misspecifications. Chapter 3 represents

the approximating model as a Markov transition density and considers misspecifications that

twist probabilities over future states. When the approximating model is Gaussian, many

results of this chapter survive even though (2.2.2) ignores an additional adjustment to the

innovation covariance matrix of the shock in the distorted model that turns out not to affect

the distortion to the conditional mean of the shock. In many applications, the adjustment

to the covariance matrix is quantitatively insignificant. It vanishes in the case of continuous

time. See Anderson, Hansen, and Sargent (2003) and Hansen, Sargent, Turmuhambetova,

and Williams (2006).
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that the approximating model (2.2.1) is misspecified by allowing the condi-

tional mean of the shock vector in the model (2.2.2) that actually generates

the data to feed back arbitrarily on the history of the state. To express the

idea that model (2.2.1) is a good approximation when (2.2.2) generates the

data, we restrain the approximation errors by

E0

∞∑

t=0

βt+1w′
t+1wt+1 ≤ η0, (2.2.4)

where Et denotes mathematical expectation evaluated with model (2.2.2)

and conditioned on yt = [yt, . . . , y0] . In section 2.3, chapter 3, and chapter

9, we shall interpret the left side of (2.2.4) as a statistical measure of the

discrepancy between the distorted and approximating models.

The alternative models differ from the approximating model by having

shock processes whose conditional means are not zero and that can feed back

in potentially complicated ways on the history of the state. Notice that our

specification leaves the conditional volatility of the shock, as parameterized

by C , unchanged. We adopt this specification for computational convenience.

We show in chapter 3 the useful result that our calculations for a worst-

case conditional mean wt+1 remain unaltered when we also allow conditional

volatilities C to differ in the approximating and perturbed models.

The decision maker believes that the data are generated by a model of

the form (2.2.2) with some unknown process wt satisfying (2.2.4).4 The

decision maker forsakes learning to improve his specification because η0 is so

small that statistically it is difficult to distinguish model (2.2.2) from (2.2.1)

using a time series {yt}T
t=1 of moderate size T , an idea that we develop in

chapter 9.5

The decision maker’s distrust of his model (2.2.1) makes him want good

decisions over a set of models (2.2.2) satisfying (2.2.4). Such decisions are

said to be robust to misspecification of the approximating model.

We compute robust decision rules by solving one of several distinct but

related two-player zero-sum games: a maximizing decision maker chooses con-

trols {ut} and a minimizing (also known as a “malevolent” or “evil”) agent

chooses model distortions {wt+1} . The games share common players, actions,

and payoffs, but assume different timing protocols. Nevertheless, as we show

in chapters 7 and 8, equilibrium outcomes and decision rules for the games

4 See chapter 3 for a specification of the approximating model as a joint probability den-

sity over an infinite sequence of yt s and misspecifications that are represented as alternative

joint probability densities.
5 However, see chapter 18 and Hansen and Sargent (2005b, 2007a) for ways to include

robust forms of learning.
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coincide, a consequence of the zero-sum feature of all of the games. 6 This

makes the games easy to solve. Computing robust decision rules comes down

to solving Bellman equations for dynamic programming problems that are

very similar to equations routinely used today throughout macroeconomics

and applied economic dynamics. Before later chapters assemble the results

needed to substantiate these claims, this chapter quickly summarizes how to

compute robust decision rules with standard methods.

We begin with the ordinary linear-quadratic dynamic programming prob-

lem without model misspecification, called the optimal linear regulator. Then

we describe how robust decision rules can be computed by solving another

optimal linear regulator problem.

2.2.1. Dynamic programming without model misspecification

The standard dynamic programming problem assumes that the transition law

is correct.7 Let the one-period loss function be r(y, u) = −(y′Qy + u′Ru)

where the matrices Q and R are symmetric and together with A and B in

(2.2.1) satisfy some stabilizability and detectability assumptions set forth in

chapter 4. The optimal linear regulator problem is

−y0Py0 − p = max
{ut}∞

t=0

E0

∞∑

t=0

βtr (yt, ut) , 0 < β < 1, (2.2.5)

where the maximization is subject to (2.2.1), y0 is given, E denotes the

mathematical expectation operator evaluated with respect to the distribution

of ε̌ , and E0 denotes the mathematical expectation conditional on time 0

information, namely, the state y0 . Letting y∗ denote next period’s value of

y , the linear constraints and quadratic objective function in (2.2.5), (2.2.1)

imply the Bellman equation

−y′Py − p = max
u

E [r (y, u) − βy∗′Py∗ − βp]
∣∣∣y, (2.2.6)

where the maximization is subject to

y∗ = Ay +Bu+ Cε̌, (2.2.7)

where ε̌ is a random vector with mean zero and identity variance matrix.

Subject to assumptions about A,B,R,Q, β to be described in chapter 4,

some salient facts about the optimal linear regulator are the following:

6 The zero-sum feature perfectly misaligns the preferences of the two players and thereby

renders timing protocols irrelevant. See chapter 7 for details.
7 Many technical results and computational methods for the linear quadratic problem

without concerns about robustness are catalogued in chapter 4.
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1. The Riccati equation. The matrix P in the value function is a fixed point

of a matrix Riccati equation:

P = Q+ βA′PA− β2A′PB (R+ βB′PB)
−1
B′PA. (2.2.8)

The optimal decision rule is ut = −Fyt where

F = β (R+ βB′PB)
−1
B′PA. (2.2.9)

We can find the appropriate fixed point P and solve problem (2.2.5),

(2.2.1) by iterating to convergence on the Riccati equation (2.2.8) start-

ing from initial value P0 = 0.

2. Certainty equivalence. In the Bellman equation (2.2.6), the scalar p =
β

1−β tracePCC ′ . The volatility matrix C influences the value function

through p , but not through P . It follows from (2.2.8), (2.2.9) that

the optimal decision rule F is independent of the volatility matrix C .

In (2.2.1), we have normalized C by setting Eε̌tε̌
′
t = I . Therefore,

the matrix C determines the covariance matrix CC ′ of random shocks

impinging on the system. The finding that F is independent of the

volatility matrix C is known as the certainty equivalence principle: the

same decision rule ut = −Fyt emerges from stochastic (C 6= 0) and

nonstochastic (C = 0) versions of the problem. This kind of certainty

equivalence fails to describe problems that express a concern for model

misspecification; but another useful kind of certainty equivalence does.

See page 33.

3. Shadow prices. Since the value function is −y′0Py0 − p , the vector of

shadow prices of the initial state is −2Py0 . Form a Lagrangian for

(2.2.1), (2.2.5) and let the vector −2βt+1µt+1 be Lagrange multipli-

ers on the time t version of (2.2.1). First-order conditions for a saddle

point of the Lagrangian can be rearranged to form a first-order vector

difference equation in (yt, µt). The optimal policy solves this difference

equation subject to an initial condition for y0 and a transversality or de-

tectability condition E0

∑∞
t=0 β

tr(yt, ut) > −∞ . In chapter 4, we show

that subject to these boundary conditions, the vector difference equation

consisting of the first-order conditions is solved by setting µt = Pyt ,

where P solves the Riccati equation (2.2.8).
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2.3. Measuring model misspecification with entropy

We use entropy to measure model misspecification. To interpret our mea-

sure of entropy, we state a modified certainty equivalence principle for linear

quadratic models. Although we use a statistical interpretation of entropy, by

appealing to the modified certainty equivalence result to be stated on page

33, we shall be able to drop randomness from the model but still retain a

measure of model misspecification that takes the form of entropy.

Let the approximating model again be (2.2.1) and let the distorted model

be (2.2.2). The approximating model asserts that wt+1 = 0. For convenience,

we analyze the consequences of a fixed decision rule and assume that ut =

−Fyt . Let Ao = A−BF and write the approximating model as

yt+1 = Aoyt + Cε̌t+1 (2.3.1)

and a distorted model as8

yt+1 = Aoyt + C (εt+1 + wt+1) . (2.3.2)

The approximating model (2.3.1) asserts that ε̌t+1 = (C ′C)−1C ′(yt+1 −
Aoyt). When the distorted model generates the data, yt+1 −Aoyt = Cε̌t+1 =

C(εt+1 +wt+1), which implies that the disturbances under the approximating

model appear to be

ε̌t+1 = εt+1 + wt+1, (2.3.3)

so that misspecification manifests itself in a distortion to the conditional mean

of innovations to the state evolution equation.

How close is the approximating model to the model that actually governs

the data? To measure the statistical discrepancy between the two models of

the transition from y to y∗ , we use conditional relative entropy defined as

I (fo, f) (y) =

∫
log

(
f (y∗|y)
fo (y∗|y)

)
f (y∗|y) d y∗,

where fo denotes the one-step transition density associated with the approx-

imating model and f is a transition density obtained by distorting the ap-

proximating model.9

8 Chapter 3 allows a larger set of perturbations to the approximating model and gives

an appropriate definition of entropy.
9 Define the likelihood ratio m(f(y∗ |y)) =

f(y∗|y)
f0(y∗|y)

. Then notice that

I (fo, f) (y) =

∫
(m log m) fo

(
y∗|y

)
dy∗ = Efo

[m log m|y] ,

where the subscript fo means integration with respect to the approximating model fo .

Hansen and Sargent (2005b, 2007a) exploit such representations of entropy. See chapter 3.



Measuring model misspecification with entropy 31

In the present setting, the transition density for the approximating model

is

fo (y∗|y) ∼ N (Ay +Bu,CC ′) ,

while the transition density for the distorted model is10

f (y∗|y) ∼ N (Ay +Bu+ Cw,CC ′) ,

where both u and w are measurable functions of yt . In subsection 3.11 of

chapter 3, we verify that the expected log-likelihood is

I (wt+1) = .5w′
t+1wt+1. (2.3.4)

In chapter 9, we describe how measures like (2.3.4) govern the distribution of

test statistics for discriminating among models. In chapter 13, we show how

the log-likelihood ratio also plays an important role in pricing risky securities

under an approximating model when a representative agent is concerned about

model misspecification.

As an intertemporal measure of the size of model misspecification, we

take

R (w) = 2E0

∞∑

t=0

βt+1I (wt+1) , (2.3.5)

where the mathematical expectation conditioned on y0 is evaluated with re-

spect to the distorted model (2.3.2). Then we impose constraint (2.2.4) on

the set of models or, equivalently,

R (w) ≤ η0. (2.3.6)

In the next section, we construct decision rules that work well over a set of

models that satisfy (2.3.6). Such robust rules can be obtained by finding

the best response for a maximizing player in the equilibrium of a two-player

zero-sum game.

10 In a continuous-time diffusion setting, Hansen, Sargent, Turmuhambetova, and Williams

(2006) describe how the assumption that the distorted model is difficult to distinguish statis-

tically from the approximating model means that it can be said to be absolutely continuous

over finite intervals with respect to the approximating model. They show that this implies

that the perturbations must then assume a continuous time version of the form imposed

here (i.e., they can alter the drift but not the volatility of the diffusion).
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2.4. Two robust control problems

This section states two robust control problems: a constraint problem and

a multiplier problem. The two problems differ in how they treat constraint

(2.3.6). Under appropriate conditions, the two problems have identical so-

lutions. The multiplier problem is a robust version of a stochastic optimal

linear regulator. A certainty equivalence principle allows us to compute the

optimal decision rule for the multiplier problem by solving a corresponding

nonstochastic optimal linear regulator problem.

We state the

Constraint problem: Given η0 satisfying η > η0 ≥ 0, a constraint problem

is

max
{ut}∞

t=0

min
{wt+1}∞

t=0

E0

∞∑

t=0

βtr (yt, ut) (2.4.1)

where the extremization11 is subject to the distorted model (2.2.2) and the

entropy constraint (2.3.6), and where E0 , the mathematical expectation con-

ditioned on y0 , is evaluated with respect to the distorted model (2.2.2). Here

η measures the largest set of perturbations against which it is possible to seek

robustness.

Next we state the

Multiplier problem: Given θ ∈ (θ,+∞] , a multiplier problem is

max
{ut}∞

t=0

min
{wt+1}∞

t=0

E0

∞∑

t=0

βt
{
r (yt, ut) + βθw′

t+1wt+1

}
(2.4.2)

where the extremization is subject to the distorted model (2.2.2) and the

mathematical expectation is also evaluated with respect to that model.

In the max-min problem, θ ∈ (θ,+∞] is a penalty parameter restraining

the minimizing choice of the wt+1 sequence. The lower bound θ is a so-

called breakdown point beyond which it is fruitless to seek more robustness

because the minimizing agent is sufficiently unconstrained that he can push

the criterion function to −∞ despite the best response of the maximizing

agent. Formula (8.4.8) for θ shows how the value of θ depends on the return

function, the discount factor, and the transition law. Tests for whether θ > θ

are presented in formula (7.9.1) and in chapter 8, especially section 8.7. We

shall discuss the lower bound θ and an associated upper bound η extensively

in chapter 8.

11 Following Whittle (1990), extremization means joint maximization and minimization.

It is a useful term for describing saddle-point problems.
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Chapters 7 and 8 state conditions on θ and η0 under which the two

problems have identical solutions, namely, decision rules ut = −Fyt and

wt+1 = Kyt . Chapter 7 establishes many useful facts about distinct versions

of the multiplier problem that employ alternative timing protocols 12 and that

justify solving the multiplier problem recursively. Let −y′0Py0−p be the value

of problem (2.4.2). It satisfies the Bellman equation13

−y′Py − p = max
u

min
w

E {r (y, u) + θβw′w − βy∗′Py∗ − βp} (2.4.3)

where the extremization is subject to

y∗ = Ay +Bu+ C (ε+ w) (2.4.4)

where ∗ denotes next period’s value, and ε ∼ N (0, I). As a tool to explore

the fragility of his decision rule, in (2.4.3) the decision maker pretends that a

malevolent nature chooses a feedback rule for a model misspecification process

w .

In summary, to represent the idea that model (2.2.1) is an approximation,

the robust version of the linear regulator replaces the single model (2.2.1) with

the set of models (2.2.2) that satisfy (2.2.4). Before describing how robust

decision rules emerge from the two-player zero-sum game (2.4.2), we mention

a kind of certainty equivalence that applies to the multiplier problem.

2.4.1. Modified certainty equivalence principle

On page 29, we stated a certainty equivalence principle that applies to the

linear quadratic dynamic programming problem without concern for model

misspecification. It fails to hold when there is concern about model misspec-

ification. But another certainty equivalence principle allows us to work with

a non-stochastic version of (2.4.3), i.e., one in which εt+1 ≡ 0 in (2.4.4). In

particular, it can be verified directly that precisely the same Riccati equa-

tions and the same decision rules for ut and for wt+1 emerge from solving

the random version of the Bellman equation (2.4.3) as would from a version

that sets εt+1 ≡ 0. This fact allows us to drop εt+1 from the state-transition

12 For example, one timing protocol has the maximizing u player first commit at time

0 to an entire sequence, after which the minimizing w player commits to a sequence.

Another timing protocol reverses the order of choices. Other timing protocols have each

player choose sequentially.
13 In chapter 7, we show that the multiplier and constraint problems are both recursive,

but that they have different state variables and different Bellman equations. Nevertheless,

they lead to identical decision rules for ut .
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equation and p from the value function −y′Py− p , without affecting formu-

las for the decision rules.14 Nevertheless, inspection of the Bellman equation

and the formula for the decision rule for ut show that the volatility matrix

C does affect the decision rule. Therefore, the version of the certainty equiv-

alence principle stated on page 29 — that the decision rule is independent of

the volatility matrix — does not hold when there are concerns about model

misspecification. This is interesting because of how a desire for robustness

creates an avenue for the noise statistics embedded in the volatility matrix C

to impinge on decisions even with quadratic preferences and linear transition

laws.15 This effect is featured in the precautionary savings model of chapter

10, a simple version of which we shall sketch in section 2.8.

2.5. Robust linear regulator

The modified certainty equivalence principle lets us attain robust decision

rules by positing the nonstochastic law of motion

yt+1 = Ayt +But + Cwt+1 (2.5.1)

with y0 given, where the w process is constrained by the nonstochastic coun-

terpart to (2.2.4). By working with this nonstochastic law of motion, we

obtain the robust decision rule for the stochastic problem in which (2.5.1) is

replaced by (2.2.2). The approximating model assumes that wt+1 ≡ 0. Even

though randomness has been eliminated, the volatility matrix C affects the

robust decision rule because it influences how the specification errors wt+1

feed back on the state.

To induce a robust decision rule for ut , we solve the nonstochastic version

of the multiplier problem:

max
{ut}

min
{wt+1}

∞∑

t=0

βt
[
r (yt, ut) + θβw′

t+1wt+1

]
(2.5.2)

where the extremization is subject to (2.5.1) and y0 is given. Let −y′0Py0
be the value of (2.5.2). It satisfies the Bellman equation16

−y′Py = max
u

min
w

{r (y, u) + θβw′w − βy∗′Py∗} (2.5.3)

14 The certainty equivalence principle stated here shares with the one on page 29 the

facts that P can be computed before p ; it diverges from the certainty equivalence principle

without robustness on page 29 because now P and therefore F both depend on the volatility

matrix C . See Hansen and Sargent (2005a) for a longer discussion of certainty equivalence

in robust control problems.
15 The dependence of the decision rule on the volatility matrix is an aspect that attracted

researchers like Jacobson (1973) and Whittle (1990) to risk-sensitive preferences (see chapter

3).
16 Notice how this is a special case of (2.4.3) with p = 0. The modified certainty

equivalence principle implies that the same matrix P solves (2.5.3) and (2.4.3).
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where the extremization is subject to the distorted model

y∗ = Ay +Bu+ Cw. (2.5.4)

In (2.5.3), a malevolent nature chooses a feedback rule for a model-misspeci-

fication process w . The minimization problem in (2.5.3) induces an operator

D(P ) defined by17

−y∗′D (P ) y∗ = − (x′A′ + u′B′)D (P ) (Ax+Bu) = min
w

{θw′w − y∗′Py∗}
(2.5.5)

where the minimization is subject to the transition law y∗ = Ay+Bu+Cw .

From the minimization problem on the right of (2.5.5), it follows that 18

D (P ) = P + θ−1PC
(
I − θ−1C ′PC

)−1
C ′P. (2.5.6)

The Bellman equation (2.5.3) can then be represented as

−y′Py = max
u

{r (y, u)− βy∗′D (P ) y∗} (2.5.7)

where now the maximization is subject to the approximating model y∗ = Ay+

Bu and concern for misspecification is reflected in our having replaced P with

D(P ) in the continuation value function. Notice the use of the approximating

model as the transition law in the Bellman equation (2.5.7) instead of the

distorted model that is used in (2.5.3), (2.5.4). The reason for the alteration

in transition laws is that Bellman equation (2.5.7) encodes the activities of

the minimizing agent within the operator D that distorts the continuation

value function.19

Define T (P ) to be the operator associated with the right side of the

ordinary Bellman equation (2.2.6) that we described in (2.2.8):

T (P ) = Q+ βA′PA− β2A′PB (R+ βB′PB)
−1
B′PA. (2.5.8)

Then according to (2.5.7), P can be computed by iterating to convergence on

the composite operator T ◦ D and the robust decision rule can be computed

by u = −Fy , where

F = β (R+ βB′D (P )B)
−1
B′D (P )A. (2.5.9)

17 See page 168, item 1, for more details.
18 Before computing D in formula (2.5.5), we always check whether the matrix being

inverted on the right side of (2.5.6) is positive definite. This amounts to a check that θ

exceeds the “breakdown point” θ .
19 The form of (2.5.7) links this formulation of robustness to the recursive form of Jacob-

son’s (1973) risk-sensitivity criterion proposed by Hansen and Sargent (1995), as we shall

elaborate on in chapter 3.
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The worst-case shock obeys the decision rule w = Ky , where

K = θ−1
(
I − θ−1C ′PC

)−1
C ′P (A−BF ) . (2.5.10)

Several comments about the solution of (2.5.3) are in order.

1. Interpreting the solution. The solution of problem (2.5.2), (2.5.1) has a

recursive representation in terms of a pair of feedback rules

ut = −Fyt (2.5.11a)

wt+1 = Kyt. (2.5.11b)

Here ut = −Fyt is the robust decision rule for the control ut , while

wt+1 = Kyt describes a worst-case shock. This worst-case shock induces

a distorted transition law

yt+1 = (A+ CK) yt +But. (2.5.12)

After having discovered (2.5.12), we can regard the decision maker as

devising a robust decision rule by choosing a sequence {ut} to maximize

−
∞∑

t=0

βt [y′tQyt + u′tRut]

subject to (2.5.12). However, as noted above, the decision maker be-

lieves that the data are actually generated by a model with an unknown

process wt+1 = w̃t+1 6= 0. It is just that by planning against the worst-

case process wt+1 = Kyt , he designs a robust decision rule that performs

well under a set of models. The worst-case transition law is endogenous

and depends on θ, β,Q,R,A,B , and C . Equation (2.5.12) incorporates

how the distortion w feeds back on the state vector y ; it permits w to

feed back on endogenous components of the state, meaning that the de-

cision maker indirectly influences future values of w through his decision

rule. Allowing the distortion to depend on endogenous state variables

in this way may or may not be a useful way to think about model mis-

specification. How useful it is depends on whether allowing wt+1 to feed

back on endogenous components of the state vector captures plausible

specifications that concern the decision maker. But there is an alter-

native interpretation that excludes feedback of w on endogenous state

variables, which we take up next.

2. Reinterpreting the worst-case model. We shall sometimes find it useful

to reinterpret the solution of the robust linear regulator problem (2.5.1),
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(2.5.2) so that the decision maker believes that the distortions w do

not depend on those endogenous components of the state vector whose

motion his decisions affect. In particular, in chapter 7, we show that

the robust decision rule ut = −Fyt solves the ordinary linear regulator

problem

max
{ut}

∞∑

t=0

βtr (yt, ut) (2.5.13)

subject to the distorted transition law

yt+1 = Ayt +But + Cwt+1 (2.5.14a)

wt+1 = KYt (2.5.14b)

Yt+1 = A∗Yt (2.5.14c)

where A∗ = A−BF +CK , where (F,K) solve problem (2.5.2), (2.5.1),

and where we impose the initial condition Y0 = y0 . In (2.5.14), the

maximizing player views Yt as an exogenous state vector that propels the

distortion wt+1 that twists the law of motion for state vector yt . This is

a version of the macroeconomist’s Big K , little k trick, where Y plays

the role of Big K . The solution of (2.5.13), (2.5.14) has the outcome

that Yt = yt ∀t ≥ 0.20 Chapters 7 and 8 show how formulation (2.5.13),

(2.5.14) emerges from a version of the multiplier problem that imposes a

timing protocol in which the minimizing agent at time 0 commits to an

entire sequence of distortions {wt+1}∞t=0 and in which it is best for the

minimizing agent to make wt+1 obey (2.5.14b), (2.5.14c). As we shall

see in chapter 8, this formulation helps us interpret frequency domain

criteria for inducing robust decision rules. In addition, the transition

law (2.5.14) rationalizes a Bayesian interpretation of the robust decision

maker’s behavior by identifying a particular belief about the shocks for

which the maximizing player’s decision rule is optimal, a belief that is

distorted relative to the approximating model.21 This observation is

reminiscent of some ideas of Fellner.

3. Relation to Fellner (1965). In the introduction to Probability and

Profit , William Fellner wrote:

20 In contrast to formulation (2.5.1), (2.5.2), in problem (2.5.13), (2.5.14) the max-

imizing agent does not believe that his decisions can influence the future position of the

distortion w . Depending on the types of perturbations to the approximating model that the

maximizing agent wants to protect against, we might actually prefer interpretation (2.5.1),

(2.5.2) in some applications.
21 A decision rule is said to have a Bayesian interpretation if it is undominated in the

sense of being optimal for some model. See Robert (2001, pp. 74-77) and Blackwell and

Girschik (1954).
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“ . . . the central problems of decision theory may be described as

semiprobabilistic views. By this I mean to say that in my opinion

the directly observable weights which reasonable and consistent in-

dividuals attach to specific types of prospects are not necessarily the

genuine (undistorted) subjective probabilities of the prospects, al-

though these decision weights of consistently acting individuals do

bear an understandable relation to probabilities. . . . the directly

observable decision weights (expectation weights) which these deci-

sion makers attach to alternative monetary prospects need not be

universally on par with probabilities attached to head-or-tails events

but may in cases be derived from such probabilities by “slanting”

or “distortion.” Slanting expresses an allowance for the instability

and controversial character of some types of probability judgment;

the extent of the slanting may even depend on the magnitude of the

prize which is at stake when a prospect is being weighted.”

Robust control theory embodies some of Fellner’s ideas. Thus, the “de-

cision weights” implied by the “slanted” transition law (2.5.14) differ

from the “subjective probabilities” implied by the approximating model

(2.2.1). The distortion, or slanting, is context-specific because K de-

pends on the parameters β,R,Q of the discounted return function.

4. Robustness bound. The minimizing player in the two-player game assists

the maximizing player by helping him construct a useful bound on the

performance of his decision rule. Let AF = A − BF for a fixed F in a

feedback rule u = −Fy . In chapter 7 on page 170, we show that equation

(2.5.7) implies that

− (AF y + Cw)
′
P (AF y + Cw) ≥ −y′A′

FD (P )AF y − θw′w. (2.5.15)

The quadratic form in y on the right side is a conservative estimate of

the continuation value of the state y∗ under the approximating model

y∗ = AF y .22 Inequality (2.5.15) says that the continuation value un-

der a distorted model is at least as great as a conservative estimate of

the continuation value under the approximating model , minus θ times

the measure of model misspecification w′w . The parameter θ influences

the conservative-adjustment operator D and also determines the rate at

which the bound deteriorates with misspecification. Lowering θ lowers

the rate at which the bound deteriorates with misspecification. Thus,

(2.5.15) provides a sense in which lower values of θ provide more conser-

vative estimates of continuation utility and therefore more robust guides

to decision making.

22 That is, when w = 0, −(AF y)′D(P )AF y understates the continuation value.
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5. Alternative games with identical outcomes. The game (2.5.2) summa-

rized by the Bellman equation (2.5.3) is one of several two-player zero-

sum games with identical lists of players, actions, and payoffs, but differ-

ent timing protocols. Chapter 7 describes the relationships among these

games and the remarkable fact that they have identical outcomes. The

analysis of chapter 7 justifies using recursive methods to solve all of the

games. That chapter also discusses senses in which the decision maker’s

preferences are dynamically consistent.

6. Approximating and worst-case models. The behavior of the state under

the robust decision rule and the worst-case model can be represented by

yt+1 = Ayt −BFyt + CKyt. (2.5.16)

However, the decision maker does not really believe that the worst-case

shock process will prevail. He uses wt+1 = Kyt to slant the transition

law as a way to help construct a rule that will be robust against a range

of other wt+1 processes that represent unknown departures from his ap-

proximating model. We occasionally want to evaluate the performance

of the robust decision rule under other models. In particular, we often

want to evaluate the robust decision rule when the approximating model

governs the data (so that the decision maker’s fears of model misspeci-

fication are actually unfounded). With the robust decision rule and the

approximating model, the law of motion is

yt+1 = (A−BF ) yt. (2.5.17)

We obtain (2.5.17) from (2.5.16) by replacing the worst-case shock Kyt

with zero. Notice that although we set K = 0 in (2.5.16) to get (2.5.17),

F in (2.5.16) embodies a best response to K , and thereby reflects the

agent’s “pessimistic” forecasts of future values of the state. We call

(2.5.17) the approximating model under the robust decision rule and

we call (2.5.16) the worst-case or distorted model under the robust de-

cision rule.23 In chapters 13 and 14, we use stochastic versions of both

the approximating model (2.5.17) and the distorted model (2.5.16) to

express alternative formulas for the prices of risky assets when consumers

fear model misspecification.

7. Lower bound on θ and H∞ control. Starting from θ = +∞ , lowering θ

increases the fear of misspecification by lowering the shadow price on the

23 The model with randomness adds Cεt+1 to the right side of (2.5.17).
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norm of the control of the minimizing player. We shall see in chapter 8

that there is a lower bound for θ . This lower bound is associated with the

largest set of alternative models, as measured by entropy, against which

it is feasible to seek a robust rule: for values of θ below this bound, the

minimizing agent is penalized so little that he finds it possible to choose a

distortion that sends the criterion function to −∞ . Control theorists are

interested in the cutoff value of θ because it is affiliated with a rule that is

robust to the biggest allowable set of misspecifications. We describe the

associated H∞ control theory in chapter 8. However, the applications

that we are interested in usually call for values of θ that exceed the cutoff

value by far. We explain why in chapter 9, where we use detection error

probabilities to discipline the setting for θ .

8. Risk-sensitive preferences. It is a useful fact that we can ignore doubts

about model specification and instead adjust attitudes toward risk in a

way that implies the decision rule and value function that come from

the two-player zero-sum game (2.5.2). In particular, the decision rule

ut = −Fyt that solves the robust control problem also solves a stochastic

infinite-horizon discounted control problem in which the decision maker

has no concern about model misspecification but instead adjusts continu-

ation values to express an additional aversion to risk. The risk adjustment

is a special case of one that Epstein and Zin (1989) used to formulate their

recursive specification of utility and is governed by a parameter σ < 0. If

we set σ = −θ−1 from the robust control problem, we recover the same

decision rule for the two problems.

The risk-sensitive decision maker trusts that the law of motion for the

state is

yt+1 = Ayt +But + Cεt+1 (2.5.18)

where {εt+1} is a sequence of i.i.d. Gaussian random vectors with mean

zero and identity covariance matrix. The utility index of the decision

maker is defined recursively as the fixed point of recursions on

Ut = r (yt, ut) + βRt (Ut+1) (2.5.19)

where

Rt (Ut+1) =
2

σ
logE

[
exp

(
σUt+1

2

) ∣∣∣yt

]
(2.5.20)

and where σ ≤ 0 is the risk-sensitivity parameter. When σ = 0, an ap-

plication of l’Hospital’s rule shows that Rt becomes the ordinary condi-

tional expectation operator E(·|yt). When σ < 0, Rt puts an additional

adjustment for risk into the assessment of continuation values.
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For a quadratic r(y, u), the Bellman equation for Hansen and Sargent’s

(1995) risk-sensitive control problem is

−y′Py − p̂ = max
u

{r (y, u) + βR (−y∗′Py∗ − p̂)} , (2.5.21)

where the maximization is subject to y∗ = Ay + Bu + Cε and ε is a

Gaussian vector with mean zero and identity covariance matrix.

Using a result from Jacobson (1973), it can be shown that

R (−y∗′Py∗ − p̂) = − (Ay +Bu)′ D (P ) (Ay +Bu) − p (P, p̂) (2.5.22)

where D is the same operator defined in (2.5.6) with θ = −σ−1 , and the

operator p is defined by

p (P, p̂) = p̂− σ−1 log det (I + σC ′PC) . (2.5.23)

Consequently, the Bellman equation for the infinite-horizon discounted

risk-sensitive control problem can be expressed as

−y′Py − p̂ = max
u

{r (y, u) − β (Ay +Bu)
′ D (P ) (Ay +Bu) − βp (P, p̂)}.

(2.5.24)

Evidently, the fixed point P satisfies P = T ◦ D(P ), and therefore it is

the same P that appears in the Bellman equation (2.4.3) for the robust

control problem. The constant p̂ that solves (2.5.24) differs from p in

(2.4.3), but since they depend only on P and not on p or p̂ , the decision

rules are the same for the two problems. For more discussion of these

points, see chapter 3.

2.6. More general misspecifications

Thus far, we have permitted the decision maker to seek robustness against

misspecifications that occur only as a distortion wt+1 to the conditional mean

of the innovation to the state yt+1 . When the approximating model has the

Gaussian form (2.2.1), this is less restrictive than it may at first appear.

In chapter 3, we allow a more general class of misspecifications to the linear

Gaussian model (2.2.1), but nevertheless find that important parts of the pre-

ceding results survive when return functions are quadratic and the transition

law implied by the approximating model is linear. For convenience, express

the approximating model (2.2.1) in the compact notation

fo (y∗|y) ∼ N (Ay +Bu,CC ′) ,
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which portrays the conditional distribution of next period’s state as Gaussian

with mean Ay+Bu and covariance matrix CC ′ . Let f(y∗|y) be an arbitrary

alternative conditional distribution that puts positive probability on the same

events as the approximating model fo . The conditional entropy of model f

relative to the approximating model fo is

I (fo, f) (y) =

∫
log

(
f (y∗|y)
fo (y∗|y)

)
f (y∗|y) d y∗.

Entropy I(fo, f)(y) is thus the conditional expectation of the log-likelihood

ratio evaluated with respect to the distorted model f . A multiplier robust

control problem is associated with the following Bellman equation:

−y′Py−p = max
u

min
f
E {r (y, u) + 2θβI (fo, f) (y) − βy∗′Py∗ − βp} . (2.6.1)

Let σ = −θ−1 and consider the inner minimization problem, assuming that

u = −Fy . In chapter 3, we shall show that the extremizing f is the Gaussian

distribution

f (y∗|y) ∼ N
(
Ay −BFy + CKy, ĈĈ ′

)
(2.6.2)

where (F,K) are the same matrices appearing in (2.5.11),

ĈĈ ′ = C (I + σC ′PC)
−1
C ′, (2.6.3)

and P is the same P that appears in the solution of the Bellman equation for

the deterministic multiplier robust control problem (2.5.3). Equation (2.6.2)

assures us that when we allow the minimizing player to choose a general

misspecification f(y∗|y), he chooses a Gaussian distribution with the same

mean distortion as when we let him distort only the mean of a Gaussian

conditional distribution. However, formula (2.6.3) shows that the minimizing

agent would also distort the covariance matrix of the innovations, if given a

chance.24

The upshot of these findings is that when the conditional distribution

f(y∗|y) for the approximating model is Gaussian, even if we actually were

to permit general misspecifications f(y∗|y), we could compute the worst-case

f by solving a deterministic multiplier robust control problem for P, F,K ,

and then use P to compute the appropriate adjustment to the covariance

matrix (2.6.3). In chapter 13, we use some of these ideas to price assets

under alternative assumptions about the set of models against which decision

makers seek robustness.

24 In a diffusion setting in continuous time, the minimizing agent chooses not to distort

the volatility matrix because it is infinitely costly in terms of entropy. See Hansen, Sargent,

Turmuhambetova, and Williams (2006) and Anderson, Hansen, and Sargent (2003).
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2.7. A simple algorithm

Chapter 7 discusses alternative algorithms for solving (2.5.3) and relation-

ships among them. This section describes perhaps the simplest algorithm, an

adapted ordinary optimal linear regulator. Chapters 7 and 8 describe nec-

essary technical conditions, including restrictions on the magnitude of the

multiplier parameter θ .25

Application of the ordinary optimal linear regulator can be justified by

noting that the Riccati equation for the optimal linear regulator emerges from

first-order conditions alone, and that the first-order conditions for extremizing

(i.e., finding the saddle point by simultaneously minimizing with respect to w

and maximizing with respect to u) the right side of (2.5.3) match those for

an ordinary (non-robust) optimal linear regulator with joint control process

{ut, wt+1} . This insight allows us to solve (2.5.3) by forming an appropriate

optimal linear regulator.

Thus, put the Bellman equation (2.5.3) into a more compact form by

defining

B̃ = [B C ] (2.7.1a)

R̃ =

[
R 0

0 −βθI

]
(2.7.1b)

ũt =

[
ut

wt+1

]
. (2.7.1c)

Let ext denote extremization – maximization with respect to u , minimization

with respect to w . The Bellman equation can be written as

−y′Py = extũ

{
−y′Qy − ũ′R̃ũ− βy∗′Py∗

}
(2.7.2)

where the extremization is subject to

y∗ = Ay + B̃ũ. (2.7.3)

The first-order conditions for problem (2.7.2), (2.7.3) imply the matrix Ric-

cati equation

P = Q+ βA′PA− β2A′PB̃
(
R̃ + βB̃′PB̃

)−1

B̃′PA (2.7.4)

and the formula for F̃ in the decision rule ũt = −F̃ yt

F̃ = β
(
R̃+ βB̃′PB̃

)−1

B̃′PA. (2.7.5)

25 The Matlab program olrprobust.m described in the appendix implements this algo-

rithm; doublex9.m implements a doubling algorithm of the kind described in chapter 4 and

Hansen and Sargent (2008); please note that doublex9.m solves a minimum problem and

that −θ−1 ≡ σ < 0 connotes a fear of model misspecification.
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Partitioning F̃ , we have

ut = −Fyt (2.7.6a)

wt+1 = Kyt. (2.7.6b)

The decision rule ut = −Fyt is the robust rule. As mentioned above, wt+1 =

Kyt provides the θ -constrained worst-case specification error. We can solve

the Bellman equation by iterating to convergence on the Riccati equation

(2.7.4), or by using one of the faster computational methods described in

chapter 4.

2.7.1. Interpretation of the simple algorithm

The adjusted Riccati equation (2.7.4) is an augmented version of the Riccati

equation (2.2.8) that is associated with the ordinary optimal linear regulator.

The right side of equation (2.7.4) defines one step on the composite operator

T ◦D where T and D are defined in (2.5.8) and (2.5.5).26 Hansen and Sar-

gent’s (1995) discounted version of the risk-sensitive preferences of Jacobson

(1973) and Whittle (1990) also uses the D operator.

2.8. Robustness and discounting in a permanent income
model

This section illustrates aspects of robust control theory in the context of a

linear-quadratic version of a simple permanent income model.27 In the basic

permanent income model, a consumer applies a single marginal propensity

to consume to the sum of his financial wealth and his human wealth, where

human wealth is defined as the expected present value of his labor (or endow-

ment) income discounted at the same risk-free rate of return that he earns on

his financial assets. Without a concern about robustness, the consumer has

no doubts about the probability model used to form the conditional expecta-

tion of discounted future labor income. Instead, we assume that the consumer

doubts that model and therefore forms forecasts of future income by using a

conditional probability distribution that is twisted or slanted relative to his

approximating model for his endowment. Otherwise, the consumer behaves

as an ordinary permanent income consumer.

26 This can be verified by unstacking the matrices in (2.7.4). See page 170 in chapter 7.
27 See Sargent (1987) and Hansen, Roberds, and Sargent (1991) for accounts of the con-

nection between the permanent income consumer and Barro’s (1979) model of tax smooth-

ing. See Aiyagari, Marcet, Sargent, and Seppälä (2002) for a deeper exploration of the

connections.
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His slanting of conditional probabilities leads the consumer to engage in

a form of precautionary savings that under the approximating model for his

endowment process tilts his consumption profile toward the future relative to

what it would be without a concern about misspecification of that process.

Indeed, so far as his consumption and savings program is concerned, acti-

vating a concern about robustness is equivalent with making the consumer

more patient. However, that is not the end of the story. Chapter 13 shows

that attributing a concern about robustness to a representative consumer has

different effects on asset prices than are associated with varying his discount

factor.

2.8.1. The LQ permanent income model

In Hall’s (1978) linear-quadratic permanent income model, a consumer re-

ceives an exogenous endowment {dt} and wants to allocate it between con-

sumption ct and savings kt to maximize

−E0

∞∑

t=0

βt (ct − b)
2
, β ∈ (0, 1) . (2.8.1)

We simplify the problem by assuming that the endowment is a first-order

autoregression. Thus, the household faces the state transition laws

kt + ct = Rkt−1 + dt (2.8.2a)

dt+1 = µd (1 − ρ) + ρdt + cd (εt+1 + wt+1) , (2.8.2b)

where R > 1 is a time-invariant gross rate of return on financial assets kt−1

held at the end of period t − 1, and |ρ| < 1 describes the persistence of his

endowment. In (2.8.2b), wt+1 is a distortion to the mean of the endowment

that represents possible model misspecification. We use σ = −θ−1 to param-

eterize the consumer’s desire for robustness. Soon we’ll confirm how easily

this problem maps into the robust linear regulator. But first we’ll use classi-

cal methods to elicit some useful properties of the consumer’s decisions when

σ = 0.

2.8.2. Solution when σ = 0

We first solve the household’s problem without a concern about robustness

by setting θ−1 ≡ σ = 0. Define the marginal utility of consumption as

µct = b− ct . The household’s Euler equation is

Etµc,t+1 = (βR)−1 µct, (2.8.3)
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where Et is the mathematical expectation operator conditioned on date t in-

formation. Treating (2.8.2a) as a difference equation in kt , solving it forward

in time, and taking conditional expectations on both sides gives

kt−1 =

∞∑

j=0

R−(j+1)Et (ct+j − dt+j) . (2.8.4)

Solving (2.8.3) and (2.8.4) and using µct = b− ct implies

µct = −
(
1 −R−2β−1

)


Rkt−1 +Et

∞∑

j=0

R−j (dt+j − b)



 . (2.8.5)

Equations (2.8.3) and (2.8.5) can be used to deduce the following represen-

tation for µct

µc,t+1 = (βR)
−1
µc,t + νεt+1. (2.8.6)

We provide a formula for the scalar ν in (2.8.11) below.

Given an initial condition µc,0 , equation (2.8.6) describes the consumer’s

optimal behavior; µc,0 can be determined by solving (2.8.5) at t = 0. It is

easy to use (2.8.5) to deduce an optimal consumption rule of the form

ct = gyt

where g is a vector conformable to the pertinent state vector y . In the

case βR = 1 that was analyzed by Hall (1978), (2.8.6) implies that the

marginal utility of consumption µct is a martingale under the approximating

model, which because µct = b− ct in turn implies that consumption itself is

a martingale.

2.8.3. Linear regulator for permanent income model

This problem is readily mapped into a linear regulator in which the marginal

utility of consumption b− ct is the control. Express the transition law for kt

as

kt = Rkt−1 + dt − b− (ct − b) .

Define the state as y′t = [ 1 kt−1 dt ]
′

and the control as ut = µct ≡ (b− ct)
and express the state transition law as yt+1 = Ayt +But +C(εt+1 +wt+1) or




1

kt

dt+1


 =




1 0 0

−b R 1

(1 − ρ) µd 0 ρ






1

kt−1

dt


+




0

1

0


 (b− ct)+




0

0

cd


 (εt+1 + wt+1) .

(2.8.7)
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This equation defines the triple (A,B,C) associated with a robust linear

regulator. For the objective function, (2.8.1) implies that we should let

r(y, u) = −y′Ry − u′Qu where R = 03×3 and Q = 1.

We can obtain a robust rule by using the robust linear regulator and

setting σ < 0. The solution of the robust linear regulator problem is a linear

decision rule for the control µct

µct = −Fyt. (2.8.8)

Under the approximating model, the law of motion of the state is then

yt+1 = (A−BF ) yt + Cεt+1. (2.8.9)

Equations (2.8.8) and (2.8.9) imply that

µc,t+1 = −F (A−BF ) yt − FCεt+1. (2.8.10)

Comparing (2.8.10) and (2.8.6) shows that −F (A−BF ) = −(βR)−1F and

ν = −FC, (2.8.11)

which is the promised formula for ν .

2.8.4. Effects on consumption of concern about misspecification

To understand the effects on consumption of a concern about robustness, we

use as a benchmark Hall’s assumption that βR = 1 and no concern about

robustness (σ = 0). In that case, the multiplier µct and consumption ct are

both driftless random walks. To be concrete, we set parameters to be consis-

tent with ones calibrated from post World War II U.S. time series by Hansen,

Sargent, and Tallarini (1999) for a more general permanent income model.

HST set β = .9971 and fit a two-factor model for the endowment process;

each factor is a second-order autoregression. To simplify that specification,

we replace this estimated two-factor endowment process with the population

first-order autoregression one would obtain if that two-factor model actually

generated the data. That is, we use the population moments implied by

Hansen, Sargent, and Tallarini’s (HST’s) estimated endowment process to fit

the first-order autoregressive process (2.8.2b) with wt+1 ≡ 0. Ignoring con-

stant terms, we obtain the endowment process dt+1 = .9992dt + 5.5819εt+1

where εt+1 is an i.i.d. scalar process with mean zero and unit variance.28 We

use β̂ to denote HST’s value of β = .9971. Throughout, we suppose that

R = β̂−1 .

We now consider three cases.

28 We computed ρ, cd by calculating autocovariances implied by HST’s specification,

then used them to calculate the implied population first-order autoregressive representation.
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• The βR = 1, σ = 0 case studied by Hall (1978). With β = β̂ ,

we compute that the marginal utility of consumption follows the

law of motion

µc,t+1 = µc,t + 4.3825εt+1 (2.8.12)

where we compute the coefficient 4.3825 on εt+1 by noting that

it equals −FC by formula (2.8.11).

• A version of Hall’s βR = 1 specification with a concern about

misspecification. Retaining β̂R = 1, we activate a concern

about robustness by setting σ = σ̂ = −2E−7 .29 We now com-

pute that30

µc,t+1 = .9976µc,t + 8.0473εt+1. (2.8.13)

When b − ct > 0, this equation implies that Et(b − ct+1) =

.9976(b− ct) < (b− ct), which in turn implies that Etct+1 > ct .

Thus, the effect of activating a concern about robustness is to

put upward drift into the consumption profile, a manifestation

of a type of “precautionary savings” that comes from the con-

sumer’s fear of misspecification of the endowment process.

• A case that raises the discount factor relative to the βR = 1

benchmark prevailing in Hall’s model but withholds a concern

about robustness. In particular, while we set σ = 0 we in-

crease β to β̃ = .9995. Remarkably, with (σ, β) = (0, β̃), we

compute that µc,t+1 obeys exactly (2.8.13).31 Thus, starting

from (σ, β) = (0, β̂), insofar as the effects on consumption and

saving are concerned, activating a concern about robustness by

lowering σ while keeping β constant is evidently equivalent to

keeping σ = 0 but increasing the discount factor to a particular

β̃ > β̂ .

These numerical examples illustrate what is true more generally, namely,

that in the permanent income model an increased concern about robustness

has effects on (ct, kt+1) that operate exactly like an increase in the discount

factor β . In chapter 10, we extend these numerical examples analytically

29 We discuss how to calibrate σ in chapters 9, 10, 13, and 14.
30 We can confirm this formula computationally as follows. Use doublex9 to solve the

robust optimal linear regulator and compute representations µc,t = −Fyt and compare it

to the term F (A−BF )yt on the right side of (2.8.10) to discover that F (A−BF ) = .9976F ,

i.e., the coefficients are proportional with .9976 being the factor of proportionality.
31 We discover this computationally using the method of the previous footnote.
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within a broader class of permanent income models. In particular, let α2 =

ν′ν and suppose that instead of the particular pair (σ̂, β̂), where (σ̂ < 0), we

use the pair (0, β̃), where β̃ satisfies

β̃ (σ) =
β̂
(
1 + β̂

)

2 (1 + σα2)


1 +

√√√√1 − 4β̂
1 + σα2

(
1 + β̂

)2


 . (2.8.14)

Then the laws of motion for µc,t , and therefore the decision rules for ct , are

identical across these two specifications of concerns about robustness. We

establish formula (2.8.14) in appendix B of chapter 10.

2.8.5. Observational equivalence of quantities but not continua-
tion values

We have seen that, holding other parameters constant, there exists a locus

of (σ, β) pairs that imply the same consumption-savings programs. It can be

verified that the P matrices appearing in the quadratic forms in the value

function are identical for the (σ̂, β̂) and (0, β̃) problems. However, in terms

of their implications for pricing claims on risky future payoffs, it is significant

that the D(P ) matrices differ across such (σ, β) pairs. For the (0, β̃) pair,

P = D(P ). However, when σ < 0, D(P ) differs from P . As we shall see in

chapter 13, when we interpret (2.8.1), (2.8.2) as a planning problem, D(P )

encodes the shadow prices that can be converted into competitive equilibrium

state-date prices that can then be used to price uncertain claims on future

consumption. Thus, although the (σ̂, β̂) and (0, β̃) parameter pairs imply

identical savings and consumption plans, they imply different valuations of

risky future consumption payoffs. In chapter 13, we use this fact to study

how a concern about robustness influences the theoretical value of the market

price of macroeconomic risk and the equity premium.

2.8.6. Distorted endowment process

On page 36, we described a particular distorted transition law associated with

the worst-case shocks wt+1 = Kyt . If the decision maker solves an ordinary

dynamic programming program without a concern about misspecification but

substitutes the distorted transition law for the one given by his approximating

model, he attains a robust decision rule. Thus, when σ < 0, instead of facing

the transition law (2.8.7) that prevails under the approximating model, the
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household would use the distorted transition law 32

[
yt+1

Yt+1

]
=

[
A CK

0 (A−BF + CK)

] [
yt

Yt

]
+

[
B

0

]
µct +

[
C

C

]
εt+1. (2.8.15)

For our numerical example with σ = −2E − 7, we would have A − BF +

CK =

[
1.0000 0 0
15.0528 0.9976 −0.4417
−0.0558 0.0000 1.0016

]
and CK =

[
0 0 0
0 0 0

−0.0558 0.0000 0.0024

]
.

Notice the pattern of zeros in CK , which shows that the distortion to the

law of motion of the state affects only the component dt of the state y .

The components Y of the state are information variables that account for

the dynamics in the misspecification imputed by the worst-case shock w . In

chapter 10, we shall analyze the behavior of the endowment process under the

distorted model (2.8.15).

It is useful to consider our observational equivalence result in light of the

distorted law of motion (2.8.15). Let Êt denote a conditional expectation

with respect to the distorted transition law (2.8.15) for the endowment shock

and let Et denote the expectation with respect to the approximating model.

Then the observational equivalence of the pairs (σ̂, β̂) and (0, β̃) means that

the following two versions of (2.8.5) imply the same µct processes:

µct = −
(
1 −R−2β̂−1

)

Rkt−1 + Êt

∞∑

j=0

R−j (dt+j − b)




and

µct = −
(
1 −R−2β̃−1

)


Rkt−1 + Et

∞∑

j=0

R−j (dt+j − b)



 .

For both of these expressions to be true, the effect on Ê of setting σ less than

zero must be offset by the effect of raising β from β̂ to β̃ .

2.8.7. A Stackelberg formulation for representing misspecifica-
tion

In chapters 7 and 8, we show the equivalence of outcomes under different

timing protocols for the two-player zero-sum games. In appendix B of chapter

10, we shall use a Stackelberg game to establish the observational equivalence

for consumption-savings plans of (0, β̃) and (σ̂, β̂) pairs. The minimizing

player’s problem in the Stackelberg game can be represented as

min
{wt+1}

−
∞∑

t=0

β̂t
{
µ2

ct + β̂σ−1w2
t+1

}
(2.8.16)

32 This is not a minimal state representation because we have not eliminated the constant

from the Y component of the state.
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subject to

µc,t+1 =
(
β̃R
)−1

µc,t + νwt+1. (2.8.17)

Equation (2.8.17) is the consumption Euler equation of the maximizing player.

Under the Stackelberg timing, the minimizing player commits to a sequence

{wt+1}∞t=0 that the maximizing player takes as given. The minimizing player

determines that sequence by solving (2.8.16), (2.8.17). The worst-case shock

that emerges from this problem satisfies wt+1 = kµct and is identical to the

worst-case shock wt+1 = Kyt that emerges from the robust linear regulator

for the consumption problem.

2.9. Concluding remarks

The discounted dynamic programming problem for quadratic returns and a

linear transition function is called the optimal linear regulator problem. This

problem is widely used throughout macroeconomics and applied dynamics.

For linear-quadratic problems, robust decision rules can be constructed by

thoughtfully using the optimal linear regulator. The optimal linear regulator

has other uses too. In chapters 5, 17, and 18 we describe filtering problems.

Via the concept of duality explained there, the linear regulator can also be

used to solve such filtering problems, including those where the decision maker

wants estimates that are robust to model misspecification.

Chapter 3 introduces a stochastic version of robust control problems and

describes how they link to the non-stochastic problems of the present chapter.

Chapters 4 and 5 then prepare the way for deeper studies of robust control and

filtering problems by reviewing the foundations of ordinary (i.e., non-robust)

control and filtering theory. In these two chapters, we shall encounter tools

that will serve us well when we move on to construct robust decision rules

and filters.

A. Matlab programs

A robust optimal linear regulator is defined by the system matrices Q,R,A,B,C ,
the discount factor β , and the risk-sensitivity parameter σ ≡ −θ−1 . The Matlab
program olrprobust.m implements the algorithm of section 2.7 by calling the opti-
mal linear regulator program olrp.m. The program olrprobust solves a minimum

problem, so that σ < 0 corresponds to a concern about robustness and R and Q
should be more or less positive definite, where we say more or less because of the some
detectability qualifications explained in chapter 4. Call the program olrprobust as
follows:

[F,K,P,Pt]=olrprobust(beta,A,B,C,Q,R,sig);
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The objects returned by olrprobust determine the decision rule ut = −Fyt ,
the distortion wt+1 = Kyt , the quadratic form in the value function −y′Py , and
the distorted continuation value function −y∗′(Pt)y∗ . The program doublex9 im-
plements the doubling algorithm described in chapter 4 and by Hansen and Sargent
(2008, chapter 9). To compute the robust rule with a discounted objective func-
tion, one has to induce doublex9 to solving a discounted problem by first setting
Ad =

√
βA,Bd =

√
βB , calling [F,Kd,P,Pt]=doublex9(Ad,Bd,C,Q,R,sig), then

finally setting K = Kd/
√
β . The program bayes4.m uses both olrprobust and

doublex9 to compute robust decision rules and verifies that they give the same
answers.



Chapter 3
A stochastic formulation

When Shannon had invented his quantity and consulted von Neumann

on what to call it, von Neumann replied: ‘Call it entropy. It is already in

use under that name and besides, it will give you a great edge in debates

because nobody knows what entropy is anyway.’

— Quoted by Georgii, “ Probabilistic Aspects of Entropy,” 2003

3.1. Introduction

This book makes ample use of the finding that the stochastic structure of a

linear-quadratic-Gaussian robust control problem is a secondary concern be-

cause we can deduce robust decision rules by studying a related deterministic

problem.1 This chapter describes this finding in some detail. We start with

a more general setting, then focus on the linear quadratic Gaussian case. We

begin with a stochastic specification of shocks in an approximating model

and describe misspecifications to that model in terms of perturbations to the

distribution of the shocks. In the special linear-quadratic-Gaussian setting,

formulas that solve the nonstochastic problem contain all of the information

needed to solve a corresponding stochastic problem.2

3.2. Shock distributions

Consider a sequence of i.i.d. Gaussian shocks {εt} that enter the transition

equation for an approximating model. The perturbed model alters the dis-

tribution of these shocks and, in particular, allows them to be temporally

dependent. Let εt = [εt
′, εt−1

′, . . . , ε1′]′ . Throughout, we will condition on

the initial state y0 .3 The date t information available to the decision maker

is y0 and εt .

1 Some control theorists extend this insight beyond linear quadratic models and argue

that stochastic structures are artificial and that all shocks should be regarded as determin-

istic processes that represent misspecifications. Although this interesting point of view has

brought important insights, we don’t embrace it. Instead, we strongly prefer to regard a

model as a stochastic process and misspecifications as perturbations to a salient stochastic

process that the decision maker takes as an approximating model.
2 See Jacobson (1973).
3 When some of the states are hidden from the decision maker, we would have to say

more, as we do in Hansen and Sargent (2005b, 2007a) and in chapters 17 and 18. In this

chapter, we will suppose that all of the state variables are observed.

– 53 –
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3.3. Martingale representations of distortions

Following Hansen and Sargent (2005b, 2007a), we use martingales to represent

distortions in the probabilities. This allows us to represent perturbed models

by introducing some appropriately restricted multiplicative preference shocks

into the original approximating model.

Let π(ε) denote the multivariate standardized normal distribution, where

ε is a dummy variable with the same dimension as the number of entries of

the random vector εt . Let π̂(ε|εt, y0) denote an alternative density for εt+1

conditioned on date t information. Form the likelihood ratio

mt+1 =
π̂ (εt+1|εt, y0)
π (εt+1)

.

Notice that

E
(
mt+1|εt, y0

)
=

∫
π̂ (ε|εt, y0)
π (ε)

π (ε) dε = 1,

where integration is with respect to the Lebesgue measure over the Euclidean

space with the same dimension as the number of entries of εt . Now set M0 = 1

and recursively construct {Mt}

Mt+1 = mt+1Mt.

Solving this recursion gives

Mt =

t∏

j=1

mj .

The random variable Mt is a function of εt and y0 and evidently satisfies

E
(
Mt+1|εt, y0

)
= Mt.

Hence, Mt is a martingale relative to the sequence of information sets (sigma

algebras) generated by the shocks. The random variable Mt is a ratio of joint

densities of εt conditioned on y0 and evaluated at the random vector εt . The

numerator density Π̂t is the alternative one that we shall use to compute

expectations.

Now let φ(εt, y0) be a random variable that is a Borel measurable function

of εt and y0 , where εt is a dummy variable with the same dimension as the

random vector εt . The expectation of φ(εt, y0) under the π̂t density can be

computed as
∫
φ
(
εt, y0

)
Π̂t

(
εt
)
dεt = E

[
Mtφ

(
εt, y0

)
|y0
]

where integration is with respect to the Lebesgue measure over a Euclidean

space with the same dimension as the random vector εt .
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3.4. A digression on entropy

Define the entropy of the distortion associated with Mt as the expected log-

likelihood ratio with respect to the distorted distribution, which can be ex-

pressed as E(Mt logMt|y0). The function Mt logMt is convex in Mt and so

lies above its linear approximation at the point Mt = 1. Thus,

Mt logMt ≥Mt − 1

because the derivative of Mt logMt is 1+logMt and equal to one for Mt = 1.

Since E(Mt|y0) = 1, it follows that

E (Mt logMt|y0) ≥ 0

and that E(Mt logMt|y0) = 0 only when Mt = 1, in which case there is no

probability distortion associated with Mt .

The factorization Mt =
∏t

j=1 mj implies the following decomposition of

entropy:

E (Mt logMt|y0) =
t−1∑

j=0

E
[
MjE

(
mj+1 logmj+1|εj , y0

)
|y0
]
.

Here E[mt+1 logmt+1|yt] is the conditional relative entropy of a perturba-

tion to the one-step transition density associated with the approximating

model. Notice the absence of discounting on the right side. To get a recursive

formulation of stochastic robust control that sustains an enduring concern

about model misspecification, Hansen and Sargent (2007a) advocate using a

discounted version of the object on the right side to penalize a malevolent

player’s choice of a sequence of increments {mt+1} . Discounted entropy over

an infinite horizon can be expressed as

(1 − β)

∞∑

j=0

βjE (Mj logMj |y0) =

∞∑

j=0

βjE
[
MjE

(
mj+1 logmj+1|εj , y0

)
|y0
]
,

where we have used a summation-by-parts formula. The right-hand side for-

mula is particularly useful to us in recursive formulations of robust control

problems in which we allow mt+1 to be chosen by a malevolent second agent

at date t .

This formulation requires that the perturbed distributions Π̂t be abso-

lutely continuous with respect to the baseline distribution Πt . This means

that the perturbed distribution cannot assign positive probability to events

constructed in terms of εt and y0 that have probability measure zero under

the distribution implied by the approximating model.
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3.5. A stochastic robust control problem

We want a robust decision rule for an action ut . Suppose that the state

evolves according to

yt+1 = $ (yt, ut, εt+1) ,

the time period t return function is r(yt, ut), and y0 is an initial condition.

We require that a control process {ut} have its time t component ut be a

function of εt and y0 , so that yt and r(yt, ut) also become functions of εt

and y0 .

To obtain a stochastic robust control problem that sustains an enduring

concern about model misspecification, Hansen and Sargent (2007a) advocate

using a two-player zero-sum game of the form

max
{ut}

min
{mt+1}

∞∑

t=0

E
[
βtMt

{
r (yt, ut) + αβE

(
mt+1 logmt+1|εt, y0

)}
|y0
]

(3.5.1)

subject to
yt+1 = $ (yt, ut, εt+1) ,

Mt+1 = mt+1Mt,
(3.5.2)

where Emt+1|εt, y0 = 1. Here α ∈ [α,+∞] is a penalty on the entropy

associated with the mt+1 process. Soon we shall relate α to θ from chapter

2.

The two-person zero-sum game (3.5.1)-(3.5.2) has the player choosing

processes for {ut}∞t=0 , {mt+1}∞t=0 in a particular order. The dates on variables

indicate informational constraints. We require that ut be a function of εt and

y0 and mt+1 be a function of εt+1 and y0 .

3.6. A recursive formulation

Chapter 7 describes technical conditions that allow us to alter timing protocols

without affecting outcomes and thereby to formulate an equivalent game that

is recursive. The recursive game makes ut a function of the Markov state yt

and mt+1 a function of εt+1 and the Markov state yt , where mt+1 must have

unit expectation.

To pose a recursive form of problem (3.5.1)-(3.5.2), we let the Markov

state be the composite of Mt and yt . We guess that the value function has the

multiplicative form W (M, y) = MV (y) and consider the Bellman equation

MV (y) = max
u

min
m(ε)

M

{
r (y, u) + β

∫ (
m (ε)V [$ (y, u, ε)]

+ αm (ε) logm (ε)

)
π (ε) dε

}
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subject to the restriction that
∫
m(ε)π(ε)dε = 1. The minimizing player

chooses m as a function of ε so that m in effect is an infinite dimensional

control vector.

The linear scaling of the value function by M allows us to consider the

following problem that omits the state variable M :

V (y) = max
u

min
m(ε)

{
r (y, u) + β

∫ (
m (ε)V [$ (y, u, ε)]

+ αm (ε) logm (ε)

)
π (ε) dε

} (3.6.1)

subject to
∫
m(ε)π(ε)dε = 1. A consequence of our being able to omit Mt

as a state variable is that the control laws for u and m(·) will depend on y ,

but not M .4

Consider the inner minimization problem

Problem A:

R (V ) (y, u) ≡ min
m(ε)

∫ (
m (ε)V [$ (y, u, ε)] + αm (ε) logm (ε)

)
π (ε) dε

subject to
∫
m(ε)π(ε) = 1.

The objective is convex in m and the constraint is linear. The constraint

Em = 1 restricts the average m(·) but leaves open how to allocate m over

alternative values of ε . Although m(·) is infinite dimensional, it is easy to

solve Problem A. Its solution is well known from the literature on relative

entropy and large deviation theory.

The first-order conditions for minimization imply that

logm (ε) =
−V [$ (y, u, ε)]

α
+ λ

where λ is Lagrange multiplier chosen so that
∫
m(ε)π(ε)dε = 1. Therefore,

m∗ (ε) =
exp

(
−V [$(y,u,ε)]

α

)

∫
exp

(
−V [$(y,u,ε)]

α

)
π (ε) dε

. (3.6.2)

Furthermore, under the minimizing m∗ ,
∫ (

m∗(ε)V [$(y, u, ε)] + αm∗(ε) logm∗(ε)
)
π(ε)dε

= − α log

[∫
exp

(−V [$(y, u, ε)]

α

)
π(ε)dε

]

= R(V )(y, u).

This is the risk-sensitive recursion of Hansen and Sargent (1995).

4 Our decision to use entropy to measure model discrepancies facilitates this outcome.
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3.6.1. Verifying the solution

As a check on this calculation, write
∫
m logmπdε =

∫
m

m∗ (logm− logm∗)m∗πdε+

∫
m logm∗πdε

≥
∫
m logm∗πdε.

This inequality follows because the quantity
∫

m

m∗ (logm− logm∗)m∗πdε

is a measure of the entropy of m relative to m∗ and hence is nonnegative.

Thus,
∫
mV [$ (y, u, ·)]πdε+ α

∫
m logmπdε ≥

∫
mV [$ (y, u, ·)]πdε−

∫
mV [$ (y, u, ·)]πdε+ R (V ) (y, u)

=R (V ) (y, u) ,

where we have substituted using formula (3.6.2) for m∗ . This verifies that

m∗ is the minimizer in Problem A.

3.7. A value function bound

The random function m∗ of ε tilts the density of the shock ε exponentially

using the value function to determine the directions where the decision maker

is most vulnerable. Since m∗ depends on the state yt , the resulting distorted

density for the shocks can make the shocks temporally dependent and thereby

represent misspecified dynamics. The form of the worst-case density depends

on both the original density π and the shape of the value function V . When

π is normal and V is quadratic, the distorted density is normal.

As a direct implication of Problem A, we obtain a bound on the distorted

expectation of the value function as a function of relative entropy:
∫
mV [$ (y, u, ·)]π (ε) dε ≥ R (V ) (y, u)− α

∫
m logmπ (ε) dε. (3.7.1)

The first term on the right depends on α but not on the alternative model as

characterized by m . The second term is −α times entropy. Thus, inequality

(3.7.1) justifies interpreting α as a utility price of robustness. The larger is

the relative entropy, the larger is the downward adjustment in the relative

entropy bound.
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3.8. Large deviation interpretation of R
We have interpreted Problem A in terms of a concern about robustness that is

achieved by substituting the operator R for the conditional expectations op-

erator in a corresponding Bellman equation without a concern for robustness.

Let y+ denote the state next period. In this section, we use ideas from the

theory of large deviations to indicate how the operator R(V )(y, u) contains

information about the left tail of the distribution of the continuation value

V (y+) where the distribution of y+ = $(y, u, ε) is induced by the density

π(ε) associated with the approximating model. Recall from Problem A that

R depends on α and collapses to the conditional expectation operator as

α ↗ +∞ . We shall show that R contains more information about the left

tail of V as α is decreased. We gather this interpretation from an exponential

inequality that bounds the (conditional) tail probabilities of the continuation

value. This tail probability bound shows how R expresses a form of enhanced

risk aversion that makes the decision maker care about more than just the

conditional mean of the continuation value.
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Figure 3.8.1: Ingredients of large deviation bounds:

exp
(

−(W+r)
α

)
and 1{W :W≤−r} for r = 1 and two values

of α : 1 and 2.

The tail probability bound is widely used in the theory of large deviation

approximations.5 It uses the inequality

1{V :V ≤−r} ≤ exp

[− (V + r)

α

]

5 For an informative survey, see Bucklew (1990).
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depicted in figure 3.8.1, where 1 is the indicator function. This inequality

holds for any real number r and any α > 0. Then computing expectations

conditioned on the current state vector y and control u yields

Prob{V
(
y+
)
≤ −r|y, u} ≤ E

(
exp

[
−V (y+)

α

] ∣∣∣y, u
)

exp
(
− r

α

)

or

Prob{V
(
y+
)
≤ −r|y, u} ≤ exp

[
−R (V |y, u)

α

]
exp

(
− r

α

)
. (3.8.1)

Inequality (3.8.1) bounds the tail probability on the left by an exponential in

r . Thus, α determines a decay rate in the tail probabilities of the continuation

value. Decreasing α increases the exponential rate at which the bound sends

the tail probabilities to zero, thereby expressing how a lower α heightens

concern about tail events. Associated with this rate is a scale factor

∫
exp

(
−V [$ (y, u, ε)]

α

)
π (y, u, ε) dε = exp

[
−R (V |y, u)

α

]
.

The adjustment to the value function determines the constant associated with

the prespecified decay rate. For a fixed α , a larger value of R(V )(y, u) gives

a smaller scale factor in the probability bound.

3.9. Choosing the control law

To construct a robust control law, solve the outer maximization problem of

(3.6.1)

max
u

r (y, u) + βR (V ) (y, u) .

Notice that we computed m as a function (y, u) before solving for u . It is

often the case that we could compute m and u simultaneously as functions of

y by in effect stacking first-order conditions instead of proceeding in sequence.

This justifies an algorithm for the linear quadratic case that we describe in

section 2.7 of chapter 2.

3.10. Linear-quadratic model

To connect the approach of this chapter to the nonstochastic formulations

summarized in chapter 2, we turn to a linear quadratic setting with Gaussian

disturbances. Consider the following evolution equation:

y+ = Ay +Bu+ Cε
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where y+ is the next period value of state vector. Consider a value function

V (y) = −1

2
y′Py − ρ.

From our previous calculations, we know that

m∗ (ε) ∝ exp

[
1

2α
ε′C ′PCε+

1

α
ε′C ′P (Ay +Bu)

]
.

When π is a standard normal density, it follows that

π (ε)m∗ (ε) ∝ exp
[
−1

2
ε′
(
I − 1

α
C ′PC

)
ε

+ ε′
(
I − 1

α
C ′PC

)
(αI − C ′PC)

−1
C ′P (Ay +Bu)

]
,

where the proportionality coefficient is chosen so that the function of ε on

the right-hand side integrates to unity. The right-hand side function can be

recognized as being proportional to a normal density with covariance matrix(
I − 1

αC
′PC

)−1
and mean (αI − C ′PC)−1 C ′P (Ay + Bu). Evidently, the

covariance matrix of the shock is enlarged. The altered mean for the shock

implies that the distorted conditional mean for y+ is

[
I + C (αI − C ′PC)

−1
C ′P

]
(Ay +Bu) .

These formulas for the distorted means of ε and y+ agree with formulas that

we derived from a deterministic problem in chapter 2.

3.11. Relative entropy and normal distributions

As we have just seen, the worst-case distribution will also be normal. As

a consequence, we consider the corresponding measure of relative entropy

for a normal distribution. This renders the following calculation interesting.

Suppose that π is a multivariate standard normal distribution and that π̂ is

normal with mean w and nonsingular covariance Σ. We seek a formula for∫
(log π̂(ε) − logπ(ε))π̂(ε)dε . First, note that the likelihood ratio is

log π̂ (ε) − logπ (ε) =
1

2

[
− (ε− w)′ Σ−1 (ε− w) + ε′ε− log det Σ

]
(3.11.1)

To compute relative entropy, we must evaluate expectations using a normal

distribution with mean w and covariance Σ. Observe that

−
∫

1

2
(ε− w)

′
Σ−1 (ε− w) π̂ (ε) dε =

1

2
trace (I) .
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Applying the identity ε = w + (ε− w) gives

1

2
ε′ε =

1

2
w′w +

1

2
(ε− w)

′
(ε− w) + w′ (ε− w) .

Taking expectations,

1

2

∫
ε′επ̂ (ε) dε =

1

2
w′w +

1

2
trace (Σ) .

Combining terms gives

∫
(log π̂ − logπ) π̂dε = −1

2
log det Σ +

1

2
w′w +

1

2
trace (Σ − I) . (3.11.2)

3.12. Value function adjustment for the LQ model

Our adjustment to the value function is

R (V ) (y, u) = −α log

[∫
exp

(−V [$ (y, u, ε)]

α

)
π (ε) dε

]
.

For linear quadratic problems, we have at our disposal a more explicit depic-

tion of this adjustment. Recall that this adjustment is given by
∫
V π̂dε +

α
∫
(log π̂ − logπ)π̂dε for the π̂ obtained as the solution to the minimiza-

tion problem. As we have already shown, π̂ is a normal density with mean

(αI − C ′PC)
−1
C ′P (Ay + Bu) and covariance matrix

(
I − 1

αC
′PC

)−1
. Us-

ing our earlier calculations of relative entropy (3.11.2), the adjustment to the

linear-quadratic objective function, − 1
2y

′Py − ρ is6

R (V ) (y, u) = − 1

2
(Ay +Bu)

′
[
P + PC (αI − C ′PC)

−1
C ′P

]
(Ay +Bu) − ρ

+
α

2
trace

[(
I − 1

α
C ′PC

)−1

− I

]

− α

2
log det

(
I − 1

α
C ′PC

)−1

.

It is enough to work with a deterministic counterpart to this adjustment in the

linear quadratic case. For the purposes of computation, consider the following

deterministic evolution for the state vector:

y+ = Ay +Bu+ Cw

6 This expression motivates setting θ in chapter 2 equal to α/2 in order to match up

with the formulation in this chapter.
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where we have replaced the stochastic shock by a distorted mean w . Since

this is a deterministic evolution, covariance matrices do not come in play now.

Solve the problem

min
w

−1

2
(Ay +Bu+ Cw)

′
P (Ay +Bu+ Cw) +

α

2
w′w.

In this problem, relative entropy is no longer well defined. Instead, we penalize

the choice of the distortion w using only the contribution to relative entropy

(3.11.2) coming from the mean distortion. The solution for w is

w∗ = (αI − C ′PC)
−1
C ′P (Ay +Bu) .

This coincides with the mean distortion of the worst-case normal distribution

described earlier. The minimized objective function is

−1

2
(Ay +Bu)

′
[
P + PC (αI − C ′PC)

−1
C ′P

]
(Ay + Bu) ,

which agrees with the contribution to the stochastic robust adjustment to

the value function coming from the quadratic form in (Ay + Bu). What is

missing relative to the stochastic problem is the distorted covariance matrix

for the worst-case normal distribution and the constant term in the adjusted

value function. However, neither of these objects alters the computation of

the robust decision rule for u as a function of the state vector y .

This trick underlies much of the analysis in the book. For the purposes of

computing and characterizing the decision rules in the linear-quadratic model,

we can focus exclusively on mean distortions and can abstract from covariance

distortions. In the linear-quadratic case, the covariance distortion alters the

value function only through the additive constant term. Using and refining the

formulas in this chapter, we can deduce both the covariance matrix distortion

and the constant adjustment. As we shall see, these ideas also apply when we

turn to issues involving decentralization and welfare analysis.


