
Chapter 9

Calibrating misspecification fears with detection
error probabilities

The temptation to form premature theories upon insufficient data is the

bane of our profession.

— Sherlock Holmes, in Sir Arthur Conan Doyle, The Valley of Fear,

1915

9.1. Introduction

This chapter proposes a strategy for calibrating the robustness parameter θ

for some macroeconomic applications of multiplier robust control problems.

Our procedure is to set θ so that, given the finite amount of data at his

disposal, a decision maker would find it difficult statistically to distinguish

members of a set of alternative models against which he seeks robustness

(i.e., the models on and inside the entropy ball depicted in figure 1.7.1). We

have in mind that, relative to the rate at which new data arrive, the decision

maker’s discount factor makes him sufficiently impatient that he cannot wait

for those new data to resolve his model misspecification fears for him.

In chapter 14, we apply the approach of this chapter to calibrate an asset

pricing example. There we demonstrate what we find to be a fascinating

connection between the statistical detection error probabilities of this chapter

and an object that is conventionally interpreted as the market price of risk,

but that we suggest should instead be regarded as the market price of model

uncertainty.

9.2. Entropy and detection error probabilities

Random disturbances in the transition law conceal the distortion of a per-

turbed model relative to the approximating model and can make the dis-

tortion difficult to detect statistically.1 In this chapter, we illustrate how

unconditional entropy governs statistics for distinguishing two models using

moderate amounts of data. We use a statistical theory of model selection 2 to

define a mapping from the parameter θ to a detection error probability for

discriminating between the approximating model and an endogenous worst-

case model associated with that θ . We use that detection error probability

1 See chapter 3 for a formulation with stochastic shocks to the transition law.
2 For example, see Burnham and Anderson (1998).
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214 Calibrating misspecification fears with detection error probabilities

to determine a context-specific θ that is associated with a set of alternative

models against which it is reasonable to seek robustness.3

9.2.1. The context-specific nature of θ

An outcome of the analysis in this chapter is a proposal to calibrate θ in a

preliminary analysis the inputs of which include (1) a decision maker’s approx-

imating model, and (2) the decision maker’s intertemporal objective function.

In the course of describing detection error probabilities, we hope to clarify a

mental experiment in which the decision maker is confronted with a model

selection problem that differs markedly from the mental experiment involving

known models with which Pratt (1964) confronted a decision maker when he

wanted to extract measures of the decision maker’s risk aversion. Chapter 14

draws out the differing natures of these mental experiments in the context of

asset pricing.

9.2.2. Approximating and distorting models

For a given decision rule ut = −Fxt , we assume that the approximating

model makes the state evolve according to the stochastic difference equation

xt+1 = Aoxt + Cε̌t+1, (9.2.1)

where now ε̌t+1 is an i.i.d. sequence of Gaussian disturbances with mean zero

and identity contemporaneous covariance matrix. In turn, we will represent

a distorted model as

xt+1 = Aoxt + C (εt+1 + wt+1)

= Âxt + Cεt+1

(9.2.2)

where Â = Ao + Cκ(θ), wt+1 = κ(θ)xt , and εt+1 is another i.i.d. Gaussian

vector with mean 0 and identity covariance matrix. The transition densities

associated with models (9.2.1) and (9.2.2) are absolutely continuous with

respect to each other, i.e., they put positive probabilities on the same events. 4

Models that are not absolutely continuous with respect to each other are easy

to distinguish empirically.

3 For continuous-time models, Anderson, Hansen, and Sargent (2003) relate the penalty

parameter and entropy to a bound on detection error probabilities as well as to alterations

of market prices for risk associated with a concern about robustness.
4 The two models (i.e., the two infinite-horizon stochastic processes) are absolutely con-

tinuous over finite intervals, a concept whose definition is reported by Hansen, Sargent,

Turmuhambetova, and Williams (2006). The stochastic processes are not mutually abso-

lutely continuous (over infinite intervals).
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9.3. Detection error probabilities

Detection error probabilities can be calculated using likelihood ratio tests.

Thus, consider two alternative models. Model A is the approximating model

(9.2.1), and model B is the distorted model (9.2.2) associated with the context

specific worst-case shock implied by θ . Consider a fixed sample of observations

on the n-dimensional state vector xt for t = 0, . . . , T − 1. Let Li be the

likelihood of that sample for model i . Form the log-likelihood ratio

log
LA

LB
.

A likelihood ratio test selects model A when log LA

LB
> 0 and model B when

log LA

LB
< 0. When model A generates the data, the probability of a model

detection error is

pA = Prob

(
log

LA

LB
< 0
∣∣∣A
)
.

In turn when model B generates the data, the probability of a model detection

error is

pB = Prob

(
log

LA

LB
> 0
∣∣∣B
)
.

Form the probability of a detection error by averaging pA and pB with prior

probabilities over models A and B of .5:

p (θ) =
1

2
(pA + pB) .

Here, θ is the robustness parameter used to generate a particular model B by

taking the associated worst-case perturbation of model A in light of a par-

ticular objective function for a decision maker. The following section shows

in detail how to estimate the detection error probability by means of simu-

lations. In a given context, we propose to set p(θ) to a reasonable number,

then invert p(θ) to find a plausible value of θ .

9.4. Details

We now describe how to estimate detection error probabilities.

9.4.1. Likelihood ratio under the approximating model

Define wA as the mean of the worst-case shock assuming that the actual data

generating process is the approximating model, i.e., wA = κxA where xA is
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generated under (9.2.1). Define Â = Ao + Cκ . Then we can express the

innovation under the worst-case model as

εt+1 = (C ′C)
−1
C ′
(
xt+1 − Âxt

)

= ε̌t+1 − κxt

= ε̌t+1 − wA
t+1.

(9.4.1)

The log-likelihood function under the approximating model is

logLA = − 1

T

T−1∑

t=0

{n log
√

2π +
1

2
(ε̌t+1 · ε̌t+1)}

The log-likelihood function for the distorted model is

logLB = − 1

T

T−1∑

t=0

{n log
√

2π +
1

2
(εt+1 · εt+1)}

= − 1

T

T−1∑

t=0

{n log
√

2π +
1

2

(
ε̌t+1 − wA

t+1

)′ (
ε̌t+1 − wA

t+1

)
}.

(9.4.2)

The log-likelihood ratio is therefore

r|A =
1

T

T−1∑

t=0

{1

2
wA′

t+1w
A
t+1 − wA′

t+1ε̌t+1}, (9.4.3)

assuming that the approximating model is the data generating process. The

second term in the above expression will vanish as T → ∞ , so that the log-

likelihood ratio converges to the unconditional average value of .5wA′
t+1w

A
t+1 ,

the measure of model discrepancy used throughout chapter 2, for example.

We can estimate the detection error probability conditional on model A

by simulating a large number for xt of length T under model A and counting

the fraction of realizations for which r|A computed as in (9.4.3) is negative.

9.4.2. Likelihood ratio under the distorted model

Now suppose that the data generating process is actually the distorted model

(9.2.2). The innovations in the approximating model are linked to those in

the distorted model by ε̌t+1 = εt+1 + wB
t+1, where wB

t+1 = κxB
t and xB

t is

generated under (9.2.2).

Assuming that the distorted model generates the data, the log-likelihood

function logLB for the distorted model is

logLB = − 1

T

T−1∑

t=0

{n log
√

2π +
1

2
(εt+1 · εt+1)}. (9.4.4)
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The log-likelihood function logLA for the approximating model is

logLA = − 1

T

T−1∑

t=0

{n log
√

2π +
1

2
(ε̌t+1 · ε̌t+1)}

= − 1

T

T−1∑

t=0

{n log
√

2π +
1

2

(
εt+1 + wB

t+1

)′ (
εt+1 + wB

t+1

)
}.

(9.4.5)

Hence, assuming that the distorted model B is the data-generating process,

the log-likelihood ratio is

r|B =
1

T

T−1∑

t=0

{1

2
wB′

t+1w
B
t+1 + wB′

t+1εt+1}. (9.4.6)

As T → ∞ , r|B converges to the unconditional average value of one-period

entropy .5wB′
t+1w

B
t+1 . Again, we can estimate pB , the detection error proba-

bility conditioned on model B, by simulating a large number of paths of length

T under model B and counting the fraction of realizations for which r|B is

positive.

9.4.3. The detection error probability

If we attach equal prior weights to models A and B, the overall detection error

probability is

p (θ) =
1

2
(pA + pB) , (9.4.7)

where pi = freq(r|i ≤ 0) for i = A,B. 5

9.4.4. Breakdown point examples revisited

Figures 9.4.1 and 9.4.2 display estimated detection error probabilities for ex-

amples 2 and 3 from section 8.7, where we studied the effects of driving θ

downwards toward the breakdown point θ . The figures record detection er-

ror probabilities for samples of length T = 50 and T = 200. We estimated

the detection error probabilities for each value of σ = −θ−1 by averaging

detection error rates over 100,000 simulations of length T .

The figures indicate that for T = 200, the detection error probability

for θ near the breakdown point is essentially zero for both examples. But a

sample size of T = 50 is small enough to leave the detection error probabilities

as high as .05 near the breakdown point.

5 The Matlab program detection2.m computes detection error probabilities.
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Figure 9.4.1: Detection error probability as a function of

σ = −θ−1 for example 2 of section 8.7. The dotted vertical

line denotes the breakdown point.
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Figure 9.4.2: Detection error probability as a function of

σ = −θ−1 for example 3 of section 8.7. The dotted vertical

line denotes the breakdown point

9.5. Ball’s model

We illustrate the use of detection error probabilities to discipline the choice

of θ in the context of the simple dynamic model that Ball (1999) designed

to study alternative rules by which a monetary policy authority might set an
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interest rate.6 The model is

yt = −βrt−1 − δet−1 + εt (9.5.1)

πt = πt−1 + αyt−1 − γ (et−1 − et−2) + ηt (9.5.2)

et = θrt + νt, (9.5.3)

where y is the log of real output, r is the real interest rate, e is the log

of the real exchange rate, π is the inflation rate, and ε , η , ν are serially

uncorrelated and mutually orthogonal disturbances. Ball assumed that the

monetary authority wants to maximize

C = −E
(
π2

t + y2
t

)
.

The government sets the interest rate rt as a function of the current state at

t , which Ball shows can be reduced to yt, et .

Ball motivates (9.5.1) as an open-economy IS curve and (9.5.2) as an

open-economy Phillips curve. He uses (9.5.3) to capture effects of the interest

rate on the exchange rate. Ball set the parameters γ, θ, β, δ at the values

.2, 2, .6, .2. Following Ball, we set the standard deviation of the innovation

equal to 1, 1,
√

2.

To discipline the choice of the parameter expressing a concern about

robustness, we calculated the detection error probabilities for distinguishing

Ball’s model from the worst-case models associated with various values of

σ ≡ −θ−1 . We calculated these taking Ball’s parameter values as the approx-

imating model and assuming that T = 142 observations are available, which

corresponds to 35.5 years of annual data for Ball’s quarterly model. Figure

9.5.1 shows these detection error probabilities p(σ) as a function of σ . Notice

that the detection error probability is .5 for σ = 0, which verifies that the

approximating model and the worst-case model are identical. The detection

error probability falls to .1 for σ ≈ −.085. If we think that a reasonable con-

cern about robustness is to want rules that work well for alternative models

whose detection error probabilities are .1 or greater, then σ = −.085 is a

reasonable choice of this parameter.

We can use Ball’s model to illustrate the robustness attained by alterna-

tive settings of the parameter θ . In particular, we compute a robust decision

rule for Ball’s model with σ = −.085 and compare its performance to the

σ = 0 rule. For Ball’s model, figure 9.5.2 shows that while robust rules

do worse when the approximating model actually generates the data, their

6 See Sargent (1999b) for further discussion of Ball’s model from the perspective of

robust decision theory.
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Figure 9.5.1: Detection error probability (coordinate axis)

as a function of σ ≡ −θ−1 for Ball’s model.

performance deteriorates more slowly with departures of the data-generating

mechanism from the approximating model.

Figure 9.5.2 plots the value C = −E(π2 + y2) attained by three rules

under the alternative data-generating model associated with the worst-case

model for the value of σ on the ordinate axis. The rules correspond to values

σ = 0,−.04,−.085, respectively. Recall how the detection error probabili-

ties computed above associate a value of σ = −.085 with a detection error

probability of about .1. Notice how the robust rules (those computed with

robustness parameter σ = −.04 or −.085) yield criterion values that deteri-

orate at a lower rate with model misspecification (they are flatter). Notice

that the rule for σ = −.085 does worse than the σ = 0 or σ = −.04 rules

when σ = 0, but is more robust in the sense that it deteriorates less when

the model becomes more misspecified.

9.6. Concluding remarks

We shall use detection error probabilities to discipline the choice of θ again

when we study a permanent income model of Hansen, Sargent, and Tallarini

(1999) in chapter 10 and an asset pricing model of Tallarini (2000) in chapter

14.7

7 Anderson, Hansen, and Sargent (2003) and Hansen (2007) analyzed some mathemati-

cal connections among entropy, market prices of model uncertainty, and bounds on detection

error probabilities.
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Figure 9.5.2: Value of criterion function C = −E(π2+y2)

for three decision rules when the data are generated by the

worst-case model associated with the value of σ on the

horizontal axis: σ = 0 rule (solid line), σ = −.04 rule

(dashed-dotted line), σ = −.085 (dashed) line.





Chapter 10
A permanent income model

If you would be wealthy, think of saving as well as getting.

— Benjamin Franklin

10.1. Introduction

The permanent income model is a good laboratory for exploring the conse-

quences of a consumer’s fears about misspecification of the stochastic process

governing his labor income. We shall see that a consumer who distrusts his

specification of the labor income or endowment process engages in a kind of

precautionary savings that comes from his worst-case slanting of the probabil-

ity law for the endowment process.1 We use the Stackelberg multiplier game

of chapter 7 to help us interpret how this probability slanting manifests itself

in the permanent income model.

The permanent income model is also a good vehicle for gathering intu-

ition from the frequency domain approach of chapter 8. A permanent income

consumer is patient enough to smooth high-frequency fluctuations in income.

That means that he automatically acquires robustness with respect to mis-

specification of the high-frequency details of the stochastic process for his

labor income. But he is not patient enough to smooth low-frequency (i.e.,

very persistent) income fluctuations. Recognizing that the latter fluctuations

cause the consumer the most trouble, the minimizing agent makes the worst-

case shocks more persistent, an outcome that informs the consumer that his

decision rule is most fragile with respect to low-frequency misspecifications

of his income process. The robust permanent income consumer responds to

those more persistent worst-case shocks by saving more than he would if he

had no doubts about his endowment process. Thus, he engages in a form of

precautionary savings that prevails even when he has quadratic preferences,

which distinguishes this from the conventional form of precautionary savings

that emerges for preferences that have convex marginal utilities. 2

We apply the label “precautionary” because the effect increases with the

volatility of innovations to endowments under the consumer’s approximat-

ing model and because it also depends on the parameter θ that indexes his

concern about robustness. Our model of precautionary savings exhibits the

1 We can regard this context-specific slanting as corresponding to that mentioned by

Fellner in the passage cited on page 38 of chapter 1.
2 Leland (1968) and Miller (1974) are classic references on precautionary savings. See

footnote 21 in this chapter.
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usual feature that it modifies the certainty equivalence present in the linear-

quadratic permanent income model. However, the model keeps the marginal

propensity to save out of financial wealth equal to that out of human wealth,

in contrast to models like those of Caballero (1990), where precautionary sav-

ing makes the marginal propensity to save out of human wealth exceed that

out of financial wealth.3

To explore these issues, this chapter uses an equilibrium version of a

permanent income model that Hansen, Sargent, and Tallarini (1999) (HST)

estimated for U.S. consumption and investment data.4 We restate (and ex-

tend in appendix B) an observational equivalence result of HST, who showed

that activating a concern about robustness increases savings in the same way

that increasing the discount factor would: the discount factor can be changed

to offset the effect of a change in the robustness parameter θ on consumption

and investment. HST thereby established that consumption and investment

data alone are insufficient to identify both the robustness parameter θ and the

subjective discount factor β .5 We use the Stackelberg multiplier game from

chapter 7 to shed more light on this observational equivalence proposition and

the impact on decision rules of distortions in the conditional expectations un-

der the worst-case model. We state another observational equivalence result

for a new baseline model and use it to show that activating a concern about

robustness still equalizes the marginal propensities to save out of human and

nonhuman wealth.6

In addition, this chapter illustrates how the detection error probabilities

described in chapter 9 can discipline plausible choices of θ and provides some

numerical examples of how much robustness can be achieved by rules designed

3 See Wang (2003) for a treatment of how precautionary savings without robustness

separates the marginal propensities to consume out of financial and nonfinancial wealth.
4 Hall (1978), Campbell (1987), Heaton (1993), and Hansen, Roberds, and Sargent

(1991) applied versions of this model to aggregate U.S. time series data on consumption

and investment.
5 Despite their failure to affect the consumption allocation, HST showed that such vari-

ations in (σ, β) do affect the relevant stochastic discount factor and therefore the valuation

of risky assets. We shall take up asset pricing implications of the robust permanent income

model in chapter 13.
6 Kasa (1999) constructs an observational equivalence result for the optimal linear reg-

ulator problem and its robust counterpart for the single-state, single-control case. He shows

that for a given H∞ decision rule there is a strictly convex function relating values of the

H∞ norm to the variable summarizing the relative cost of state versus control variability.

Orlik (2006) establishes a general observational equivalence result between the standard

optimal control and robust control problems. In an example application of the result, she

shows that the same interest rate will be set by the policy maker who fully trusts his model

as well as by the robust central banker provided that the preferences of the latter one with

respect to inflation-output gap stabilization are appropriately specified.



A robust permanent income theory 225

with various settings of θ . In chapter 12, we describe how to decentralize the

allocation chosen by the planner in the economy of this chapter. Then in

chapter 13, we use that decentralized economy as a laboratory for studying

ways to represent the effects on asset prices of a concern about robustness.

10.2. A robust permanent income theory

HST’s model features a planner with preferences over consumption streams

{ct}∞t=0 , intermediated through service streams {st}∞t=0 .7 Let b be a prefer-

ence shifter in the form of a utility bliss point. The Bellman equation for the

robust planner is

−x′Px− p = sup
c

inf
w

{
− (s− b)

2
+ β (θw∗′w∗ −Ex∗′Px∗ − p)

}
(10.2.1)

where the maximization is subject to

s = (1 + λ) c− λh (10.2.2a)

h∗ = δhh+ (1 − δh) c (10.2.2b)

k∗ = δkk + i (10.2.2c)

c+ i = γk + d (10.2.2d)[
d

b

]
= Uz (10.2.2e)

z∗ = A22z + C2 (ε∗ + w∗) (10.2.2f)

x′ = [h′ k′ z′ ] . (10.2.2g)

Here ∗ denotes next period’s value, ′ denotes transpose, ε∗ ∼ N (0, I), E is

the expectation operator, c is consumption, s denotes a scalar service mea-

sure, and the law of motion mapping this period’s state x into next period’s

state will be defined below. As before, the penalty parameter θ > 0 governs

concern about robustness to misspecification of the endowment process d and

the preference shock process b embedded in (10.2.2e) and (10.2.2f ). HST

assumed that the eigenvalues of A22 are bounded in modulus by unity. We

transform θ to the risk-sensitivity parameter σ = −θ−1 . In (10.2.1), a scalar

household service st is produced by the scalar consumption ct via the house-

hold technology (10.2.2a) and (10.2.2b) where λ > 0 and δh ∈ (0, 1). The

household technology (10.2.2a),(10.2.2b) accommodates habit persistence or

durability as in Ryder and Heal (1973), Becker and Murphy (1988), Sundare-

san (1989), Constantinides (1990), and Heaton (1993). By construction, ht is

7 The model fits within the framework described in chapter 11. See page 257 for an

additional stability condition that must be imposed.
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a geometric weighted average of current and past consumption. Setting λ > 0

induces intertemporal complementarities. Consumption services depend pos-

itively on current consumption, but negatively on a weighted average of past

consumption, a reflection of habit persistence.

There is a linear production technology (10.2.2d) where the capital stock

k∗ at the end of period t evolves according to (10.2.2c), where i is time t

gross investment, and {dt} is an exogenously specified endowment process.

The parameter γ is the (constant) marginal product of capital, and δk is

the depreciation factor for capital. HST specified a bivariate (“two-factor”)

stochastic endowment process: dt = µd + d̃t + d̂t.
8 They assumed that the

two endowment processes are orthogonal and that both obey second-order

autoregressions

(1 − φ1L) (1 − φ2L) d̃t = cd̃

(
εd̃t + wd̃

t

)

(1 − α1L) (1 − α2L) d̂t = cd̂

(
εd̂t + wd̂

t

)

where the vector εt is i.i.d. Gaussian with mean zero and identity covariance

matrix, and wd̃
t , w

d̂
t are distortions to the means of εd̃t , ε

d̂
t . HST estimated

values of the φj ’s and αj ’s that imply that the d̃t process is more persistent

than the d̂t process, as we see below.

Solving the capital evolution equation for investment and substituting

into the linear production technology gives

ct + kt = Rkt−1 + dt, (10.2.3)

where

R ≡ δk + γ,

which is the physical gross return on capital, taking into account that capital

depreciates over time.9

Let the state vector be x′t =
[
h′t−1 k

′
t−1 dt−1 1 dt d̃t d̃t−1

]
(see Hansen,

Sargent, and Wang (2002)). There is a set of state transition equations in-

dexed by a {wt+1} process:

xt+1 = Axt +But + C (wt+1 + εt+1) (10.2.4)

where ut = ct and w′
t+1 = [wd̃

t+1 wd̂
t+1 ]

′
is the distortion to the conditional

mean of εt+1 . Let Jt be the sigma algebra induced by {x0, εs, 0 ≤ s ≤ t} .

8 For two observed time series (ct, it) , HST’s econometric specification needed at least

two shock processes to avoid stochastic singularity.
9 For HST’s decentralized economy, R coincided with the gross return on a risk-free

asset.



Solution when σ = 0 227

We require that the components of the solution for {ct, ht, kt} belong to L2
0 ,

the space of stochastic processes {yt} defined as

L2
0 = {y : yt is in Jt for t = 0, 1, . . . and E

∞∑

t=0

R−t (yt)
2 | J0 < +∞}.

Given x0 , the planner chooses a process {ct, kt} with components in

L2
0 to solve the Bellman equation (10.2.1) subject to versions of (10.2.2a)-

(10.2.2d) and (10.2.3).10 In what follows we shall discuss HST’s parameter

values and some properties of their numerical solution. But first we show that

in terms of its effects on consumption and investment, more concern about

robustness works, ceteris paribus , like an increase in the discount factor. 11

10.3. Solution when σ = 0

We apply results from chapter 7 to show that the robust decision rule for σ < 0

also solves a σ = 0 version of the model in which the maximizing agent in

(10.2.1) replaces the approximating model with a particular distorted model

for [ d′t b′t ] . We shall eventually use that insight to study the identification

of σ and β . To begin, this section solves the σ = 0 model.

10.3.1. The σ = 0 benchmark case

This subsection computes a solution of the planning problem in the σ = 0

case. Though we shall soon focus on the case when βR = 1, we also want the

solution when βR 6= 1. Thus, for now we allow βR 6= 1. When σ = 0, the

decision maker’s objective reduces to

E0

∞∑

t=0

βt{− (st − bt)
2}. (10.3.1)

Formulate the planning problem as a Lagrangian by putting random Lagrange

multiplier processes 2βtµst on (10.2.2a), 2βtµht on (10.2.2b), and 2βtµct on

(10.2.3). First-order necessary conditions are

µst = bt − st (10.3.2a)

10 We can convert this problem into a special case of the control problem posed in chapter

7 as follows. Form a composite state vector xt as described above, and let the control be

given by st − bt . Solve (10.2.2a) for ct as a function of st − bt , bt , and ht−1 and

substitute into equations (10.2.2b) and (10.2.3). Stack the resulting two equations along

with the state evolution equation for zt to form the evolution equation for xt+1 .
11 However, in chapter 13, we shall show that (σ, β) pairs that imply observationally

equivalent consumption and investment plans nevertheless imply different prices for risky

assets. This finding is the basis of what Lucas (2003, p. 7) calls Tallarini’s (2000) finding

of “an astonishing separation of quantity and asset price determination.”
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µct = (1 + λ) µst + (1 − δh)µht (10.3.2b)

µht = βEt [δhµht+1 − λµst+1] (10.3.2c)

µct = βREtµct+1 (10.3.2d)

and also (10.2.2a)-(10.2.2b) and (10.2.3). Equation (10.3.2d) implies that

Etµct+1 = (βR)−1µct . Then (10.3.2b) and (10.3.2c) solved forward imply

that µst, µht must satisfy Etµst+1 = (βR)−1µst and Etµht+1 = (βR)−1µht .

Therefore, µst has the representation

µst = (βR)
−1
µst−1 + ν′εt (10.3.3)

for some vector ν . The endogenous volatility vector ν will play an important

role below, and we shall soon tell how to compute it. The effects of the

endogenous state variables ht−1, kt−1 on consumption and investment are

intermediated through the one-dimensional endogenous state vector µst , the

marginal valuation of services.

Use (10.3.2a) to write st = bt − µst , substitute this into the household

technology (10.2.2a)-(10.2.2b), and rearrange to get the system

ct =
1

1 + λ
(bt − µst) +

λ

1 + λ
ht−1 (10.3.4a)

ht = δ̃hht−1 +
(
1 − δ̃h

)
(bt − µst) (10.3.4b)

where δ̃h = δh+λ
1+λ . Equation (10.3.4a) shows that knowledge of µst, bt, ht−1

allows us to compute ct , so that µst plays the role of the essential scalar

endogenous state variable in the model. Equation (10.3.4b) can be used to

compute

Et

∞∑

j=0

R−jht+j−1 =
(
1 −R−1δ̃h

)−1

ht−1

+
R−1

(
1 − δ̃h

)

(
1 −R−1δ̃h

)Et

∞∑

j=0

R−j (bt+j − µst+j) .

(10.3.5)

For the purpose of solving the first-order conditions (10.3.2), (10.2.2a),

(10.2.2b), (10.2.3) subject to the side condition that {ct, kt} ∈ L2
0 , treat the

technology (10.2.3) as a difference equation in {kt} , solve forward, and take

conditional expectations on both sides to get

kt−1 =

∞∑

j=0

R−(j+1)Et (ct+j − dt+j) . (10.3.6)
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Use (10.3.4a) to eliminate {ct+j} from (10.3.6), then use (10.3.3) and (10.3.5).

Solve the resulting system for µst to get

µst = Ψ1kt−1 + Ψ2ht−1 + Ψ3

∞∑

j=0

R−jEtbt+j + Ψ4

∞∑

j=0

R−jEtdt+j , (10.3.7)

where

Ψ1 = − (1 + λ)R
(
1 −R−2β−1

)

 1 −R−1δ̃h

1 −R−1δ̃h + λ
(
1 − δ̃h

)




Ψ2 =
λ
(
1 −R−2β−1

)

1 −R−1δ̃h + λ
(
1 − δ̃h

)

Ψ3 =
(
1 −R−2β−1

)

Ψ4 = R−1Ψ1.

(10.3.8)

Equations (10.3.7), (10.3.4), and (10.2.3) represent the solution of the plan-

ning problem when σ = 0.12

To compute ν in (10.3.3), it is useful to notice that formula (10.3.7) can

be rewritten as

µst = (βR)−1 µst−1 + Φ3

∞∑

j=0

R−j (Etbt+j −Et−1bt+j)

+ Φ4

∞∑

j=0

R−j (Etdt+j −Et−1dt+j)

(10.3.9)

where

µst−1 = Φ1kt−1 + Φ2ht−1 + Φ3

∞∑

j=0

R−jEt−1bt+j + Φ4

∞∑

j=0

R−jEt−1dt+j .

The third and fourth terms of equation (10.3.9) are scalars Ψ3 and Ψ4 mul-

tiplied by the innovations at t in the present values of bt and dt , respectively.

Let the moving average representations for bt and dt be

bt = ζb (L) εt (10.3.10)

dt = ζd (L) εt, (10.3.11)

12 When βR = 1, (10.3.7) makes µst depend on a geometric average of current and

future values of bt . Therefore, both the optimal consumption service process and optimal

consumption depend on the difference between bt and a geometric average of current and

expected future values of b . So there is no “level effect” of the preference shock on the

optimal decision rules for consumption and investment. However, the level of bt will affect

equilibrium asset prices.
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where ζb(L) = Ub(I − A22L)−1C2 and ζd(L) = Ud(I − A22L)−1C2 from

(10.2.2e).

By applying a formula of Hansen and Sargent (1980), it is easy to show

that the innovations in the present values of bt and dt , respectively, equal the

present values of the coefficients in these moving average representations. 13

Therefore, representation (10.3.9) can be rewritten as

µst = (βR)
−1
µst−1 +

[
Ψ3ζb

(
R−1

)
+ Ψ4ζd

(
R−1

)]
εt. (10.3.12)

Comparing this with (10.3.3), we see that

ν′ = Ψ3ζb
(
R−1

)
+ Ψ4ζd

(
R−1

)
. (10.3.13)

An equivalent way to compute ν is to note that formula (10.3.7) for µst

can be represented in matrix notation as

µst = Msxt (10.3.14)

xt = Aoxt−1 + Cεt (10.3.15)

where xt is the state vector kt−1, ht−1, zt , where zt = [ dt−1 1 dt d̃t d̃t−1 ]
′

the matrix Ms is determined by equation (10.3.7) and Ao, C and the laws of

motion for bt, dt determine the law of motion for the entire state under the

optimal rule for ct .
14 It follows that µst = MsAoxt−1 +MsCεt , which must

agree with (10.3.3), so that µs,t−1 ≡MsAoxt−1 and

ν′ ≡MsC. (10.3.16)

The scalar α =
√
ν′ν plays an important role in the argument below. It obeys

α =
√
MsCC ′M ′

s. (10.3.17)

In the widely studied special case that λ = δh = 0, so that st = ct

and µst = bt − ct , (10.3.7), (10.3.8) imply that the marginal propensity

to consume out of “non-human wealth” Rkt−1 and the marginal propensity

to consume out of “human wealth”
∑∞

j=0 R
−jEtdt+j both equal −Ψ1 . It

is a well-known feature of the linear-quadratic model that these marginal

propensities to consume are equal. Notice that human wealth is formed by

discounting expected future endowments at the risk-free rate.

13 The present value of the moving average coefficients plays an important role in linear-

quadratic permanent income models. See Flavin (1981), Campbell (1987), and Hansen,

Roberds, and Sargent (1991).
14 Here C is the matrix that appears in (10.2.4) above. See Hansen and Sargent (2008,

chapter 10) for fast ways to compute Ao, Ms, C for a class of models that includes that of

this chapter.
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10.3.2. Observational equivalence for quantities of σ = 0 and
σ 6= 0

In the σ = 0 case, HST followed Hall (1978) and imposed that βR = 1.

HST then showed that for fixed values of all other parameters, there is a

set of (β, σ) pairs that leave the consumption-investment plan unaltered. In

particular, if as we vary σ we also vary β according to 15

β̂ (σ) =
1

R
+

σα2

R− 1
, (10.3.18)

then we leave unaltered the decision rules for (ct, it). Here α2 = ν′ν , where ν ,

as defined in (10.3.13), is a vector in the following martingale representation

for the marginal utility of services µst that prevails as a special case of (10.3.3)

when σ = 0 and βR = 1:

µst = µst−1 + ν′εt.

(Also see equation (10.3.12).) The following subsection explains how HST

constructed the locus identified by (10.3.18).

10.3.3. Observational equivalence: intuition

Here is the basic idea underlying the observational equivalence proposition.

As already mentioned, a single factor µst summarizes the endogenous state

variables ht−1, kt−1 . When βR = 1 and σ = 0, it has the law of motion

µst = µst−1 + ν′εt,

which can also be represented as

µst = µst−1 + αε̃t (10.3.19)

where ε̃t is a scalar i.i.d. process with zero mean and unit variance and where

α =
√
ν′ν verifies αε̃t = ν′εt . We generate our observational equivalence

result by reverse engineering. We activate a concern about robustness by

setting σ < 0, but insist that (10.3.19) continue to describe µst under the

approximating model in order to make sure that the (ct, it) allocation remains

the same when σ < 0. For σ < 0 and a new value β̂ that is to be determined,

the worst-case model for µst is

µst = µst−1 + α (ε̃t + w̃t) (10.3.20)

15 See footnote 23 of this chapter.
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or

µst =
(
1 + αK

(
σ, β̂

))
µst−1 + αε̃t (10.3.21)

where w̃t = K(σ, β̂)µst−1 . Evidently, (10.3.21) implies that Êtµst+1 =

(1 + αK(σ, β̂))µst , where Ê is the mathematical expectation with respect

to the distorted model. Notice that we once again use the modified certainty

equivalence principle. With a concern about robustness, the decision maker’s

choices conform to the following version of the Euler equation (10.3.3):

Êtµst+1 =
(
β̂R
)−1

µst,

where Êt is evaluated with respect to the worst-case model (10.3.21) and β̂

is a new value for β that we design to offset the effects of setting σ < 0.

That is, if possible, we want to choose β̂ to compensate for using the worst-

case distribution to evaluate expectations in the above Euler equation. And

we want the distorted model to be associated with the same approximating

model (10.3.19) that generates the original ct, it allocation. But according

to (10.3.21), if the approximating model is to be (10.3.19), then Êtµst+1 =

(1 +K(σ, β̂)α)µst . Thus, for a given σ < 0, we want to find a replacement

β̂ for β that enables us to verify (β̂R)−1 = (1 + αK(σ, β̂)), where K(σ, β̂)

solves the minimization problem that gives rise to the worst-case shock. In

summary, we want to solve 1 = (β̂R)(1 + αK(σ, β̂)) for β̂ as a function of

σ . The proof of our observational equivalence Theorem 10.3.1 shows that a

solution for β̂ exists, that it is unique, and that it satisfies (10.3.18).

10.3.4. Observational equivalence: formal argument

Following HST, we begin by assuming that βR = 1 when σ = 0. We state

Theorem 10.3.1. (Observational Equivalence, I) Fix all parameters,

including R , except (σ, β) . Suppose βR = 1 when σ = 0 . There exists a

σ < 0 such that for any σ ∈ (σ, 0) , the optimal consumption-investment plan

for (0, β) is also chosen by a robust decision maker when parameter values

are (σ, β̂(σ)) and where β̂(σ) < β satisfies (10.3.18).

Proof. The proof is constructive. Begin with an allocation {s̄t, c̄t, k̄t, h̄t} for

a benchmark σ = 0, βR = 1 economy, then form a comparison economy

with a σ ∈ [σ, 0], where σ is the lowest value for which the solution of

(10.3.25) reported below is real. The comparison economy fixes all parameters

except (σ, β) at their values for the benchmark economy. We then construct

a discount factor β̂ < β for which {s̄t, c̄t, k̄t, h̄t} is also the allocation for the

σ < 0 economy.
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When βR = 1, (10.3.3) becomes

µst = µst−1 + ν′εt. (10.3.22)

The optimality of the allocation under the original (0, β) implies that (10.3.22)

is satisfied, which in turn implies that Etµst+1 = µst and (10.3.7) are sat-

isfied where Et is the expectation operator under the approximating model.

We seek a new value σ < 0 and an associated value β̂(σ) for which: (1)

(10.3.22) remains satisfied under the approximating model; (2) the robust de-

cision maker chooses the (̄·) allocation, which requires that β̂RÊtµst+1 = µst ,

where Ê is the expectation with respect to the worst-case model associated

with (σ, β̂) when the approximating model obeys (10.3.22). However, when

the approximating model satisfies (10.3.22), the worst-case model associated

with (σ, β̂) implies that Êtµst+1 = ζ̂(β̂)µst , where ζ̂(β̂) = (1+αK(σ, β̂)) > 1

can be found by solving the pure forecasting problem16 associated with law

of motion µst = µst−1 + ν′(εt + wt), (10.3.22), one-period return function

−µ2
st = −(bt − st)

2 , and discount factor β̂ . If the σ -robust decision maker

is to choose a decision rule that sustains (10.3.22) under the approximating

model, so that (1) and (2) both prevail, β̂ must verify

β̂Rζ̂
(
β̂
)

= 1. (10.3.23)

To complete the argument, we compute ζ̂(β̂) by solving a pure forecasting

problem to find the distorted expectation operator Êt . We use the recipe

given in formulas (7.C.10) on page 168 and (7.C.26) and (7.C.27) on page

171. Taking (10.3.22) as given under the approximating model and noting

that µ2
st = (bt − st)

2 , the evil agent in the pure forecasting problem seeks to

minimize −∑∞
t=0 β̂

t(µ2
st+β̂

1
σw

2
t+1) under the distorted law µst = µst−1+αwt ,

where α =
√
ν′ν (see (10.3.22)). Taking µs as the state, the evil agent’s

Bellman equation (7.C.27) is17

−Pµ2
s = −µ2

s + β̂min
w

(
− 1

σ
w2 − P (µs + αw)2

)
. (10.3.24)

The scalar P that solves (10.3.24) is

−P
(
β̂
)

=
β̂ − 1 + σα2 +

√(
β̂ − 1 + σα2

)2

+ 4σα2

−2σα2
. (10.3.25)

16 See page 171 for the definition of a pure forecasting problem.
17 We exploit a version of certainty equivalence and ignore the stochastic parts of the

Bellman equation and the law of motion for µs .
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Let ζ̂(β̂) = A + CK(σ, β̂) = 1 + αK(σ, β̂), where w = K(σ, β̂)µs is the

formula for the worst-case shock and A + CK is the state transition matrix

for the distorted law of motion as in chapter 7. Applying formula (7.C.21)

for K(σ, β̂) in chapter 7 to the current problem gives

Êtµst+1 = ζ̂µst (10.3.26)

where

ζ̂ = ζ̂
(
β̂
)

= 1 +
σα2P

(
β̂
)

1 − σα2P
(
β̂
) =

1

1 − σα2P
(
β̂
) . (10.3.27)

Hansen, Sargent, and Wang (2002) solve (10.3.23), (10.3.25), and (10.3.27)

to obtain

β̂ (σ) =
1

R
+

σα2

R− 1
. (10.3.28)

For σ ∈ [σ, 0], equation (10.3.28) defines a locus of (σ, β̂)’s, each point of

which is observationally equivalent to (0, β) for observations on (ct, kt) be-

cause each supports the benchmark (σ = 0) allocation.

This proposition means that with the appropriate adjustments in β given

by β̂(σ), the robust decision maker chooses precisely the same quantities

{ct, kt} as a decision maker without a concern for robustness. Thus, as far as

these quantity observations are concerned, the robust (σ < 0, β̂(σ)) version

of the permanent income model is observationally equivalent to the bench-

mark (σ = 0, β) version.18 However, as we shall see in chapter 13, (σ, β)

pairs that imply equivalent allocations because they satisfy (10.3.28) do not

imply the same asset prices. The reason is that as we alter (σ, β) within this

observationally equivalent set, we alter continuation valuations by altering

D(P ).

18 The asset pricing theory developed by HST, which is encoded in (10.3.23), implies

that the price of a sure claim on consumption one period ahead is R−1 for all t and

for all (σ, β̂) in the locus (10.3.18). Therefore, these different parameter pairs are also

observationally equivalent with respect to the risk-free rate. In this model, the technology

(10.2.3) ties down the risk-free rate. For a version of the model with quadratic costs of

adjusting capital, the risk-free rate comes to depend on σ , even though the observations

on quantities are approximately independent of σ . See Hansen and Sargent (2008).
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10.3.5. Precautionary savings interpretation

The consumer’s concern about model misspecification activates a particular

kind of precautionary savings motive that underlies our observational equiva-

lence proposition. A concern about robustness inspires the consumer to save

more. Decreasing his discount factor induces the consumer to save less . The

observational equivalence proposition asserts that these two effects can be

arranged to offset each other.

The following experiment highlights the precautionary motive for sav-

ings. Take the base model with σ = 0 used in our proof of Theorem 10.3.1.

Then activate a concern about robustness by setting σ < 0, but offset its

effect on consumption by setting β equal to β̂(σ). Notice from (10.3.28)

that β̂(σ) depends on the volatility parameter α . Consider a (σ, β̂(σ)) pair

corresponding to a given α > 0. The innovation volatility associated with

a positive α means that future endowments are forecast with error. If fu-

ture endowments and preference shifters could be forecast perfectly, then at

the value β = β̂(σ), the consumer would choose to make his capital stock,

and therefore also his consumption, drift downward because discounting is

large relative to the marginal productivity of capital. Investment would be

sufficiently unattractive that the optimal linear rule would eventually send

both consumption and capital below zero.19 , 20 However, when randomness

is activated (i.e., the innovation variances are positive), this downward drift

is arrested or even completely offset, as it is in our observational equivalence

proposition. Thus, our robust control interpretation of the permanent-income

decision rule delivers a form of precautionary savings.

The precautionary savings coming from a concern about robustness dif-

fers in structure from another, perhaps more familiar, kind of precautionary

savings motive that has attracted much attention in the macroeconomics lit-

erature and that emerges when a positive variance of the innovations to the

endowment process interacts with a convex derivative of the marginal utility

of consumption.21 In contrast, the precautionary savings induced by a con-

19 Introducing nonnegativity constraints in capital and/or consumption would induce

nonlinearities into the consumption and savings rules, especially near zero capital. But

investment would remain unattractive in the presence of those constraints for experiments

like the one we are describing here. See Deaton (1992) for a critical survey and quantitative

assessment of consumption models with binding borrowing constraints.
20 As emphasized by Carroll (1992), even when the discount factor is small relative to

the interest rate, precautionary savings can emerge when there is a severe utility cost for

zero consumption. Such a utility cost is absent in our formulation.
21 Take the Euler equation EtβRu′(ct+1) = u′(ct) and assume that βR = 1 so that

Etu
′(ct+1) = u′(ct) . If u′ is a convex function, then applying Jensen’s inequality implies

Etct+1 > ct , so that consumption is expected to grow when the conditional distribution of
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cern about robustness emerges because the consumer wants to protect himself

against mistakes in specifying conditional means of shocks to the endowment.

Thus, a concern for robustness inspires precautionary savings because of how

fears of misspecification are expressed in conditional first moments of shocks.

This type of precautionary saving does not require that the marginal utility of

consumption be convex and occurs even in models with quadratic preferences,

as we have shown.

A concern about robustness affects consumption by slanting probabilities

in the way Fellner described in the passage cited on page 38 of this book. The

household saves more for a given β because it makes pessimistic forecasts of

future endowments. Precisely how pessimism manifests itself depends on the

detailed structure of the permanent income model and the temporal properties

of the endowment process, as we shall discuss in the next section.

10.4. Observational equivalence and distorted expecta-
tions

In this section, we use insights from a Stackelberg multiplier game to inter-

pret Theorem 10.3.1. In the Stackelberg multiplier game, decisions for the

maximizing player can be computed by solving his Euler equations using a

particular distorted law of motion to form conditional expectations of the

shocks.22

In the benchmark σ = 0, βR = 1 case that is contemplated in Theo-

rem 10.3.1, the solution of the planning problem is determined by equations

(10.3.4), (10.2.3), and (10.3.7), where the Ψj ’s satisfy (10.3.8) with βR = 1.

For a σ ∈ [σ, 0) and a β̂ = β̂(σ), the decision rule for the robust planner is

characterized by equations (10.3.4), (10.2.3), and the following modified ver-

sion of (10.3.7):

µst = Ψ̂1kt−1 + Ψ̂2ht−1 + Ψ̂3

∞∑

j=0

R−jÊtbt+j + Ψ̂4

∞∑

j=0

R−jÊtdt+j , (10.4.1)

where Ψ̂j are determined by (10.3.8) with β = β̂(σ); and Êt is the condi-

tional expectation operator with respect to the distorted law of motion for the

state xt . The observational equivalence Theorem 10.3.1 implies that (10.4.1)

ct+1 is not concentrated at a point. Such consumption growth reflects precautionary sav-

ings. See Ljungqvist and Sargent (2004, chapter 16) for an analysis of these precautionary

savings models.
22 While the timing protocol for the Stackelberg multiplier game differs from the Markov

perfect timing embedded in game (10.2.1), chapter 7 showed that identical equilibrium

outcomes and recursive representations of equilibria prevail under these different timing

protocols.
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and (10.3.7) are identical solutions for µst . By substituting for the terms

in expected future values, the solutions (10.3.7) and (10.4.1) can also be ex-

pressed as µst = Msxt and µst = M̂sxt . Observational equivalence requires

that Ms = M̂s . This requires that the Ψ̂j ’s and Ê mutually adjust to keep

Ms fixed.23

To expand on this point, consider the special case that λ = δh = 0, so

that we need not retain ht−1 as a state variable. Also, assume for simplicity

that bt = b , so that the preference shock is constant. Shutting down the

volatility of b prevents distortions in it from affecting the robust decision

rule. Then equating the right sides of (10.3.7) and (10.4.1) gives

0 =
(
Ψ4 − Ψ̂4

)
Rkt−1 +

(
Ψ3 − Ψ̂3

) (
1 −R−1

)−1
b

+ Ψ4

∞∑

j=0

R−jEtdt+j − Ψ̂4

∞∑

j=0

R−jÊtdt+j

(10.4.2)

where Ψj without hats denotes values of Ψj that satisfy (10.3.8) and those

with hats satisfy (10.3.8) evaluated at β = β̂(σ). Equation (10.4.2) shows

how the observational equivalence result asserts offsetting alterations in the

coefficients Ψj and the distorted expectations operator Êt used to form the

expected sum of discounted future endowments that defines human wealth.

The distorted expectations operator is to be interpreted in terms of the

recursive formulation of the maximizing player’s problem in a Stackelberg

multiplier game of chapter 7. The Euler equation approach used to derive

(10.3.7) or (10.4.1) presumes the following timing protocol. After the min-

imizing player has committed to an entire path for the wt+1 process, the

maximizing agent faces the following recursive representation of the motion

for the endowment and preference shocks:

Xt+1 =
(
A−BF

(
σ, β̂

)
+ CK

(
σ, β̂

))
Xt + Cε̃t+1 (10.4.3a)

[
bt

dt

]
= SXt (10.4.3b)

where ε̃t+1 is an i.i.d. shock identical in distribution to that of εt+1 .24 Be-

cause the minimizing player has committed himself to a stochastic process

for {wt+1} that implies the recursive representation (10.4.3) of the endow-

ment and preference shock processes, the maximizing player takes the Xt

23 Note from formula (10.3.17) that Ms determines α , a key parameter defining the

observational equivalence locus (10.3.18). Thus, because Ms remains fixed, so does α so

long as (σ, β̂) obey (10.3.18).
24 In (10.4.3), Xt is used to attain a recursive representation of the worst-case en-

dowment and preference shock processes that keeps them exogenous to the maximizer’s

decisions.
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process as exogenous and uses the forecasting rule ÊtXt+j = (A−BF (σ, β̂)+

CK(σ, β̂))jXt to form forecasts of (bt+j , dt+j) in (10.4.1). These forecasts,

together with (10.4.1), (10.3.4), and (10.2.3) can be solved to yield a decision

rule ct = −F
[
xt

Xt

]
as in chapter 7. After computing the decision rule as a

function of xt, Xt , we equate xt = Xt ; that gives the maximizing agent’s

decision rule in the form ct = −Fxt .
25

10.4.1. Distorted endowment process

Figures 10.4.1 and 10.4.2 illustrate the probability slanting that leads to pre-

cautionary savings. The figures assume HST’s parameter values that are

reported in appendix A and record impulse response functions for the total

endowment dt under the approximating model and a worst-case model associ-

ated with σ = −.0001, where β is adjusted according to (10.3.18) as required

under our observational equivalence proposition in order to preserve the same

decision rule F (σ, β̂) for different σ ’s.26

For the approximating and the worst-case models with σ = −.0001, the

figures report the response of the total endowment dt to innovations ε∗t and ε̂t

in the relatively permanent and transitory components of the endowment, d̃t ,

d̂t , respectively. Under the distorted model, the impulse response functions di-

verge and the eigenvalue of A−BF (σ, β̂)+CK(σ, β̂) that has maximum modu-

lus increases from its value of unity under the approximating model to 1.0016.

The distorted endowment processes respond to innovations with more

persistence than they do under the approximating model. With a fixed β ,

the increased persistence makes the agent save more than under the approxi-

mating model, which the observational equivalence proposition offsets by de-

creasing the household’s patience via (10.3.18).

Figures 10.5.1 and 10.5.2 record impulse response functions for the total

endowment dt under the approximating model and a worst-case model as-

sociated with σ = −.0001, where β is held fixed at HST’s benchmark value.

Because these figures do not adjust the discount factor according to (10.3.18)

as it was done for figures 10.4.1 and 10.4.2, the distorted impulse response

functions deviate from those of the approximating model even more than those

of these earlier figures. The reduction in β from (10.3.18) works through two

channels to make the σ < 0 decision rule equal to that for a σ = 0 rule:

(1) it brings the distorted impulse response functions closer to those of the

25 The procedure of first optimizing, then setting xt = Xt to eliminate Xt is a com-

mon way of formulating rational expectations equilibria in macroeconomics, where it is

sometimes called the “Big K , little k” method.
26 The observational equivalence proposition makes the decision rules equivalent under

the approximating model.
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Figure 10.4.1: Response of total endowment dt to in-

novation in ‘permanent’ component d̃t under the approx-

imating model (dotted line) and the distorted model as-

sociated with the worst-case shock (dashed line) for the

σ = −.0001, β = β(σ) model.
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Figure 10.4.2: Response of total endowment dt to innova-

tion in ‘transitory’ component d̂t under the approximating

model (solid line) and the distorted model associated with

the worst-case shock (dotted line) for the σ = −.0001, β =

β(σ) model.

approximating model, and (2) more impatience combats the precautionary

savings motive.
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10.5. Another view of precautionary savings

To interpret the precautionary savings motive inherent in our model, appendix

B asserts another observational equivalence proposition. Theorem 10.B.1

takes a baseline case where βR = 1 and shows that in its effects on (c, i), ac-

tivating a concern for robustness operates just like an increase in the discount

factor. This result is useful because the βR = 1 case forms a benchmark

in the permanent income literature (for example, see Hall (1978)). Theo-

rem 10.B.1 shows that the effects of activating concerns about robustness by

putting σ < 0 are replicated by keeping σ = 0 and raising β so that βR > 1.

To use this result to shed more light on how the precautionary motive

manifests itself in the decision rule for consumption, we consider the important

special case that δ = λ = δ̃ = 0. Then µst = µct = b−ct and the consumption

Euler equation (10.3.2d) without a concern about robustness becomes

b− ct = Et [(βR) (b− ct+1)] .

If βR > 1, this equation implies that b− ct > Et(b− ct+1), or

ct < Etct+1, (10.5.1)

so that the optimal policy is to make consumption grow on average.

Theorem 10.B.1 shows that when βR = 1, a concern about robustness

(σ < 0) has the same effect on ct, it as setting σ = 0 and setting a particular

β for which βR > 1. Therefore, when βR = 1, the precautionary savings

that occurs when σ < 0 follows from (10.5.1). Activating a concern about

robustness imparts an upward drift to the expected consumption profile.

We can also use Theorem 10.B.1 to discuss some facts about the decision

rule for consumption in our special case that λ = δ = δ̃ = 0. The solution

(10.3.8) for σ = 0 implies the consumption rule

ct =
(
1 −R−2β−1

)

Rkt−1 +Et

∞∑

j=0

R−jdt+j


+

(
(Rβ)−1 − 1

R− 1

)
b. (10.5.2)

Notice that the marginal propensity to consume out of financial wealth Rkt−1

equals that out of human wealth Et

∑∞
j=0 R

−jdt+j .27 Further, an increase in

β decreases the constant
(

(Rβ)−1−1
R−1

)
b and increases the marginal propensity

27 This implication of precautionary savings coming from robustness differs from that

coming from convex marginal utility functions, where precautionary savings reduces the

marginal propensity to consume out of endowment income relative to that from financial

wealth. See Wang (2003).
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to consume 1−R−2β . Relative to the baseline βR = 1 case, raising β raises

the marginal propensity to consume out of wealth by R−1(1− (Rβ)−1). This

increase in the marginal propensity to consume still allows wealth to have an

upward trajectory because of the reduction in the second term (Rβ)−1−1
R−1 b .

The permanent income model of consumption has an interpretation in

terms of the frequency domain that is familiar to macroeconomists. It is that

his concave one-period utility function makes the permanent income consumer

dislike high-frequency volatility in consumption and therefore adjust his asset

holdings in a way that protects his consumption from high-frequency fluctu-

ations in income. The following section views the precautionary savings that

are inspired by fears of model misspecification from the vantage point of the

frequency domain.
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Figure 10.5.1: Response of total endowment dt to innova-

tion in “permanent” component d̃t under the approximat-

ing model (solid line) and the distorted model associated

with the worst-case shock (dotted line) for σ = −.0001,

with β at benchmark value.

10.6. Frequency domain representation

This section uses HST’s estimated permanent income model to illustrate fea-

tures of the frequency domain decompositions of the consumer’s objective

function and of the worst-case shocks for different values of σ .

Importing some notation from chapter 8, denote the transfer function

from shocks εt to the “target” st − bt as G(ζ). For the baseline model with
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Figure 10.5.2: Response of total endowment dt to innova-

tion in “permanent” component d̃t under the approximat-

ing model (solid line) and the distorted model associated

with the worst-case shock (dotted line) for σ = −.0001

with β at benchmark value.

habit persistence, recall formula (8.4.3) for the frequency decomposition of

H2 :

H2 = − 1

2π

∫ π

−π

trace

[
G
(√

β exp (iω)
)′
G
(√

β exp (iω)
)]
dω.

A reinterpretation of formula (8.3.5) also gives us the frequency domain rep-

resentation

E

∞∑

t=0

βtw′
twt =

1

2π

∫ π

−π

W
(√

β exp (iω)
)′
W
(√

β exp (iω)
)
dω.

Figure 10.6.1 shows G(
√
β exp(iω))′G(

√
β exp(iω)) for the baseline (σ =

0) line as a function of frequency ω ; G′G is larger at lower frequencies. Re-

member that G(ζ) = (I− (Ao −BF )ζ)−1C embodies the consumer’s optimal

decision rule F . The noise process εt upon which G(ζ) operates is i.i.d.

under the approximating model, so that the spectral density matrix of εt is

constant across frequencies. But seeing that the consumer’s policy makes him

most vulnerable to the low-frequency components of εt , the minimizing player

makes the conditional mean of the worst-case shock wt+1 highly serially cor-

related. For two values of σ , figure 10.6.2 shows frequency decompositions of

trace W (ζ)′W (ζ) for ζ =
√
β exp(iω). Notice how most of the power is at

the lowest frequencies. As we varied σ from zero to the two values in figure
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Figure 10.6.2: Frequency decomposition of volatility of

worst-case shocks for −θ−1 = σ = −.0001 (solid line) and

σ = −.00005 (dotted line); trace[W (ζ)′W (ζ)] plotted as a

function of ω where ζ =
√
β exp(iω).

10.6.2, we adjusted β = β̂ according to (10.3.18), which keeps the robust

σ < 0 decision rule for consumption equal to that for the baseline no robust-

ness (σ = 0) model. Notice that [trace W (ζ)′W (ζ)] varies directly with the

absolute value of σ .
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Figure 10.6.1: Frequency decomposition of criterion func-

tion; G(ζ)′G(ζ) plotted as a function of ω where ζ =√
β exp(iω).
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10.7. Detection error probabilities

For HST’s parameter values, figure 10.7.1 reports detection error probabilities

associated with various values of σ , adjusting β according to (10.3.18) so as

to keep the decision rule fixed. These detection error probabilities were cal-

culated by the method of chapter 9 for a sample of the same length that HST

used to estimate their model and for HST’s initial conditions. To calculate

the detection error probabilities, all other parameter values were frozen at the

values from table table 10.A.1. Then the formula for the worst-case distor-

tions wt+1 = K(σ, β̂)xt was used to compute an alternative law of motion for

the endowment process.

For different values of σ , figure 10.7.1 records the detection error prob-

abilities for distinguishing an approximating model from a worst-case model

associated with that value of σ . The approximating model is

xt+1 = (A−BF (0, β))xt + Cεt+1

while the distorted model associated with σ is

xt+1 =
(
A−BF (0, β) + CK

(
σ, β̂

))
xt + Cε̃t+1

where both εt and ε̃t are i.i.d. processes with mean zero and identity covari-

ance matrix, and where F (0, β) = F (σ, β̂) by the observational equivalence

proposition.
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p(
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Figure 10.7.1: Detection error probabilities as a function

of σ .
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The detection error probability equals .5 for σ = 0 because then the

models are identical and, hence, cannot be distinguished. The detection error

probability falls with σ because the two models differ more from one another.

In the following section, we use figure 10.7.1 to guide a choice of σ as measur-

ing the size of a set of models against which it is plausible for the consumer

to seek robustness.

10.8. Robustness of decision rules

For σ = −θ−1 , express the equilibrium decision rules of game (10.2.1) as

ct = −F (σ)xt (10.8.1a)

wt+1 = K (σ)xt (10.8.1b)

and express st − b as H(σ)xt . For possibly different values σ1, σ2 , consider

the law of motion of the state under the consumption plan F (σ2)xt and the

worst-case shock process K(σ1)xt :

xt+1 = (A−BF (σ2) + CK (σ1)) xt + Cεt+1. (10.8.2)

For x0 given, we evaluate the expected payoff

π (σ1;σ2) = −E0,σ1

∞∑

t=0

βtx′tH (σ2)
′H (σ2)xt (10.8.3)

under the law of motion (10.8.2). That is, we want to evaluate the perfor-

mance of the rule designed by setting σ2 when the data are generated by the

distorted model associated with σ1 . For three values of σ2 , figure 10.8.1 plots

π(σ1;σ2) as a function of the parameter σ1 that indexes the magnitude of

the distortion in the model generating the data. By construction, the σ2 = 0

decision rule does better than the other rules when σ1 = 0. But its perfor-

mance deteriorates faster with decreases in σ1 below zero than do the more

robust σ1 = −.00004, σ1 = −.00008 rules.

From figure 10.8.1, σ = −.00004 is associated with a detection error prob-

ability of over .3, and σ = −.00008 with a detection error probability about

.2. It is plausible for the consumer to want decisions that are robust against

alternative models that are as close as the worst-case models associated with

those values of σ .
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Figure 10.8.1: Payoff

π(σ1;σ2) = −E0,σ1

∞∑

t=0

βtx′tH(σ2)
′H(σ2)xt

as a function of σ1 on the ordinate axis for decision rules

F (σ2) associated with three values of σ2 .

10.9. Concluding remarks

Different observationally equivalent (σ, β) pairs identified by Theorem 10.3.1

have different implications concerning (1) pricing risky assets; (2) the amounts

required to compensate the planner for confronting different amounts of risk;

(3) the amount of model misspecification used to justify the planner’s de-

cisions if risk sensitivity is reinterpreted as reflecting concerns about model

misspecification. Hansen, Sargent, and Tallarini (1999) and Hansen, Sargent,

and Wang (2002) have analyzed the asset pricing implications of the model

in this chapter. They show that although movements along the observational

equivalence locus described by (10.3.18) do not affect consumption and in-

vestment, they put an adjustment for fear of model misspecification into asset

prices and boost what macroeconomists typically measure as market prices of

risk. In chapter 13, we shall describe how standard asset pricing formulas are

altered when a representative consumer is concerned about robustness. There

we shall describe an asset pricing theory under a concern about robustness

in the context of a class of general equilibrium models. The model from this

chapter can be viewed as a special case of this class of models.
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Table 10.A.1: HST’s parameter estimates

Object Habit No Habit

Persistence Persistence

Risk Free Rate .025 .025

β .997 .997

δh .682

λ 2.443 0

α1 .813 .900

α2 .189 .241

φ1 .998 .995

φ2 .704 .450

µd 13.710 13.594

c
d̂

.155 .173

cd̃ .108 .098

2 × LogLikel 779.05 762.55

A. Parameter values

HST calibrated a σ = 0 version of their permanent income model by maximizing a
likelihood function conditioned only on U.S. quarterly consumption and investment
data. They used U.S. quarterly data on consumption and investment for the period
1970I–1996III. They measured consumption by nondurables plus services and in-
vestment by the sum of durable consumption and gross private investment. 28 They
estimated the model from data on (ct, it) , setting σ = 0, then deduced pairs (σ, β)
that are observationally equivalent, using formula (10.3.18).

The forcing processes are governed by seven free parameters: (α1, α2, cd̂, φ1, φ2,
cd̃, µd) . The parameter µb sets a bliss point. While µb alters the marginal utilities,
it does not influence the decision rules for consumption and investment. HST fixed
µb at an arbitrary number, namely 32, for estimation.

Four parameters govern the endogenous dynamics: (γ, δh, β, λ) . HST set δk =
.975, and imposed the permanent-income restriction, βR = 1. The restrictions that
βR = 1, δk = .975 pin down γ once β is estimated. HST imposed β = .9971, which
after adjustment for the effects of the geometric growth factor of 1.0033 implies an
annual real interest rate of 2.5%.

Table 10.A.1 reports HST’s estimates for the parameters governing the endoge-
nous and exogenous dynamics. Figures 10.A.1 and 10.A.2 report impulse response
functions for consumption and investment to innovations in both components of the
endowment process. For comparison, table 10.A.1 reports estimates from a no habit
persistence (λ = 0) model as well.

Notice that the persistent endowment shock process contributes much more to
consumption and investment fluctuations than does the transitory endowment shock
process.

28 They estimated the model from data that had been scaled through multiplication by

1.0033−t .
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Figure 10.A.1: Impulse response functions of investment (cir-
cles) and consumption (solid line) to innovation in transitory en-
dowment process ( d̂), at maximum likelihood estimate of habit
persistence.
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Figure 10.A.2: Impulse response functions of investment (cir-
cles) and consumption (solid line) to innovation in persistent
shock ( d̃), at maximum likelihood estimate of habit persistence.

B. Another observational equivalence result

To shed more light on the form of precautionary savings, we state another observa-
tional equivalence result that takes as its benchmark an initial allocation associated
with parameter settings βR = 1 and σ < 0. Then we find another value of β that
implies the same decisions for ct, it as the base model when σ = 0, so that the
decision maker fears model misspecification. This entails working backwards from
the worst-case model that is reflected in the σ < 0 decision rule to the associated
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approximating model.

Theorem 10.B.1. (Observational Equivalence, II) Fix all parameters except
(σ, β) . Consider a consumption-investment allocation for (σ̂, β̂) where β̂ satisfies
β̂R = 1 and σ̂ < 0 and σ̂ < σ̂ . Then there exists a β̃ > β̂ such that the (σ̂, β̂)
allocation also solves the (0, β̃) problem.

Proof. We suppose that σ̂ < 0, so that the worst-case model differs from the
approximating model. We want to find the approximating model and a value β̃ of
β for which a σ = 0 decision maker would choose the (σ̂, β̂) allocation. Under the
model with σ̂ < 0, where Êt denotes a conditional expectation under the worst-case
model, we have

Êtµc,t+1 = µc,t (10.B.1)

because β̂R = 1. Let
Êtµs,t+1 = ξ

(
β̃
)
µs,t. (10.B.2)

Equation (10.B.1) implies that we want

1 = ξ
(
β̃
)

(10.B.3)

where the projection coefficient ξ(β̃) emerges from the multiplier problem for the
evil agent for σ̂ < 0, which can be cast as

min
{wt+1}

[
−

∞∑

t=0

β̂t{µ2
st + β̂

1

σ̂
w2

t+1}
]

subject to the law of motion

µst = δ
(
β̃
)
µs,t−1 + αwt (10.B.4)

where δ(β̃) = 1
β̃R

and α is given by (10.3.17), (10.3.14), (10.3.15) under the

(σ̂, β̂) model. (Remember that the decision rule for ct and therefore the law for
µst will be the same under our two observationally equivalent (σ, β) pairs, so we
can use the benchmark case to compute α .) We freeze all parameters except σ, β .
The approximating model would be µst = δµs,t−1 + αεt , so that (10.B.4) adds a
perturbation αwt to the law of motion of µst under a deterministic version of the
approximating model. The Bellman equation for the minimizing agent is evidently

−Pµ2
s = −µ2

s + β̂min
w

[
− 1

σ̂
w2 − P (δµs + αw)2

]
. (10.B.5)

Notice the presence of both β̂ and β̃ , via δ and α . The first-order condition is

w = Kµs,

where

K = − αδσ̂P

1 + α2σ̂P
.

Notice that
ξ
(
β̃
)

= A+KC = δ +Kα = 1,
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which implies that

1 = ξ
(
β̃
)

= δ +Kα =
δ

1 + α2σ̂P
.

Therefore,
δ = 1 + σ̂α2P < 1. (10.B.6)

Equation (10.B.5) implies that

−P = −1 + β̂
[
− 1

σ̂
K2 − P (δ +Kα)2

]
.

Simplifying the above identity leaves

P =
1

1 − β̂

[
1 +

β̂

σ̂

(
1 − δ

α

)2
]
. (10.B.7)

Equations (10.B.6) and (10.B.7) together imply that

0 = β̂
(
1 − δ

(
β̃
))2

+
(
1 − β̂

) (
1 − δ

(
β̃
))

+ α
(
β̃
)2
σ̂.

A solution of this equation determines β̃ . The solution of this quadratic equation
is

δ = 1 −
−
(
1 − β̂

)
±
√(

1 − β̂
)2 − 4β̂σα2

2β̂
.

If σ = 0, this equation implies δ = 1. When σ < 0, the appropriate root is

δ = 1 −
−
(
1 − β̂

)
+

√(
1 − β̂

)2 − 4β̂σα2

2β̂
.

Using β̂R = 1, this is equivalent to

β̃ (σ) =
β̂
(
1 + β̂

)

2 (1 + σα2)



1 +

√
1 − 4β̂

1 + σα2

(
1 + β̂

)2



 . (10.B.8)


