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In addition to what’s in Anaconda, this lecture will need the following libraries:

[1]: !pip install --upgrade quantecon
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2 Overview

This lecture describes a linear-quadratic version of a model that Guillermo Calvo [3] used to
illustrate the time inconsistency of optimal government plans.

Like Chang [4], we use the model as a laboratory in which to explore the consequences of dif-
ferent timing protocols for government decision making.

The model focuses attention on intertemporal tradeoffs between

• welfare benefits that anticipated deflation generates by increasing a representative
agent’s liquidity as measured by his or her real money balances, and

• costs associated with distorting taxes that must be used to withdraw money from the
economy in order to generate anticipated deflation

The model features

• rational expectations
• costly government actions at all dates 𝑡 ≥ 1 that increase household utilities at dates

before 𝑡
• two Bellman equations, one that expresses the private sector’s expectation of future in-

flation as a function of current and future government actions, another that describes
the value function of a Ramsey planner

A theme of this lecture is that timing protocols affect outcomes.

We’ll use ideas from papers by Cagan [2], Calvo [3], Stokey [8], [9], Chari and Kehoe [5],
Chang [4], and Abreu [1] as well as from chapter 19 of [6].

In addition, we’ll use ideas from linear-quadratic dynamic programming described in Linear
Quadratic Control as applied to Ramsey problems in Stackelberg problems.

In particular, we have specified the model in a way that allows us to use linear-quadratic
dynamic programming to compute an optimal government plan under a timing protocol in
which a government chooses an infinite sequence of money supply growth rates once and for
all at time 0.

We’ll start with some imports:

[2]: import numpy as np
from quantecon import LQ
import matplotlib.pyplot as plt
%matplotlib inline

3 The Model

There is no uncertainty.

Let:

• 𝑝𝑡 be the log of the price level
• 𝑚𝑡 be the log of nominal money balances
• 𝜃𝑡 = 𝑝𝑡+1 − 𝑝𝑡 be the net rate of inflation between 𝑡 and 𝑡 + 1
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• 𝜇𝑡 = 𝑚𝑡+1 − 𝑚𝑡 be the net rate of growth of nominal balances

The demand for real balances is governed by a perfect foresight version of the Cagan [2] de-
mand function:

𝑚𝑡 − 𝑝𝑡 = −𝛼(𝑝𝑡+1 − 𝑝𝑡) , 𝛼 > 0 (1)

for 𝑡 ≥ 0.

Equation Eq. (1) asserts that the demand for real balances is inversely related to the public’s
expected rate of inflation, which here equals the actual rate of inflation.

(When there is no uncertainty, an assumption of rational expectations simplifies to per-
fect foresight).

(See [7] for a rational expectations version of the model when there is uncertainty)

Subtracting the demand function at time 𝑡 from the demand function at 𝑡 + 1 gives:

𝜇𝑡 − 𝜃𝑡 = −𝛼𝜃𝑡+1 + 𝛼𝜃𝑡

or

𝜃𝑡 = 𝛼
1 + 𝛼𝜃𝑡+1 + 1

1 + 𝛼𝜇𝑡 (2)

Because 𝛼 > 0, 0 < 𝛼
1+𝛼 < 1.

Definition: For a scalar 𝑥𝑡, let 𝐿2 be the space of sequences {𝑥𝑡}∞
𝑡=0 satisfying

∞
∑
𝑡=0

𝑥2
𝑡 < +∞

We say that a sequence that belongs to 𝐿2 is square summable.

When we assume that the sequence ⃗𝜇 = {𝜇𝑡}∞
𝑡=0 is square summable and we require that the

sequence ⃗𝜃 = {𝜃𝑡}∞
𝑡=0 is square summable, the linear difference equation Eq. (2) can be solved

forward to get:

𝜃𝑡 = 1
1 + 𝛼

∞
∑
𝑗=0

( 𝛼
1 + 𝛼)

𝑗
𝜇𝑡+𝑗 (3)

Insight: In the spirit of Chang [4], note that equations Eq. (1) and Eq. (3) show that 𝜃𝑡 in-
termediates how choices of 𝜇𝑡+𝑗, 𝑗 = 0, 1, … impinge on time 𝑡 real balances 𝑚𝑡 − 𝑝𝑡 = −𝛼𝜃𝑡.

We shall use this insight to help us simplify and analyze government policy problems.

That future rates of money creation influence earlier rates of inflation creates optimal govern-
ment policy problems in which timing protocols matter.

We can rewrite the model as:

[ 1
𝜃𝑡+1

] = [1 0
0 1+𝛼

𝛼
] [ 1

𝜃𝑡
] + [ 0

− 1
𝛼

] 𝜇𝑡
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or

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝜇𝑡 (4)

We write the model in the state-space form Eq. (4) even though 𝜃0 is to be determined and
so is not an initial condition as it ordinarily would be in the state-space model described in
Linear Quadratic Control.

We write the model in the form Eq. (4) because we want to apply an approach described in
Stackelberg problems.

Assume that a representative household’s utility of real balances at time 𝑡 is:

𝑈(𝑚𝑡 − 𝑝𝑡) = 𝑎0 + 𝑎1(𝑚𝑡 − 𝑝𝑡) − 𝑎2
2 (𝑚𝑡 − 𝑝𝑡)2, 𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0 (5)

The “bliss level” of real balances is then 𝑎1
𝑎2

.

The money demand function Eq. (1) and the utility function Eq. (5) imply that utility maxi-
mizing or bliss level of real balances is attained when:

𝜃𝑡 = 𝜃∗ = − 𝑎1
𝑎2𝛼

Below, we introduce the discount factor 𝛽 ∈ (0, 1) that a representative household and a
benevolent government both use to discount future utilities.

(If we set parameters so that 𝜃∗ = log(𝛽), then we can regard a recommendation to set 𝜃𝑡 =
𝜃∗ as a “poor man’s Friedman rule” that attains Milton Friedman’s optimal quantity of
money)

Via equation Eq. (3), a government plan ⃗𝜇 = {𝜇𝑡}∞
𝑡=0 leads to an equilibrium sequence of

inflation outcomes ⃗𝜃 = {𝜃𝑡}∞
𝑡=0.

We assume that social costs 𝑐
2𝜇2

𝑡 are incurred at 𝑡 when the government changes the stock of
nominal money balances at rate 𝜇𝑡.

Therefore, the one-period welfare function of a benevolent government is:

−𝑠(𝜃𝑡, 𝜇𝑡) ≡ −𝑟(𝑥𝑡, 𝜇𝑡) = [ 1
𝜃𝑡

]
′
[ 𝑎0 −𝑎1𝛼

2
−𝑎1𝛼

2 −𝑎2𝛼2

2
] [ 1

𝜃𝑡
] − 𝑐

2𝜇2
𝑡 = −𝑥′

𝑡𝑅𝑥𝑡 − 𝑄𝜇2
𝑡 (6)

Household welfare is summarized by:

𝑣0 = −
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝜇𝑡) = −
∞

∑
𝑡=0

𝛽𝑡𝑠(𝜃𝑡, 𝜇𝑡) (7)

We can represent the dependence of 𝑣0 on ( ⃗𝜃, ⃗𝜇) recursively via

𝑣𝑡 = 𝑠(𝜃𝑡, 𝜇𝑡) + 𝛽𝑣𝑡+1 (8)
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4 Structure

The following structure is induced by private agents’ behavior as summarized by the demand
function for money Eq. (1) that leads to equation Eq. (3) that tells how future settings of 𝜇
affect the current value of 𝜃.

Equation Eq. (3) maps a policy sequence of money growth rates ⃗𝜇 = {𝜇𝑡}∞
𝑡=0 ∈ 𝐿2 into an

inflation sequence ⃗𝜃 = {𝜃𝑡}∞
𝑡=0 ∈ 𝐿2.

These, in turn, induce a discounted value to a government sequence ⃗𝑣 = {𝑣𝑡}∞
𝑡=0 ∈ 𝐿2 that

satisfies the recursion

𝑣𝑡 = 𝑠(𝜃𝑡, 𝜇𝑡) + 𝛽𝑣𝑡+1

where we have called 𝑠(𝜃𝑡, 𝜇𝑡) = 𝑟(𝑥𝑡, 𝜇𝑡) as above.

Thus, we have a triple of sequences ⃗𝜇, ⃗𝜃, ⃗𝑣 associated with a ⃗𝜇 ∈ 𝐿2.

At this point ⃗𝜇 ∈ 𝐿2 is an arbitrary exogenous policy.

To make ⃗𝜇 endogenous, we require a theory of government decisions.

5 Intertemporal Influences

Criterion function Eq. (7) and the constraint system Eq. (4) exhibit the following structure:

• Setting 𝜇𝑡 ≠ 0 imposes costs 𝑐
2𝜇2

𝑡 at time 𝑡 and at no other times; but
• The money growth rate 𝜇𝑡 affects the representative household’s one-period utilities at

all dates 𝑠 = 0, 1, … , 𝑡.

That settings of 𝜇 at one date affect household utilities at earlier dates sets the stage for the
emergence of a time-inconsistent optimal government plan under a Ramsey (also called a
Stackelberg) timing protocol.

We’ll study outcomes under a Ramsey timing protocol below.

But we’ll also study the consequences of other timing protocols.

6 Four Models of Government Policy

We consider four models of policymakers that differ in

• what a policymaker is allowed to choose, either a sequence ⃗𝜇 or just a single period 𝜇𝑡.
• when a policymaker chooses, either at time 0 or at times 𝑡 ≥ 0.
• what a policymaker assumes about how its choice of 𝜇𝑡 affects private agents’ expecta-

tions about earlier and later inflation rates.

In two of our models, a single policymaker chooses a sequence {𝜇𝑡}∞
𝑡=0 once and for all, taking

into account how 𝜇𝑡 affects household one-period utilities at dates 𝑠 = 0, 1, … , 𝑡 − 1

• these two models thus employ a Ramsey or Stackelberg timing protocol.
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In two other models, there is a sequence of policymakers, each of whom sets 𝜇𝑡 at one 𝑡 only

• Each such policymaker ignores effects that its choice of 𝜇𝑡 has on household one-period
utilities at dates 𝑠 = 0, 1, … , 𝑡 − 1.

The four models differ with respect to timing protocols, constraints on government choices,
and government policymakers’ beliefs about how their decisions affect private agents’ beliefs
about future government decisions.

The models are

• A single Ramsey planner chooses a sequence {𝜇𝑡}∞
𝑡=0 once and for all at time 0.

• A single Ramsey planner chooses a sequence {𝜇𝑡}∞
𝑡=0 once and for all at time 0 subject

to the constraint that 𝜇𝑡 = 𝜇 for all 𝑡 ≥ 0.

• A sequence of separate policymakers chooses 𝜇𝑡 for 𝑡 = 0, 1, 2, …

– a time 𝑡 policymaker chooses 𝜇𝑡 only and forecasts that future government deci-
sions are unaffected by its choice.

• A sequence of separate policymakers chooses 𝜇𝑡 for 𝑡 = 0, 1, 2, …

– a time 𝑡 policymaker chooses only 𝜇𝑡 but believes that its choice of 𝜇𝑡 shapes pri-
vate agents’ beliefs about future rates of money creation and inflation, and through
them, future government actions.

7 A Ramsey Planner

First, we consider a Ramsey planner that chooses {𝜇𝑡, 𝜃𝑡}∞
𝑡=0 to maximize Eq. (7) subject to

the law of motion Eq. (4).

We can split this problem into two stages, as in Stackelberg problems and [6] Chapter 19.

In the first stage, we take the initial inflation rate 𝜃0 as given, and then solve the resulting
LQ dynamic programming problem.

In the second stage, we maximize over the initial inflation rate 𝜃0.

Define a feasible set of (⃗⃗ ⃗⃗𝑥1, ⃗⃗⃗𝜇0) sequences:

Ω(𝑥0) = {(⃗⃗ ⃗⃗𝑥1, ⃗⃗⃗𝜇0) ∶ 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝜇𝑡 , ∀𝑡 ≥ 0}

7.1 Subproblem 1

The value function

𝐽(𝑥0) = max
(⃗⃗ ⃗⃗𝑥1, ⃗⃗⃗ ⃗⃗𝜇0)∈Ω(𝑥0)

∞
∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝜇𝑡)

satisfies the Bellman equation
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𝐽(𝑥) = max
𝜇,𝑥′

{−𝑟(𝑥, 𝜇) + 𝛽𝐽(𝑥′)}

subject to:

𝑥′ = 𝐴𝑥 + 𝐵𝜇

As in Stackelberg problems, we map this problem into a linear-quadratic control problem and
then carefully use the optimal value function associated with it.

Guessing that 𝐽(𝑥) = −𝑥′𝑃𝑥 and substituting into the Bellman equation gives rise to the
algebraic matrix Riccati equation:

𝑃 = 𝑅 + 𝛽𝐴′𝑃𝐴 − 𝛽2𝐴′𝑃𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴

and the optimal decision rule

𝜇𝑡 = −𝐹𝑥𝑡

where

𝐹 = 𝛽(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴

The QuantEcon LQ class solves for 𝐹 and 𝑃 given inputs 𝑄, 𝑅, 𝐴, 𝐵, and 𝛽.

7.2 Subproblem 2

The value of the Ramsey problem is

𝑉 = max
𝑥0

𝐽(𝑥0)

The value function

𝐽(𝑥0) = − [1 𝜃0] [𝑃11 𝑃12
𝑃21 𝑃22

] [ 1
𝜃0

] = −𝑃11 − 2𝑃21𝜃0 − 𝑃22𝜃2
0

Maximizing this with respect to 𝜃0 yields the FOC:

−2𝑃21 − 2𝑃22𝜃0 = 0

which implies

𝜃∗
0 = −𝑃21

𝑃22
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7.3 Representation of Ramsey Plan

The preceding calculations indicate that we can represent a Ramsey plan ⃗𝜇 recursively with
the following system created in the spirit of Chang [4]:

𝜃0 = 𝜃∗
0

𝜇𝑡 = 𝑏0 + 𝑏1𝜃𝑡
𝜃𝑡+1 = 𝑑0 + 𝑑1𝜃𝑡

(9)

To interpret this system, think of the sequence {𝜃𝑡}∞
𝑡=0 as a sequence of synthetic promised

inflation rates that are just computational devices for generating a sequence ⃗𝜇 of money
growth rates that are to be substituted into equation Eq. (3) to form actual rates of inflation.

It can be verified that if we substitute a plan ⃗𝜇 = {𝜇𝑡}∞
𝑡=0 that satisfies these equations into

equation Eq. (3), we obtain the same sequence ⃗𝜃 generated by the system Eq. (9).

(Here an application of the Big 𝐾, little 𝑘 trick could once again be enlightening)

Thus, our construction of a Ramsey plan guarantees that promised inflation equals actual
inflation.

7.4 Multiple roles of 𝜃𝑡

The inflation rate 𝜃𝑡 that appears in the system Eq. (9) and equation Eq. (3) plays three roles
simultaneously:

• In equation Eq. (3), 𝜃𝑡 is the actual rate of inflation between 𝑡 and 𝑡 + 1.
• In equation Eq. (2) and Eq. (3), 𝜃𝑡 is also the public’s expected rate of inflation between

𝑡 and 𝑡 + 1.
• In system Eq. (9), 𝜃𝑡 is a promised rate of inflation chosen by the Ramsey planner at

time 0.

7.5 Time Inconsistency

As discussed in Stackelberg problems and Optimal taxation with state-contingent debt, a con-
tinuation Ramsey plan is not a Ramsey plan.

This is a concise way of characterizing the time inconsistency of a Ramsey plan.

The time inconsistency of a Ramsey plan has motivated other models of government decision
making that alter either

• the timing protocol and/or
• assumptions about how government decision makers think their decisions affect private

agents’ beliefs about future government decisions

8 A Constrained-to-a-Constant-Growth-Rate Ramsey Govern-
ment

We now consider the following peculiar model of optimal government behavior.
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We have created this model in order to highlight an aspect of an optimal government policy
associated with its time inconsistency, namely, the feature that optimal settings of the policy
instrument vary over time.

Instead of allowing the Ramsey government to choose different settings of its instrument at
different moments, we now assume that at time 0, a Ramsey government at time 0 once and
for all chooses a constant sequence 𝜇𝑡 = ̌𝜇 for all 𝑡 ≥ 0 to maximize

𝑈(−𝛼 ̌𝜇) − 𝑐
2 ̌𝜇2

Here we have imposed the perfect foresight outcome implied by equation Eq. (2) that 𝜃𝑡 = ̌𝜇
when the government chooses a constant 𝜇 for all 𝑡 ≥ 0.

With the quadratic form Eq. (5) for the utility function 𝑈 , the maximizing ̄𝜇 is

̌𝜇 = − 𝛼𝑎1
𝛼2𝑎2 + 𝑐

Summary: We have introduced the constrained-to-a-constant 𝜇 government in order to high-
light time-variation of 𝜇𝑡 as a telltale sign of time inconsistency of a Ramsey plan.

9 Markov Perfect Governments

We now change the timing protocol by considering a sequence of government policymakers,
the time 𝑡 representative of which chooses 𝜇𝑡 and expects all future governments to set 𝜇𝑡+𝑗 =

̄𝜇.

This assumption mirrors an assumption made in a different setting Markov Perfect Equilib-
rium.

Further, a government policymaker at 𝑡 believes that ̄𝜇 is unaffected by its choice of 𝜇𝑡.

The time 𝑡 rate of inflation is then:

𝜃𝑡 = 𝛼
1 + 𝛼 ̄𝜇 + 1

1 + 𝛼𝜇𝑡

The time 𝑡 government policymaker then chooses 𝜇𝑡 to maximize:

𝑊 = 𝑈(−𝛼𝜃𝑡) − 𝑐
2𝜇2

𝑡 + 𝛽𝑉 ( ̄𝜇)

where 𝑉 ( ̄𝜇) is the time 0 value 𝑣0 of recursion Eq. (8) under a money supply growth rate that
is forever constant at ̄𝜇.

Substituting for 𝑈 and 𝜃𝑡 gives:

𝑊 = 𝑎0 + 𝑎1(− 𝛼2

1 + 𝛼 ̄𝜇 − 𝛼
1 + 𝛼𝜇𝑡) − 𝑎2

2 ((− 𝛼2

1 + 𝛼 ̄𝜇 − 𝛼
1 + 𝛼𝜇𝑡)2 − 𝑐

2𝜇2
𝑡 + 𝛽𝑉 ( ̄𝜇)

The first-order necessary condition for 𝜇𝑡 is then:

− 𝛼
1 + 𝛼𝑎1 − 𝑎2(− 𝛼2

1 + 𝛼 ̄𝜇 − 𝛼
1 + 𝛼𝜇𝑡)(−

𝛼
1 + 𝛼) − 𝑐𝜇𝑡 = 0
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Rearranging we get:

𝜇𝑡 = −𝑎1
1+𝛼

𝛼 𝑐 + 𝛼
1+𝛼𝑎2

− 𝛼2𝑎2
[1+𝛼

𝛼 𝑐 + 𝛼
1+𝛼𝑎2] (1 + 𝛼) ̄𝜇

A Markov Perfect Equilibrium (MPE) outcome sets 𝜇𝑡 = ̄𝜇:

𝜇𝑡 = ̄𝜇 = −𝑎1
1+𝛼

𝛼 𝑐 + 𝛼
1+𝛼𝑎2 + 𝛼2

1+𝛼𝑎2

In light of results presented in the previous section, this can be simplified to:

̄𝜇 = − 𝛼𝑎1
𝛼2𝑎2 + (1 + 𝛼)𝑐

10 Equilibrium Outcomes for Three Models of Government
Policy Making

Below we compute sequences {𝜃𝑡, 𝜇𝑡} under a Ramsey plan and compare these with the con-
stant levels of 𝜃 and 𝜇 in a) a Markov Perfect Equilibrium, and b) a Ramsey plan in which
the planner is restricted to choose 𝜇𝑡 = ̌𝜇 for all 𝑡 ≥ 0.

We denote the Ramsey sequence as 𝜃𝑅, 𝜇𝑅 and the MPE values as 𝜃𝑀𝑃𝐸, 𝜇𝑀𝑃𝐸.

The bliss level of inflation is denoted by 𝜃∗.

First, we will create a class ChangLQ that solves the models and stores their values

[3]: class ChangLQ:
"""
Class to solve LQ Chang model
"""
def __init__(self, α, α0, α1, α2, c, T=1000, θ_n=200):

# Record parameters
self.α, self.α0, self.α1 = α, α0, α1
self.α2, self.c, self.T, self.θ_n = α2, c, T, θ_n

# Create β using "Poor Man's Friedman Rule"
self.β = np.exp(-α1 / (α * α2))

# Solve the Ramsey Problem #

# LQ Matrices
R = -np.array([[α0, -α1 * α / 2],

[-α1 * α/2, -α2 * α**2 / 2]])
Q = -np.array([[-c / 2]])
A = np.array([[1, 0], [0, (1 + α) / α]])
B = np.array([[0], [-1 / α]])

# Solve LQ Problem (Subproblem 1)
lq = LQ(Q, R, A, B, beta=self.β)
self.P, self.F, self.d = lq.stationary_values()

# Solve Subproblem 2
self.θ_R = -self.P[0, 1] / self.P[1, 1]

# Find bliss level of θ
self.θ_B = np.log(self.β)

# Solve the Markov Perfect Equilibrium
self.μ_MPE = -α1 / ((1 + α) / α * c + α / (1 + α)
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* α2 + α**2 / (1 + α) * α2)
self.θ_MPE = self.μ_MPE
self.μ_check = -α * α1 / (α2 * α**2 + c)

# Calculate value under MPE and Check economy
self.J_MPE = (α0 + α1 * (-α * self.μ_MPE) - α2 / 2

* (-α * self.μ_MPE)**2 - c/2 * self.μ_MPE**2) / (1 - self.β)
self.J_check = (α0 + α1 * (-α * self.μ_check) - α2/2

* (-α * self.μ_check)**2 - c / 2 * self.μ_check**2) \
/ (1 - self.β)

# Simulate Ramsey plan for large number of periods
θ_series = np.vstack((np.ones((1, T)), np.zeros((1, T))))
μ_series = np.zeros(T)
J_series = np.zeros(T)
θ_series[1, 0] = self.θ_R
μ_series[0] = -self.F.dot(θ_series[:, 0])
J_series[0] = -θ_series[:, 0] @ self.P @ θ_series[:, 0].T
for i in range(1, T):

θ_series[:, i] = (A - B @ self.F) @ θ_series[:, i-1]
μ_series[i] = -self.F @ θ_series[:, i]
J_series[i] = -θ_series[:, i] @ self.P @ θ_series[:, i].T

self.J_series = J_series
self.μ_series = μ_series
self.θ_series = θ_series

# Find the range of θ in Ramsey plan
θ_LB = min(θ_series[1, :])
θ_LB = min(θ_LB, self.θ_B)
θ_UB = max(θ_series[1, :])
θ_UB = max(θ_UB, self.θ_MPE)
θ_range = θ_UB - θ_LB
self.θ_LB = θ_LB - 0.05 * θ_range
self.θ_UB = θ_UB + 0.05 * θ_range
self.θ_range = θ_range

# Find value function and policy functions over range of θ
θ_space = np.linspace(self.θ_LB, self.θ_UB, 200)
J_space = np.zeros(200)
check_space = np.zeros(200)
μ_space = np.zeros(200)
θ_prime = np.zeros(200)
for i in range(200):

J_space[i] = - np.array((1, θ_space[i])) \
@ self.P @ np.array((1, θ_space[i])).T

μ_space[i] = - self.F @ np.array((1, θ_space[i]))
x_prime = (A - B @ self.F) @ np.array((1, θ_space[i]))
θ_prime[i] = x_prime[1]
check_space[i] = (α0 + α1 * (-α * θ_space[i]) -
α2/2 * (-α * θ_space[i])**2 - c/2 * θ_space[i]**2) / (1 - self.β)

J_LB = min(J_space)
J_UB = max(J_space)
J_range = J_UB - J_LB
self.J_LB = J_LB - 0.05 * J_range
self.J_UB = J_UB + 0.05 * J_range
self.J_range = J_range
self.J_space = J_space
self.θ_space = θ_space
self.μ_space = μ_space
self.θ_prime = θ_prime
self.check_space = check_space

We will create an instance of ChangLQ with the following parameters

[4]: clq = ChangLQ(α=1, α0=1, α1=0.5, α2=3, c=2)
clq.β

[4]: 0.8464817248906141
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The following code generates a figure that plots the value function from the Ramsey Planner’s
problem, which is maximized at 𝜃𝑅

0 .

The figure also shows the limiting value 𝜃𝑅
∞ to which the inflation rate 𝜃𝑡 converges under the

Ramsey plan and compares it to the MPE value and the bliss value.

[5]: def plot_value_function(clq):
"""
Method to plot the value function over the relevant range of θ

Here clq is an instance of ChangLQ

"""
fig, ax = plt.subplots()

ax.set_xlim([clq.θ_LB, clq.θ_UB])
ax.set_ylim([clq.J_LB, clq.J_UB])

# Plot value function
ax.plot(clq.θ_space, clq.J_space, lw=2)
plt.xlabel(r"$\theta$", fontsize=18)
plt.ylabel(r"$J(\theta)$", fontsize=18)

t1 = clq.θ_space[np.argmax(clq.J_space)]
tR = clq.θ_series[1, -1]
θ_points = [t1, tR, clq.θ_B, clq.θ_MPE]
labels = [r"$\theta_0^R$", r"$\theta_\infty^R$",

r"$\theta^*$", r"$\theta^{MPE}$"]

# Add points for θs
for θ, label in zip(θ_points, labels):

ax.scatter(θ, clq.J_LB + 0.02 * clq.J_range, , 'black', 'v')
ax.annotate(label,

xy=(θ, clq.J_LB + 0.01 * clq.J_range),
xytext=(θ - 0.01 * clq.θ_range,
clq.J_LB + 0.08 * clq.J_range),
fontsize=18)

plt.tight_layout()
plt.show()

plot_value_function(clq)
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The next code generates a figure that plots the value function from the Ramsey Planner’s
problem as well as that for a Ramsey planner that must choose a constant 𝜇 (that in turn
equals an implied constant 𝜃).

[6]: def compare_ramsey_check(clq):
"""
Method to compare values of Ramsey and Check

Here clq is an instance of ChangLQ
"""
fig, ax = plt.subplots()
check_min = min(clq.check_space)
check_max = max(clq.check_space)
check_range = check_max - check_min
check_LB = check_min - 0.05 * check_range
check_UB = check_max + 0.05 * check_range
ax.set_xlim([clq.θ_LB, clq.θ_UB])
ax.set_ylim([check_LB, check_UB])
ax.plot(clq.θ_space, clq.J_space, lw=2, label=r"$J(\theta)$")

plt.xlabel(r"$\theta$", fontsize=18)
ax.plot(clq.θ_space, clq.check_space,

lw=2, label=r"$V^\check(\theta)$")
plt.legend(fontsize=14, loc='upper left')

θ_points = [clq.θ_space[np.argmax(clq.J_space)],
clq.μ_check]

labels = [r"$\theta_0^R$", r"$\theta^\check$"]

for θ, label in zip(θ_points, labels):
ax.scatter(θ, check_LB + 0.02 * check_range, , 'k', 'v')
ax.annotate(label,

xy=(θ, check_LB + 0.01 * check_range),
xytext=(θ - 0.02 * check_range,

check_LB + 0.08 * check_range),
fontsize=18)

plt.tight_layout()
plt.show()

compare_ramsey_check(clq)
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The next code generates figures that plot the policy functions for a continuation Ramsey
planner.

The left figure shows the choice of 𝜃′ chosen by a continuation Ramsey planner who inherits
𝜃.

The right figure plots a continuation Ramsey planner’s choice of 𝜇 as a function of an inher-
ited 𝜃.

[7]: def plot_policy_functions(clq):
"""
Method to plot the policy functions over the relevant range of θ

Here clq is an instance of ChangLQ
"""
fig, axes = plt.subplots(1, 2, figsize=(12, 4))

labels = [r"$\theta_0^R$", r"$\theta_\infty^R$"]

ax = axes[0]
ax.set_ylim([clq.θ_LB, clq.θ_UB])
ax.plot(clq.θ_space, clq.θ_prime,

label=r"$\theta'(\theta)$", lw=2)
x = np.linspace(clq.θ_LB, clq.θ_UB, 5)
ax.plot(x, x, 'k--', lw=2, alpha=0.7)
ax.set_ylabel(r"$\theta'$", fontsize=18)

θ_points = [clq.θ_space[np.argmax(clq.J_space)],
clq.θ_series[1, -1]]

for θ, label in zip(θ_points, labels):
ax.scatter(θ, clq.θ_LB + 0.02 * clq.θ_range, , 'k', 'v')
ax.annotate(label,

xy=(θ, clq.θ_LB + 0.01 * clq.θ_range),
xytext=(θ - 0.02 * clq.θ_range,

clq.θ_LB + 0.08 * clq.θ_range),
fontsize=18)

ax = axes[1]
μ_min = min(clq.μ_space)
μ_max = max(clq.μ_space)
μ_range = μ_max - μ_min
ax.set_ylim([μ_min - 0.05 * μ_range, μ_max + 0.05 * μ_range])
ax.plot(clq.θ_space, clq.μ_space, lw=2)
ax.set_ylabel(r"$\mu(\theta)$", fontsize=18)

for ax in axes:
ax.set_xlabel(r"$\theta$", fontsize=18)
ax.set_xlim([clq.θ_LB, clq.θ_UB])

for θ, label in zip(θ_points, labels):
ax.scatter(θ, μ_min - 0.03 * μ_range, , 'black', 'v')
ax.annotate(label, xy=(θ, μ_min - 0.03 * μ_range),

xytext=(θ - 0.02 * clq.θ_range,
μ_min + 0.03 * μ_range),

fontsize=18)
plt.tight_layout()
plt.show()

plot_policy_functions(clq)
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The following code generates a figure that plots sequences of 𝜇 and 𝜃 in the Ramsey plan and
compares these to the constant levels in a MPE and in a Ramsey plan with a government re-
stricted to set 𝜇𝑡 to a constant for all 𝑡.

[8]: def plot_ramsey_MPE(clq, T=15):
"""
Method to plot Ramsey plan against Markov Perfect Equilibrium

Here clq is an instance of ChangLQ
"""
fig, axes = plt.subplots(1, 2, figsize=(12, 4))

plots = [clq.θ_series[1, 0:T], clq.μ_series[0:T]]
MPEs = [clq.θ_MPE, clq.μ_MPE]
labels = [r"\theta", r"\mu"]

axes[0].hlines(clq.θ_B, 0, T-1, 'r', label=r"$\theta^*$")

for ax, plot, MPE, label in zip(axes, plots, MPEs, labels):
ax.plot(plot, label=r"$" + label + "^R$")
ax.hlines(MPE, 0, T-1, 'orange', label=r"$" + label + "^{MPE}$")
ax.hlines(clq.μ_check, 0, T, 'g', label=r"$" + label + "^\check$")
ax.set_xlabel(r"$t$", fontsize=16)
ax.set_ylabel(r"$" + label + "_t$", fontsize=18)
ax.legend(loc='upper right')

plt.tight_layout()
plt.show()

plot_ramsey_MPE(clq)
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10.1 Time Inconsistency of Ramsey Plan

The variation over time in ⃗𝜇 chosen by the Ramsey planner is a symptom of time inconsis-
tency.

• The Ramsey planner reaps immediate benefits from promising lower inflation later to be
achieved by costly distorting taxes.

• These benefits are intermediated by reductions in expected inflation that precede the
reductions in money creation rates that rationalize them, as indicated by equation
Eq. (3).

• A government authority offered the opportunity to ignore effects on past utilities and to
reoptimize at date 𝑡 ≥ 1 would, if allowed, want to deviate from a Ramsey plan.

Note: A modified Ramsey plan constructed under the restriction that 𝜇𝑡 must be constant
over time is time consistent (see ̌𝜇 and ̌𝜃 in the above graphs).

10.2 Meaning of Time Inconsistency

In settings in which governments actually choose sequentially, many economists regard a time
inconsistent plan implausible because of the incentives to deviate that occur along the plan.

A way to summarize this defect in a Ramsey plan is to say that it is not credible because
there endure incentives for policymakers to deviate from it.

For that reason, the Markov perfect equilibrium concept attracts many economists.

• A Markov perfect equilibrium plan is constructed to insure that government policymak-
ers who choose sequentially do not want to deviate from it.

The no incentive to deviate from the plan property is what makes the Markov perfect equilib-
rium concept attractive.

10.3 Ramsey Plans Strike Back

Research by Abreu [1], Chari and Kehoe [5] [8], and Stokey [9] discovered conditions under
which a Ramsey plan can be rescued from the complaint that it is not credible.

They accomplished this by expanding the description of a plan to include expectations about
adverse consequences of deviating from it that can serve to deter deviations.

We turn to such theories of sustainable plans next.

11 A Fourth Model of Government Decision Making

This is a model in which

• The government chooses {𝜇𝑡}∞
𝑡=0 not once and for all at 𝑡 = 0 but chooses to set 𝜇𝑡 at

time 𝑡, not before.
• private agents’ forecasts of {𝜇𝑡+𝑗+1, 𝜃𝑡+𝑗+1}∞

𝑗=0 respond to whether the government at 𝑡
confirms or disappoints their forecasts of 𝜇𝑡 brought into period 𝑡 from period 𝑡 − 1.
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• the government at each time 𝑡 understands how private agents’ forecasts will respond to
its choice of 𝜇𝑡.

• at each 𝑡, the government chooses 𝜇𝑡 to maximize a continuation discounted utility of a
representative household.

11.1 A Theory of Government Decision Making

⃗𝜇 is chosen by a sequence of government decision makers, one for each 𝑡 ≥ 0.

We assume the following within-period and between-period timing protocol for each 𝑡 ≥ 0:

• at time 𝑡 − 1, private agents expect that the government will set 𝜇𝑡 = ̃𝜇𝑡, and more
generally that it will set 𝜇𝑡+𝑗 = ̃𝜇𝑡+𝑗 for all 𝑗 ≥ 0.

• The forecasts { ̃𝜇𝑡+𝑗}𝑗≥0 determine a 𝜃𝑡 = ̃𝜃𝑡 and an associated log of real balances 𝑚𝑡 −
𝑝𝑡 = −𝛼 ̃𝜃𝑡 at 𝑡.

• Given those expectations and an associated 𝜃𝑡, at 𝑡 a government is free to set 𝜇𝑡 ∈ R.
• If the government at 𝑡 confirms private agents’ expectations by setting 𝜇𝑡 = ̃𝜇𝑡 at time

𝑡, private agents expect the continuation government policy { ̃𝜇𝑡+𝑗+1}∞
𝑗=0 and therefore

bring expectation ̃𝜃𝑡+1 into period 𝑡 + 1.
• If the government at 𝑡 disappoints private agents by setting 𝜇𝑡 ≠ ̃𝜇𝑡, private agents ex-

pect {𝜇𝐴
𝑗 }∞

𝑗=0 as the continuation policy for 𝑡 + 1, i.e., {𝜇𝑡+𝑗+1} = {𝜇𝐴
𝑗 }∞

𝑗=0 and therefore
expect an associated 𝜃𝐴

0 for 𝑡 + 1. Here ⃗𝜇𝐴 = {𝜇𝐴
𝑗 }∞

𝑗=0 is an alternative government plan
to be described below.

11.2 Temptation to Deviate from Plan

The government’s one-period return function 𝑠(𝜃, 𝜇) described in equation Eq. (6) above has
the property that for all 𝜃

𝑠(𝜃, 0) ≥ 𝑠(𝜃, 𝜇)

This inequality implies that whenever the policy calls for the government to set 𝜇 ≠ 0, the
government could raise its one-period payoff by setting 𝜇 = 0.

Disappointing private sector expectations in that way would increase the government’s cur-
rent payoff but would have adverse consequences for subsequent government payoffs be-
cause the private sector would alter its expectations about future settings of 𝜇.

The temporary gain constitutes the government’s temptation to deviate from a plan.

If the government at 𝑡 is to resist the temptation to raise its current payoff, it is only because
it forecasts adverse consequences that its setting of 𝜇𝑡 would bring for continuation govern-
ment payoffs via alterations in the private sector’s expectations.

12 Sustainable or Credible Plan

We call a plan ⃗𝜇 sustainable or credible if at each 𝑡 ≥ 0 the government chooses to confirm
private agents’ prior expectation of its setting for 𝜇𝑡.

The government will choose to confirm prior expectations only if the long-term loss from dis-
appointing private sector expectations – coming from the government’s understanding of the
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way the private sector adjusts its expectations in response to having its prior expectations at
𝑡 disappointed – outweigh the short-term gain from disappointing those expectations.

The theory of sustainable or credible plans assumes throughout that private sector expecta-
tions about what future governments will do are based on the assumption that governments
at times 𝑡 ≥ 0 always act to maximize the continuation discounted utilities that describe
those governments’ purposes.

This aspect of the theory means that credible plans always come in pairs:

• a credible (continuation) plan to be followed if the government at 𝑡 confirms private
sector expectations

• a credible plan to be followed if the government at 𝑡 disappoints private sector expec-
tations

That credible plans come in pairs threaten to bring an explosion of plans to keep track of

• each credible plan itself consists of two credible plans
• therefore, the number of plans underlying one plan is unbounded

But Dilip Abreu showed how to render manageable the number of plans that must be kept
track of.

The key is an object called a self-enforcing plan.

12.1 Abreu’s Self-Enforcing Plan

A plan ⃗𝜇𝐴 (here the superscipt 𝐴 is for Abreu) is said to be self-enforcing if

• the consequence of disappointing private agents’ expectations at time 𝑗 is to restart
plan ⃗𝜇𝐴 at time 𝑗 + 1

• the consequence of restarting the plan is sufficiently adverse that it forever deters all
deviations from the plan

More precisely, a government plan ⃗𝜇𝐴 with equilibrium inflation sequence ⃗𝜃𝐴 is self-
enforcing if

𝑣𝐴
𝑗 = 𝑠(𝜃𝐴

𝑗 , 𝜇𝐴
𝑗 ) + 𝛽𝑣𝐴

𝑗+1

≥ 𝑠(𝜃𝐴
𝑗 , 0) + 𝛽𝑣𝐴

0 ≡ 𝑣𝐴,𝐷
𝑗 , 𝑗 ≥ 0

(10)

(Here it is useful to recall that setting 𝜇 = 0 is the maximizing choice for the government’s
one-period return function)

The first line tells the consequences of confirming private agents’ expectations by following
the plan, while the second line tells the consequences of disappointing private agents’ expecta-
tions by deviating from the plan.

A consequence of the inequality stated in the definition is that a self-enforcing plan is credi-
ble.

Self-enforcing plans can be used to construct other credible plans, including ones with better
values.
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Thus, where ⃗𝑣𝐴 is the value associated with a self-enforcing plan ⃗𝜇𝐴, a sufficient condition for
another plan ⃗𝜇 associated with inflation ⃗𝜃 and value ⃗𝑣 to be credible is that

𝑣𝑗 = 𝑠(𝜃𝑗, 𝜇𝑗) + 𝛽𝑣𝑗+1
≥ 𝑠(𝜃𝑗, 0) + 𝛽𝑣𝐴

0 ∀𝑗 ≥ 0

Abreu taught us that key step in constructing a credible plan is first constructing a self-
enforcing plan that has a low time 0 value.

The idea is to use the self-enforcing plan as a continuation plan whenever the government’s
choice at time 𝑡 fails to confirm private agents’ expectation.

We shall use a construction featured in Abreu ([1]) to construct a self-enforcing plan with low
time 0 value.

12.2 Abreu Carrot-Stick Plan

Abreu ([1]) invented a way to create a self-enforcing plan with a low initial value.

Imitating his idea, we can construct a self-enforcing plan ⃗𝜇 with a low time 0 value to the
government by insisting that future government decision makers set 𝜇𝑡 to a value yielding
low one-period utilities to the household for a long time, after which government decisions
thereafter yield high one-period utilities.

• Low one-period utilities early are a stick
• High one-period utilities later are a carrot

Consider a candidate plan ⃗𝜇𝐴 that sets 𝜇𝐴
𝑡 = ̄𝜇 (a high positive number) for 𝑇𝐴 periods, and

then reverts to the Ramsey plan.

Denote this sequence by {𝜇𝐴
𝑡 }∞

𝑡=0.

The sequence of inflation rates implied by this plan, {𝜃𝐴
𝑡 }∞

𝑡=0, can be calculated using:

𝜃𝐴
𝑡 = 1

1 + 𝛼
∞

∑
𝑗=0

( 𝛼
1 + 𝛼)

𝑗
𝜇𝐴

𝑡+𝑗

The value of {𝜃𝐴
𝑡 , 𝜇𝐴

𝑡 }∞
𝑡=0 at time 0 is

𝑣𝐴
0 =

𝑇𝐴−1
∑
𝑡=0

𝛽𝑡𝑠(𝜃𝐴
𝑡 , 𝜇𝐴

𝑡 ) + 𝛽𝑇𝐴𝐽(𝜃𝑅
0 )

For an appropriate 𝑇𝐴, this plan can be verified to be self-enforcing and therefore credible.

12.3 Example of Self-Enforcing Plan

The following example implements an Abreu stick-and-carrot plan.

The government sets 𝜇𝐴
𝑡 = 0.1 for 𝑡 = 0, 1, … , 9 and then starts the Ramsey plan.

We have computed outcomes for this plan.
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For this plan, we plot the 𝜃𝐴, 𝜇𝐴 sequences as well as the implied 𝑣𝐴 sequence.

Notice that because the government sets money supply growth high for 10 periods, inflation
starts high.

Inflation gradually slowly declines because people expect the government to lower the money
growth rate after period 10.

From the 10th period onwards, the inflation rate 𝜃𝐴
𝑡 associated with this Abreu plan starts

the Ramsey plan from its beginning, i.e., 𝜃𝐴
𝑡+10 = 𝜃𝑅

𝑡 ∀𝑡 ≥ 0.

[9]: def abreu_plan(clq, T=1000, T_A=10, μ_bar=0.1, T_Plot=20):

# Append Ramsey μ series to stick μ series
clq.μ_A = np.append(np.ones(T_A) * μ_bar, clq.μ_series[:-T_A])

# Calculate implied stick θ series
clq.θ_A = np.zeros(T)
discount = np.zeros(T)
for t in range(T):

discount[t] = (clq.α / (1 + clq.α))**t
for t in range(T):

length = clq.μ_A[t:].shape[0]
clq.θ_A[t] = 1 / (clq.α + 1) * sum(clq.μ_A[t:] * discount[0:length])

# Calculate utility of stick plan
U_A = np.zeros(T)
for t in range(T):

U_A[t] = clq.β**t * (clq.α0 + clq.α1 * (-clq.θ_A[t])
- clq.α2 / 2 * (-clq.θ_A[t])**2 - clq.c * clq.μ_A[t]**2)

clq.V_A = np.zeros(T)
for t in range(T):

clq.V_A[t] = sum(U_A[t:] / clq.β**t)

# Make sure Abreu plan is self-enforcing
clq.V_dev = np.zeros(T_Plot)
for t in range(T_Plot):

clq.V_dev[t] = (clq.α0 + clq.α1 * (-clq.θ_A[t])
- clq.α2 / 2 * (-clq.θ_A[t])**2) \
+ clq.β * clq.V_A[0]

fig, axes = plt.subplots(3, 1, figsize=(8, 12))

axes[2].plot(clq.V_dev[0:T_Plot], label="$V^{A, D}_t$", c="orange")

plots = [clq.θ_A, clq.μ_A, clq.V_A]
labels = [r"$\theta_t^A$", r"$\mu_t^A$", r"$V^A_t$"]

for plot, ax, label in zip(plots, axes, labels):
ax.plot(plot[0:T_Plot], label=label)
ax.set(xlabel="$t$", ylabel=label)
ax.legend()

plt.tight_layout()
plt.show()

abreu_plan(clq)
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To confirm that the plan ⃗𝜇𝐴 is self-enforcing, we plot an object that we call 𝑉 𝐴,𝐷
𝑡 , defined

in the key inequality in the second line of equation Eq. (10) above.

𝑉 𝐴,𝐷
𝑡 is the value at 𝑡 of deviating from the self-enforcing plan ⃗𝜇𝐴 by setting 𝜇𝑡 = 0 and then
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restarting the plan at 𝑣𝐴
0 at 𝑡 + 1.

Notice that 𝑣𝐴
𝑡 > 𝑣𝐴,𝐷

𝑡 .

This confirms that ⃗𝜇𝐴 is a self-enforcing plan.

We can also verify the inequalities required for ⃗𝜇𝐴 to be self-confirming numerically as follows

[10]: np.all(clq.V_A[0:20] > clq.V_dev[0:20])

[10]: True

Given that plan ⃗𝜇𝐴 is self-enforcing, we can check that the Ramsey plan ⃗𝜇𝑅 is credible by
verifying that:

𝑣𝑅
𝑡 ≥ 𝑠(𝜃𝑅

𝑡 , 0) + 𝛽𝑣𝐴
0 , ∀𝑡 ≥ 0

[11]: def check_ramsey(clq, T=1000):
# Make sure Ramsey plan is sustainable
R_dev = np.zeros(T)
for t in range(T):

R_dev[t] = (clq.α0 + clq.α1 * (-clq.θ_series[1, t])
- clq.α2 / 2 * (-clq.θ_series[1, t])**2) \
+ clq.β * clq.V_A[0]

return np.all(clq.J_series > R_dev)

check_ramsey(clq)

[11]: True

12.4 Recursive Representation of a Sustainable Plan

We can represent a sustainable plan recursively by taking the continuation value 𝑣𝑡 as a state
variable.

We form the following 3-tuple of functions:

̂𝜇𝑡 = 𝜈𝜇(𝑣𝑡)
𝜃𝑡 = 𝜈𝜃(𝑣𝑡)

𝑣𝑡+1 = 𝜈𝑣(𝑣𝑡, 𝜇𝑡)
(11)

In addition to these equations, we need an initial value 𝑣0 to characterize a sustainable plan.

The first equation of Eq. (11) tells the recommended value of ̂𝜇𝑡 as a function of the promised
value 𝑣𝑡.

The second equation of Eq. (11) tells the inflation rate as a function of 𝑣𝑡.

The third equation of Eq. (11) updates the continuation value in a way that depends on
whether the government at 𝑡 confirms private agents’ expectations by setting 𝜇𝑡 equal to the
recommended value ̂𝜇𝑡, or whether it disappoints those expectations.

13 Comparison of Equilibrium Values

We have computed plans for
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• an ordinary (unrestricted) Ramsey planner who chooses a sequence {𝜇𝑡}∞
𝑡=0 at time 0

• a Ramsey planner restricted to choose a constant 𝜇 for all 𝑡 ≥ 0
• a Markov perfect sequence of governments

Below we compare equilibrium time zero values for these three.

We confirm that the value delivered by the unrestricted Ramsey planner exceeds the value
delivered by the restricted Ramsey planner which in turn exceeds the value delivered by the
Markov perfect sequence of governments.

[12]: clq.J_series[0]

[12]: 6.67918822960449

[13]: clq.J_check

[13]: 6.676729524674898

[14]: clq.J_MPE

[14]: 6.663435886995107

We have also computed sustainable plans for a government or sequence of governments
that choose sequentially.

These include

• a self-enforcing plan that gives a low initial value 𝑣0.
• a better plan – possibly one that attains values associated with Ramsey plan – that is

not self-enforcing.

14 Note on Dynamic Programming Squared

The theory deployed in this lecture is an application of what we nickname dynamic pro-
gramming squared.

The nickname refers to the fact that a value satisfying one Bellman equation is itself an argu-
ment in a second Bellman equation.

Thus, our models have involved two Bellman equations:

• equation Eq. (1) expresses how 𝜃𝑡 depends on 𝜇𝑡 and 𝜃𝑡+1
• equation Eq. (4) expresses how value 𝑣𝑡 depends on (𝜇𝑡, 𝜃𝑡) and 𝑣𝑡+1

A value 𝜃 from one Bellman equation appears as an argument of a second Bellman equation
for another value 𝑣.
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