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The Arbitrage Principle
in Financial Economics

Hal R. Varnan

n economics professor and a Yankee farmer were waiting for a bus in New

Hampshire. To pass the time, the farmer suggested that they play a game.

“What kind of game would you like to play?” responded the professor.
“Well,” said the farmer, “how about this: I'll ask a question, and if you can’t answer
my question, you give me a dollar. Then you ask me a question and if I can’t answer
your question, Ill give you a dollar.”

“That sounds attractive,” said the professor, “but I do have to warn you of
something: I’'m not just an ordinary person. I'm a professor of economics.”

“Oh,” replied the farmer, “In that case we should change the rules. Tell you
what: if you can’t answer my question you still give me a dollar, but if I can’t answer
yours, I only have to give you fifty cents.”

“Yes,” said the professor, “ that sounds like a fair arrangement.”

“QOkay,” said the farmer, “Here’s my question: what goes up the hill on seven
legs and down the hill on three legs?”

The professor pondered this riddle for a while and finally replied. “Gosh, I don’t
know . . . what does go up the hill on seven legs and down the hill on three legs?”

“Well,” said the farmer, “I don’t know either. But if you give me your dollar, I’ll
give you my fifty cents!”

The above story is an illustration of arbitrage: arranging a transaction involving
no cash outlay that results in a sure profit. As this story shows, opportunities for
arbitrage do occasionally arise. But in a well-developed market with rational, profit-
seeking individuals such opportunities should be very rare indeed, since profit-maxi-
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mizing agents will attempt to exploit arbitrage opportunities as soon as they arise. It is
generally felt that part of the definition of equilibrium in a perfect market is that no
opportunities for pure arbitrage exist.

The importance of arbitrage conditions in financial economics has been recog-
nized since Modigliani and Miller’s classic work on the financial structure of the frm.
They showed that if a firm could change its market value by purely financial
operations such as adjusting its debt-equity ratio, then individual shareholders and
bondholders could engage in analogous portfolio transactions that would yield pure
arbitrage profits. If the market was efficient enough to eliminate arbitrage profits for
the individual shareholders, then it would eliminate arbitrage profits for the firm as
well.

Modigliani and Miller’s proof of this proposition used an ingenious arbitrage
argument. Subsequently, financial economists have used arbitrage arguments to
examine a variety of other issues involving asset pricing. One of the major advances in
financial economics in the past two decades has been to clarify and formalize the exact
meaning of “no arbitrage” and to apply this idea systematically to uncover hidden
relationships in asset prices. Many important results of financial economics are based
squarely on the hypothesis of no arbitrage, and it serves as one of the most basic
unifying principles of the study of financial markets. In this essay we will examine
some of these results. To avoid cluttering up the exposition with citations, a discussion
of the original sources and a guide to further reading will be found in the final section
of this article.

General Principles of Asset Pricing

Consider a market for assets that pay off in different states of nature. These states
need not be full-fledged Arrow-Debreu states of the world which describe all possible
relevant circumstances; they are simply the outcomes of some random process. We
assume that individuals care about their wealth in different states of nature, and
prefer more wealth in any state of nature rather than less.

Let’s denote the payoff of asset a in state s by R,, and suppose that the number
of assets is 4 and that the number of states is S. An asset is described by a vector
giving its payoffs in each of the § states of nature. Thus the first security is described
by the column vector (R,, ... Ry,) and the ith security is described by the vector

(Ry;... Rg;). The payoff matrix of the entire set of assets is then represented by the
matrix

This § by 4 matrix gives the payoffs of each of the 4 assets in each of the S states:
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each column of the payoff matrix represents a different security and each row gives
the payoffs in a particular state of nature of each of the securities. The entire matrix
summarizes the payoff characteristics offered by this particular collection of assets.

Let x, indicate the amount held of asset a. A portfolio of assets is then a column
vector x = (xy,..., x4). The components of the portfolio x can be of either sign: a
positive value of x, indicates that one has a “long” position in security a, and thus is
entitled to receive the appropriate payoff if state s materializes, and a negative value
of x, indicates a “short” position in the security so that one must pay out the
appropriate amount if state s occurs.

The wealth in state s that one receives from holding a portfolio x = (x,,..., x,)
is given by the expression w, = L2 x,R,,. Writing this out in matrix notation we
have

w, Ry - Ry\lxn
=l ] (1

x
wWg Rg Rg, 4

or, more succinctly,

w = Rx. (2)

This equation illustrates the relationship between the ends and the means: the
ends are the levels of wealth that the consumer can achieve in the different states of
nature, which is what the consumer ultimately cares about. The means are the existing
assets. By combining the existing assets into portfolios, the consumer can achieve
different patterns of wealth across the states of nature. The patterns of wealth that can
be achieved depend on the entire set of available assets. Thus, the market value of a
single asset will typically depend on what other assets are available to combine with it.

The central case is where the number of assets matches the number of states of
nature. In this case, any pattern of wealth can be achieved by some portfolio of
existing assets. To achieve a particular distribution of wealth, w = (,,..., wg), one
simply solves the system of equations (1) for the portfolio x = (x(,...,x,) that
achieves that distribution of wealth. Since the system of equations has exactly as many
unknowns as equations, it will always be possible to solve for such a portfolio.!

If the assets outnumber the states of nature, there will be more unknowns than
equations and several portfolios will exist that generate any particular distribution of
wealth. On the other hand, if states of nature outnumber assets, then it will not be
possible to solve the system of equations for all distributions of wealth—some patterns
of wealth cannot be constructed using the existing set of assets.

This latter case is presumably the most realistic, since one would generally think
that people care about more outcomes than they have assets to trade. But the question
is controversial. If people really care about achieving a certain distribution of wealth

'Here we assume that no redundant assets exist; in other words, the matrix R has full rank.
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across states of nature, doesn’t it seem likely that the market will offer an asset that
will achieve such a pattern? One surprising finding of financial economics is a way to
construct portfolios that achieve arbitrary payoff patterns, even in situations where
there appear to be more states of nature than assets. A later section will explore this
result in more detail.

One important kind of assets are Arrow-Debreu securities. These are assets that
pay off $1 if and only if a particular state of nature occurs; otherwise they pay off
zero. Thus the payoff pattern of an Arrow-Debreu security takes the form
©,...,1,...,0), where the 1 occurs in location s.

Arrow-Debreu assets can be thought of as especially basic assets, in both the
economic sense and the linear algebra sense. They are basic in the economic sense,
since we will see shortly that any pattern of payoffs can be constructed from portfolios
of Arrow-Debreu assets. They are basic in the linear algebra sense in that they form a
basis for the linear space of all payoffs. It is this fundamental nature of the
Arrow-Debreu assets that makes them so important in analyzing the pricing of
financial assets.

Asset Prices

When investors choose portfolios they are in effect choosing a distribution of
wealth across the states of nature. In making this choice they are constrained by their
budget constraint: the constraint imposed by amount of wealth that they have to
invest and the prices of the various assets that they face.

To express the idea of a budget constraint, let the price of asset a be denoted by
P andlet p = (p,,..., p,) be the row vector of asset prices. The value of a portfolio
x = (xy,..., x4) will then be given by px = LZ_, p.x,. This formulation is just like
standard consumer theory: the value of a bundle of goods is expressed as the sum of
the expenditures on the various goods. The difference is that the goods that are being
chosen—the assets—are not the ultimate end of consumption. They are only the
means to an end. What consumers really care about is the final distribution of wealth
that different portfolios provide. Therefore, any two portfolios that provide the same
pattern of wealth must be worth the same amount. Consider, for example, the case of
the Arrow-Debreu securities. If we know the price of each Arrow-Debreu security, we
can value any asset. Since the payoff pattern of any asset can be achieved by some
portfolio of Arrow-Debreu securities, the price of the asset must be equal to the price
of the portfolio of Arrow-Debreu securities that realizes that same distribution of
wealth across the states of nature.

Formally, let 7, be the price of the Arrow-Debreu security that pays off $1 if state
s occurs, and let (R,,) be the payoff pattern of some asset a. Then the equilibrium
price of asset a must be given by
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Why? There are two arguments. The intuition is that #, measures the value of a dollar
in state s, and that the security pays off R,, dollars in state s. Summing over all the
possible states gives the value of security a.

This argument is plausible, but rests on a notion of “value” that is somewhat
slippery. A more compelling argument is based on arbitrage considerations. If a
complete set of markets for all Arrow-Debreu securities exists, and the price of an asset
ever deviated from the price of a portfolio of Arrow-Debreu securities that generates
the same pattern of payoffs, then there would be a sure way of making money—just
sell the security and buy the Arrow-Debreu portfolio, or vice-versa, depending on
which was worth more. If no arbitrage possibilities exist and a complete set of
Arrow-Debreu securities are marketed, then any asset can be valued in terms of the
prices of the Arrow-Debreu assets.

This discussion shows that any asset can be valued in terms of a particular set of
assets in the case where the number of assets matches the number of states of nature.
However, it turns out that a similar result holds even if there are fewer assets than
states of nature. But this demonstration requires a more substantive assumption about
arbitrage possibilities, a point to which we now turn.

A Formalization of the No Arbitrage Condition

The purpose of this paper is to examine the concept of arbitrage, or more
precisely, the absence of arbitrage. What should this mean? Basically, the no arbitrage
condition must rule out “free lunches” —configurations of prices such that an individ-
ual can get something for nothing. Any portfolio that pays off nonnegative amounts in
every state of nature must be valuable to individuals, so if no free lunches exist,
portfolios which are guaranteed to have nonnegative payoffs must have a nonnegative
cost. Recall that a portfolio’s pattern of returns can be represented by Rx and the cost
of the portfolio by px. Using this notation we can state the

No Arbitrage Condition
If Rx > O then we must have px 2 0.

The no arbitrage condition loosely described above is now an explicit algebraic
condition. This condition imposes some restrictions on the equilibrium prices p. Given
a particular set of assets, as described by the payoff matrix R, only certain asset prices
p are consistent with the absence of arbitrage. What characterizes such prices? What
restrictions does the assumption of no arbitrage impose on the asset prices?

The Appendix shows that the No Arbitrage Condition implies that there must
exist a vector of nonnegative “state prices” m = (7, ..., 7g) such that the price of any
existing asset a is given by

5

t.= LR, (3)

s=1
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What is the economic interpretation of the state prices 7,? Consider an Arrow-
Debreu asset that pays off $1 if state s occurs and zero otherwise. Then according to
equation (3), the value of this asset must be given by 7. In other words, 7, measures
the value of a dollar in state s. Seen in this light, equation (3) is very natural: it says
that to determine the value of any asset, examine how much it pays off in a given
state, multiply that by the value of a dollar delivered in that state, and then sum over
all the states.

The existence of the state prices 7 is a necessary and sufficient condition for the
absence of arbitrage. If no arbitrage possibilities exist, then there must be state prices,
and if the state prices exist, there can be no arbitrage possibilities. Hence the existence
of the state prices is equivalent to the absence of arbitrage: any argument that follows
from the absence of arbitrage must follow from the existence of the state prices and
vice versa.

The state prices (m,) emerge as a consequence of the No Arbitrage
Condition—whenever the market works efficiently enough to eliminate the possibili-
ties of arbitrage, there must be state prices that can be used to value the existing assets.
Of course the state price vector 7 will not, in general, be unique. With S states and 4
assets, the equations in (3) provide 4 equations in § unknowns. Thus there will in
general be an §.— 4 dimension set of solutions to this system. Only if the number of
(independent) assets equals the number of states of nature will a unique set of state
prices exist.

Value Additivity

The No Arbitrage Condition is very simple, and yet surprisingly powerful. Let’s
use this condition to prove an important result in the theory of financial markets, the
Value Additivity Theorem.

Consider two securities, a and b, which have payoffs (R,,) and (R,;). Suppose
that the prices of these securities, g, and p,, are known. Now consider the security
which has a random payoff given by some linear combination of the payoffs of the
two securities; i.e., one that has the payoffs R, = AR, + BR,,, where 4 and B are
arbitrary constants. The No Arbitrage Condition implies that if no arbitrage oppor-
tunities exist in the market, then the price of an existing asset with a payoff vector R,
must be given by p, = L7 \m R, . Using the fact that R, = AR + BR,,, then

N
pf = Z WSR.YE
s=1

N
Z '”s( ARm + BR.\'b)

s=1

N N
Z AW:R.ra + Z B'”:Rxb

s=1 s=1

Ap, + Bp,.
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These calculations prove the
Value Additivity Theorem

Assume no arbitrage possibilities exist. Then the price of a security whose payoffs are a
linear combination of other assets must be given by the same linear combination of the prices
of the other assets.

At first glance this result appears obvious—it says that the value of the whole is equal
to the sum of the values of its parts. But it has important and surprising implications.
To take one simple example, note that the payoffs of the assets a and b are arbitrary;
the payoffs could be highly correlated, either positively or negatively. It is well known
that if two assets with negative correlation are combined, the riskiness of the resulting
portfolio will be less than the riskiness of either asset held alone. Diversification has a
natural value in a market with risky assets. Since a linear combination of two
negatively correlated assets is less risky than either of the two assets held alone, it
might seem that the combination portfolio would be worth more than the sum of the
values of the two assets. Nevertheless, the Value Additivity Theorem states that the
price of the portfolio consisting of both assets will just be the sum of the prices of the
two individual portfolios.

Why is that? The answer is that the equilibrium prices of assets must already reflect
the value of any kind of linear portfolio manipulation. If the value of the two assets in
combination exceeded the sum of the values of the assets alone, for example, then
arbitragers could just buy the two assets and sell the “mutual fund” consisting of the
combination. Similarly, if the values of the individual assets were less than the
combination, then arbitragers could “unbundle” the combination and make a pure
profit by doing so. Since this repackaging offers a sure profit, it cannot exist in
equilibrium.

The Value Additivity Theorem is also the basic principle underlying the
Modigliani-Miller theorem. The Modigliani-Miller theorem states that the value of a
firm is independent of its financial structure; that is, independent of the fraction of the
firm financed by stock and the fraction financed by bonds. Again, the argument is
based on the absence of arbitrage. If firms could change their value by changing the
proportion of stocks and bonds they issue, then individual arbitrages could also
repackage the existing stocks and bonds and make a sure profit. Hence, the value of
the firm should depend only on the sum of the values of its stocks and bonds, not on
whether the firm is weighted more heavily to debt or equity. However, the
Modigliani-Miller example also illustrates the restrictions of Value Additivity Theo-
rem.

First, the Value Additivity Theorem and the No Arbitrage Condition only apply
to combinations of existing assets. If a firm issues new bonds with a different pattern of
returns from the old bonds— perhaps because they have higher default risk—then the
Value Additivity Theorem does not necessarily hold. If a financial operation creates
assets that have a new payoff pattern not currently available through linear combina-
tions of existing assets, then the Value Additivity Theorem, or the No Arbitrage
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Condition, need not apply. If an economic shift changes the matrix of payoffs (R,,) so
that new possibilities of consumption across states of nature are created, the vector of
state prices 7 will typically change. In general, determining how these state prices
change will require specifying and solving an entire general equilibrium model for the
asset prices, which would go far beyond the scope of this paper. Luckily, it turns out
that several operations that appear to create new assets really don’t, so that the Value
Additivity Theorem and related results can be used to value such assets.

Second, the No Arbitrage Condition only applies directly to linear operations. An
asset whose payoffs are the sum of the payoffs of two different assets must have a price
which is the sum of the prices of the two different assets. Similarly, an asset whose
payoff is some multiple of some other asset must have a price which is a multiple of
the other asset’s price. If one asset is a nonlinear function of another asset’s price, the
No Arbitrage Condition cannot be directly applied, at least in the static framework
examined here. However, it will become apparent later that under certain cir-
cumstances, operations that appear to be nonlinear can be broken down into linear
operations, so that the Value Additivity Theorem can be applied.

Using Arbitrage to Bound Option Prices

The No Arbitrage Condition has several elegant applications in the theory of
option pricing. First we need some definitions. A (call) option on an asset a is a security
that gives one the right to purchase the asset a at some fixed price K (the exercise price)
within some fixed time period T. An American option gives one the right to exercise the
option to buy the asset at any time within this period while a European option gives one
the right to purchase the underlying asset only at the expiration date.

Clearly, an American option will be worth at least as much as a European
option, other things being equal. However, if the no arbitrage condition holds, then in
fact an American call option and a European call option must be worth exactly the
same amount!

To establish this result, let K be the exercise price of the option, let ¢ be the time
left until the option expires and let S, be the current market price of the asset on
which the option is based. Time is being measured “backwards” in this
formulation—“now” is time ¢ and the date when the option expires is time 0.

Now suppose a riskless bond can be purchased which pays one dollar at the
expiration of the option, and denote the price of such a bond ¢ periods before the
expiration of the option by B,. Since the bond is riskless, it pays off $1 regardless
of the state of nature. Using the state prices #, to value this payoff pattern, we have
B, = X5 m. This simply says that the sum of the state prices gives us the value of a
pure discount bond. If the interest rate is positive, the value of one dollar to be
delivered in the future must be less than one; that is, B, < 1.

The value of the stock at time 0, the time when the option expires, is denoted by
So- Note that at time ¢ the value of the stock at expiration is a random variable.
Similarly, the value of the option at expiration is random. But nonetheless, there is a
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simple relationship between the value of the option at time 0 and the value of the
stock at time 0. Two possibilities must be considered. Either the exercise price exceeds
the stock price (K > S,), in which case the option will not be exercised and so is
worthless, or the exercise price is less than the stock price, in which case the value of
the option is just the difference between the market price and the exercise price. (If the
stock is selling at $100, and an option offers the right to purchase it for $75, the value
of the option is just $25.) More formally, the value of the option at expiration is
max{0, § — K].

These definitions allow a proof of the result stated earlier: in the absence of
arbitrage, an American and a European call option must have the same price. The
proof requires that two simpler results be established.

Lemma 1. Let C, be the value of a European call option with exercise price K, and current
stock price S, at t periods before expiration. Then, C, > max[0, S, — KB,].

Proof. Consider the following transactions: sell K bonds that each obligate you
to pay one dollar at the time the option terminates and buy one share of the stock at
price S,. The cost of this portfolio today is S, — KB,.

When the option expires at time 0 the stock will be worth §; and the K bonds
will be worth $K. Therefore the value of the portfolio at time 0 will be S, — K. The
value of the option when it expires at time 0 will be max[§; — K, 0]. This means that
at expiration, the value of the option will be at least as large as the value of the
portfolio whatever happens. Hence the value of the option today must be worth at
least as much as this portfolio, which proves the result.

Lemma 2. An American call option will never be exercised prior to maturity.

Proof Since an American call option must be worth at least as much as a
European call, the inequality given in Lemma 1 holds for it also. Exercising an
American option at intermediate time ¢ gives you S, — K, while the market value of
the option is always at least as great as S, — KB,. Hence it is always better to sell the
option at its market value than to exercise it.

Theorem
An American call option has the same value as a European call option.

This result follows from Lemmas 1 and 2. Clearly, giving an investor an additional
opportunity that he will never rationally take advantage of cannot affect the value of
the asset. Since an American option will always be exercised at the termination date,
just like a European option, the values must be the same.

The crucial step in the argument is the “no arbitrage” result of Lemma 1. But
the no arbitrage part of Lemma 1 is certainly well disguised! How was that particular
portfolio chosen to construct the proof? Fortunately, more systematic ways are
available to uncover the implications of option pricing that are implied by the absence
of arbitrage. These methods make use of the state prices that we developed earlier.
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Earlier we demonstrated that the No Arbitrage Condition implies the existence of
state prices 7 such that the price of an asset with random payoffs R, is given by
b, = L. m.R,,. The existence of those state prices (combined with Lemmas 1 and 2)
can now help to provide an alternative proof that the current price of the option C,
must be at least as great as S, — KB,.

Let S, be the value of the stock ¢ periods before the option expires, and let S, be -
the value of the stock in state s at the time of the expiration of the option. Let K be
the exercise price of the option, and let C, be the value of the option at time ¢. We
have already seen that the value of an option at termination in each state s is given by
max[ S, — K,0].

According to the discussion about state prices, if no arbitrage opportunities exist,
the value of the option ¢ periods before expiration must be given by

G = T nmaxlS, - K,0. @)

s=1
Using this expression, we calculate the following:
s
C = E 7 max[S:O - K’O]
s=1

S

Y
™

7S, — K) by definition of max,

$
s=1

s s
= Y 785,- KY 7 by linearity,

s=1 s=1

s
= Y @5, — KB, by the definition of B,,

s=1

s
=8, — KB, since Y, mS,, isthe current price of the stock, S,

s=1
> 8 — K since B, < 1.
These calculations tell us that the current price of the option, C,, must be at least

as great as S, — K. The remainder of the proof proceeds as before: since an option is
always worth more alive than dead, it will never be exercised prior to maturity.

Option Values and State Prices

Not only can state prices be used to value options, but option prices can be used
to value state prices. It turns out that a complete set of options at all exercise prices is
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Table 1
Constructing pure securities from options

ci2 €23
S C! @ Cc3 : Ct - Q@ - cr - c23
1 0 0 0 0 0 0
2 1 0 0 1 0 1
3 2 1 0 1 i 0
4 3 2 1 1 1 0

equivalent to a complete set of Arrow-Debreu markets. This section will show how to
derive state prices from a set of option prices.

Table 1 depicts the payoff from three different options with difference striking
prices and some portfolios constructed from these options. Option C1 has an exercise
price of $1, C2 has an exercise price of $2, and C3 has an exercise price of $3. The
entries in the table depict the value of the option depending on the different outcomes
of the stock price, S = 1,...,4. The terminal payoffs to the option at time 0 are of the
form max[S,, — K, 0], as indicated above.

The objective now is to construct a portfolio that pays off in only one state. By
looking at the cost of that portfolio, it will be easy to calculate the state price.

The column labeled C12 = C1 — C2 shows the payoffs to a portfolio consisting
of a long position in the option with exercise price 1, and short position in an option
with exercise price 2. The column labeled €23 = C2 — C3 has a similar definition,
while the column labeled C12 — €23 involves holding the C12 portfolio long and the
(23 portfolio short. Note that the payoff to this latter portfolio is just the payoff to the
pure security that pays off $1 if and only if § = 2. This shows that portfolio of options
exists that can generate the same pattern of wealth as a pure Arrow-Debreu security.

We can further explore the relationship between option values and state prices
through the use of some elementary calculus. Up until now the assets under discussion
have had a finite number of payoffs. Let’s relax this assumption and allow the stock to
have a continuum of payoffs at time 0, which we index by s. In effect, we are simply
indexing the states by the values that the stock takes on. The state prices will now be a
function which we denote by #(-). The state price #(s) measures the value now of a
dollar to be delivered at time 0 in the event that the value of the stock happens to be s
at that time.

The value of the stock at time ¢ is then given by [§°7(s)sds. (The lower limit of
the integral is zero due to limited liability—a stock can never be worth less than zero.)
If the stock takes on value s at time 0, the option will be worth max[s — K 0], so that
the value of the option at time ¢ will be given by

C = ‘/(;mmax[s — K,0]7(s) ds.
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This is the natural analog of the expression for the option value given above. This
formula can be rewritten as:

C = f:(s — K)m(s) ds. (5)

Now differentiate (5) with respect to K to get

Note the use of the Fundamental Theorem of Calculus and the Chain Rule in this
calculation. Differentiate the expression once more to find

d*C
QK—; = 7(K).

This equation says that the second derivative of the option price with respect to
the exercise price is the state price, a remarkable result that follows entirely from the
No Arbitrage Condition. Knowing the values of options at many different exercise
prices makes it possible to calculate the state prices.

By the way, the discrete calculation given earlier and the derivative calculation
given here are perfectly consistent. Consider the discrete calculation once again.
Instead of thinking of the stock price as changing by 1, consider it changing by AS. In
this case, the analog of the price of portfolio C12 — C23 becomes

C(K - A8) = C(K)  C(K) - C(K + AS)

AS AS
AS

As AS goes to zero, this expression approaches the second derivative of C(X). Hence,
the second derivative of the option price equals the state price, as established earlier.

Pure Security Prices for Dynamic Stochastic Processes

A security whose value is a known function of another securities value at some
point in time is known as a contingent security, or a derivative asset. For example, a call
option on a stock S has value of max[0, S, — K] at the expiration of the option. But
how much would such an option be worth at some time ¢ before maturity?

An earlier section derived bounds on the value of such an option that were
independent of the stochastic process followed by the stock. But if the stochastic
process followed by the stock is known, much tighter bounds can be derived. In fact,
in most interesting cases, it is possible actually to derive the explicit value of the option
—or any other derivative security whose value depends on the value of the stock—using
only the arbitrage principle described above.
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This method was historically used to value options, but I will illustrate by
calculating the case involving a pure Arrow-Debreu security, since any other derived
security based on a given asset can be valued by using the Arrow-Debreu state prices.

Assume that we have a common stock, for which the price will either increase to
Su with probability ¢, or fall to Sd with probability (1 — ¢), as illustrated by

S
g |

1—gq.

The problem is to value a pure Arrow-Debreu security that has payoff pattern
given by

1
ol !

1 —-gq.

How can this be done? Consider a portfolio that has x shares of the stock and B
bonds that pay off Br in period two. (Here r is simply one plus the rate of interest.)
Then this portfolio has a return pattern of

Let us choose x and B so as to create the same return pattern as the pure
security. Thus we want

xSu+ Br=1

x8d + Br= 0.
Some algebra shows that the solution to these equations, (x*, B*), is given by

1
o=
* (Su — 8d)

B* d
T (u=d)r’

Since this portfolio (x*, B*) has the same returns as the pure security, it must
have the same price. Thus, the value of an Arrow-Debreu security that pays off $1 in
the up state and $0 in the down state must be given by

1 d (r—d)

S B = Ty T asdy  G—d)r
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A similar argument shows that the pure security that pays off $1 only in the

down state must be worth

u—r
a = (u—d)r’
So far this is simply an example of the general argument given in Section 2: if there
are only two states of nature, (u, d), and there are two assets with payoffs (Su, Sd) and
(7B, rB), we can construct the Arrow-Debreu securities with payoffs (1,0) and (0, 1)
and value those pure securities using the prices of the other two assets,

Note that 7, + m, = 1/r. This says that a portfolio that pays off $1 in each state
must be worth 1/r dollars today. This makes perfectly good sense: a portfolio that
pays off §1 in each state gives a certain return of $1 no matter what, and the value
today of a dollar for sure one period from now is simply the present value 1 /7. (That
is, the value of a pure discount bond with one period left to maturity is simply the
reciprocal of one plus the rate of interest.)

We have determined the Arrow-Debreu state prices by constructing a portfolio
that has the same payoffs. Another way to determine the state prices is to use the
arbitrage relations directly. The No Arbitrage Condition implies that the value of the
stock § is given by

§=mdu+ m,Sd,
which reduces to

mu+ md=1. (6)
Similarly, the value of the bond today is 1 /7, so
m,+m,=1/r 7)

Solving the two equations (6) and (7) for the two unknowns, 7, and =, will give us the
state prices.

Note that the state prices 7, and 7, do not depend on the probability that the
stock goes up or down. They only depend on how muck the stock can go up or
down—that is, they only depend on the parameters of the stochastic process governing
the behavior of the stock. Once the stochastic process is known, the state prices can be
calculated.

Let us now generalize this method to a problem involving three time periods:
period 0 (today), period 1 (when the stock goes up or down once) and period 2 (where
the stock can go up or down once again). Schematically we have

Suu g2

Sud  q(1 - q)

w [Sdu (1-4)q

sdd (1 - ¢)>.

Su
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Note that there are only three events in the last period, despite appearances. The
states (ud) and (du) have exactly the same payoff and probability of occurring.

We would like to value a pure security that pays off $1 in state (uu). Consider the
situation from the vantage point of period 2. We know that in the second period, a
security that pays off $1 in state (uu) will be worth (r — d)/(u — d)r by the argument
given above. We also know that in the second period a security that pays off 0 in state
ud and 0 in state (dd) will be worth 0 today. (If not, there is an obvious possibility for
arbitrage.)

Now consider the situation in the first period, where we now need to value a
security that has payoff (r — 4)/(u — d)r in the up state and 0 in the down state.
Using the pure security prices 7, and 7, derived above, we have

r—d
=q| —| + 7,0 =72

K (u—d)r

uu

Continuing in a like manner we find that
7, =2nm,=2m,(1—m,)

Tga = Mg

It is not hard to see the pattern emerging. If we want to value a pure security
that pays off $1 n periods from now if and only if there are u up jumps and (n — u)
down jumps, then we have

— (P} u_n—u
Tuyn—u ™ (u)”uﬂd .

The resemblance to the binomial distribution is striking; in fact this is the
binomial distribution with 7, and m, playing the roles of the binomial probabilities.
But note that in this problem the actual probability ¢ plays no role at all in the formula
for valuing the pure security. The value of a security that pays off §1 if a given state
occurs will be independent of the probability of that state occurring.

Of course, the price of the stock itself will depend on the probability of that state
occurring, or more generally, it will depend on peoples’ beliefs about the probability
of that state occurring. But any collection of people who agree on the current value of
the stock and that the stock price follows a binomial distribution must agree on the
values of all pure securities whose payoffs are conditional on realizations of that stock’s
price in future states of nature, as long as no arbitrage opportunities are available.

Now that we have the state prices for each state (u, n — u) we can calculate the
value of any contingent security now, once we know its value in each of the states. For
example we could calculate the value of a call option on the given stock since its
payoff at expiration is a known function of the value of the stock at expiration,
namely max[0, S, — K].
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Applying the above formula, we find that the value of an option on a stock that
follows a binomial process is given by

i n!
C"=Eu!(Tu—)!w“ﬂd max[0, »*4" 7S — K.

u=1

Thus in the case of a binomial stochastic process we can calculate the state prices
for any possible realization of the stochastic process at any date in the future using
only the knowledge of the current value of the stock and the bond. Even though there
are only two assets available we can “span” the arbitrarily large number of states
generated by the binomial process. The trick is simply that the way the states evolve
from each other is known a priori; since we can span the evolution of the process from
every period to the following period, we can in effect value any asset whose value
evolves according to this process.

In order to construct state prices for assets on other stochastic processes we can
use a limiting argument and let the binomial process approach a Normal or a Poisson
distribution. This will give us the state prices implicit in Itd process or a jump process
in the limit. In fact the ideas described above were originally developed in the search
for a formula to value options on a stock that followed a continuous time It6 process.
Only recently has it been recognized that an elementary treatment of these topics was
possible.

Summary

We have seen how the simple principle of arbitrage described in the introduction
can be used to calculate the necessary equilibrium relations between the values of
assets in financial markets. The power of this simple hypothesis always seems
somewhat surprising. In a way the applications of the arbitrage principle seem to
contradict its own statement: the arbitrage principle says that you can’t get something
for nothing. But the results given above, and described further in the references given
below, show that you can get quite a bit in the way of theorems, for very little in the
way of assumptions! '

Guide to Further Reading

The field of financial economics contains a vast literature on these topics. Here I
will only describe the main sources used in preparing the above exposition and briefly
mention some of the major references and surveys that can be used as an introduction
to the literature.

Formalization of the No Arbitrage Condition. The formulation of the arbitrage
principle and the treatment given here are due to Ross (1976, 1978). These elegant
treatments provide an excellent introduction to this topic.
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Using Arbitrage to Bound Option Prices. The results developed here are due to
Merton (1973) and Cox and Ross (1976).

Option Values and State Prices. 'The result that the second derivative of the option
price gives the state price is due to Breeden and Litzenberger (1978), although the
development using the No Arbitrage Condition seems to be new.

Pure Security Prices for Dynamic Stochastic Processes. 'The treatment here follows that
of Cox, Ross, and Rubinstein (1979). They were interested in the particular problem
of valuing options rather than constructing the state prices implicit in the binomial
model, but the procedures used are nearly the same. Breeden and Litzenberger (1978)
show how to use option prices to derive state prices in a general setting. The original
development of option pricing (in a continuous time model) is due to Black and
Scholes (1975); further treatments are available in Cox and Ross (1976), Cox and
Rubinstein (1985), and Merton (1973).

Appendix
Proof of the No Arbitrage Theorem

The problem is to show that the No Arbitrage Condition given in the text implies
the existence of the nonnegative state prices 7. To attack this question, consider the
following linear programming problem:

min  px
st. Rx>0

where the components of x are unconstrained in sign. This linear program problem
will identify the cheapest portfolio that gives a vector of all nonnegative returns. By
construction the portfolio x can involve positive or negative positions in each asset.
Certainly x = 0 is a feasible choice for this problem, and the No Arbitrage Condition
implies that it indeed minimizes the objective function. Thus the linear programming
problem has a finite solution.

The dual of this linear program is

max 70
s.t. WR.=p,

where 7 is the S-dimensional nonnegative vector of dual variables. Note that since x is
unconstrained in sign, the constraints in the dual program are all equalities. See any
text on linear programming for a detailed discussion. (The objective function looks a
bit odd due to the multiplication by zero, but this is the proper form for the dual
problem.)
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Since the primal has a finite feasible solution, so does the dual. Thus, a necessary
implication of the No Arbitrage Condition is that a nonnegative S-dimensional vector

7 must exist such that

b = 7R.

The sufficiency proof is even easier. Explicitly, the problem is to show that the
existence of the nonnegative state prices () implies that the No Arbitrage Condition
must be satisfied. Begin with a portfolio x such that

Rx > 0.

Multiplying each side of this inequality by = and using the fact that p = 7R, we have

7Rx >0

which proves the result.
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W Thanks to Carl Shapiro, Joseph Stiglitz, and Timothy Taylor for helpful comments.
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