
journal of economic theory 81, 431�461 (1998)

Credible Monetary Policy in an Infinite Horizon Model:
Recursive Approaches

Roberto Chang

Federal Reserve Bank of Atlanta, Atlanta, Georgia 30303

Received February 22, 1997; revised January 14, 1998

This paper develops recursive methods to study optimal and time consistent
policy in dynamic models. We analyze a version of Calvo's 1978 monetary model
and show that its time consistent outcomes can be completely characterized as the
largest fixed point of either of two operators. Recursive application of these
operators provides a computing algorithm which always converges to the set of
time consistent outcomes. Finally, we obtain valuable information about the nature
of time consistent outcomes: It is discovered, in particular, that all such outcomes
are Markovian. The methods obtained are intuitive and should be useful for
many applications. Journal of Economic Literature Classification Numbers: E61;
E52; C61. � 1998 Academic Press

1. INTRODUCTION

Studies of macroeconomic policy in models of long lived agents are of
utmost importance for both theoretical and practical reasons. Key exam-
ples are the taxation of capital and labor in an infinite horizon growth
model1 and the optimal conduct of monetary policy in a Sidrauski or cash-
in-advance framework.2 These models are considerably complex, partly
because they typically involve solving for infinite horizon competitive equi-
libria for each of a (sometimes large) set of government policies. Progress
has been achieved, by and large, by assuming that the government can
commit at the beginning of time to a policy specifying its actions for all
current and future dates and states of nature. With this assumption,
impressive advances have been made recently, in particular, in charac-
terizing optimal macroeconomic policy.3

However, the significance of the results thus obtained is unclear if
governments cannot commit to date-state contingent policies. If instead
governments are assumed to choose policies sequentially, optimal policies

article no. ET982395

431
0022-0531�98 �25.00

Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.

1 The extensive literature examining this problem includes [5, 7, 14, 17].
2 See in particular [4, 8, 13, 26].
3 In particular, see [8].



under commitment may be time inconsistent, as first pointed out by Kydland
and Prescott [15] and Calvo [4]. As a consequence, it would seem urgent to
check whether policies derived under the assumption of perfect commitment
are time consistent and, more generally, to characterize the set of time consis-
tent outcomes. But this goal has proven to be very elusive in models with long-
lived agents, presumably due to the difficulty of the issues involved.

This paper suggests a way to deal with all these issues that can be
applied to a wide class of models with long lived agents, including the
capital�labor taxation and the optimal money supply problems mentioned
at the beginning. Its key insight is that one may completely characterize the
set of all time consistent outcomes in a recursive fashion. To develop this
idea the paper analyzes a version of Calvo's [4] model. In that context we
show that the set of all time consistent outcomes is the fixed point of two
related but different operators, inspired by the work of Abreu, Pearce, and
Stachetti [2], Cronshaw and Luenberger [10], and Kydland and Prescott
[16]. The approach in the paper is in the spirit of dynamic programming
[3] and yields valuable insights about the time consistency problem;
it is discovered, for example, that all time consistent outcomes have a
Markovian structure. In addition, the approach yields algorithms that
always converge to the set of time consistent outcomes. Hence, the recur-
sive methods developed in this paper amount to an essentially complete
solution of the time consistency problem in [4].

In order to understand the intuition for the recursive methods of this
paper, it is natural to ask first why it is that characterizing time consistent
outcomes is so difficult in [4] and, more generally, in models of long-lived
agents. The short answer is that there are ``too many infinities'' to take care
of. Somewhat more precisely, a time consistent solution4 must include a
description of government behavior and market behavior such that the
continuation of such behavior after any history is a competitive equilibrium
and is optimal for the government. Hence, given any history, checking for
time consistency involves solving for a nontrivial infinite horizon com-
petitive equilibrium problem; moreover, this has to be done for every one
of an infinite number of histories.

The approach in this paper exploits two key ideas that help reduce the
problem of ``too many infinities'' to more manageable dimensions. The first
is that the need to check for time consistency after each of an infinity of
histories can be managed more effectively by introducing as a (fictional)
state variable the continuation value of the equilibrium. A similar insight
has been useful to obtain recursive solutions of repeated games and dynamic

432 ROBERTO CHANG

4 As described below, the concept of time consistency employed in this paper is the
appropriate generalization of the ``sustainable plans'' concept developed by Chari and Kehoe
[6] and Stokey [24].



principal agent problems, as shown by Abreu, Pearce and Stachetti [2],
Spear and Srivastava [23], Green [12], and Thomas and Worrall [25].

The second key idea underlying my approach is that, in checking that
the continuation of a candidate for a time consistent solution is consistent
with an infinite horizon competitive equilibrium, one can often exploit the
fact that the set of competitive equilibria can itself be expressed recursively.
The crucial observation is that, for a wide class of models, competitive
equilibria can be expressed as the solution of a sequence of Euler-type
equations. Although there are an infinity of such equations, each one
connects only a small number of periods (say, today and tomorrow);
a plausible guess, then, is that infinite horizon competitive equilibria can be
characterized very simply by introducing an adequate state variable. This
variable turns out to be the ``right-hand side'' of the Euler equation, a
conjecture suggested first by Kydland and Prescott [16] in the context of
capital�labor taxation with commitment.5

Although this paper is restricted to Calvo's model, it will hopefully
become clear that its approach should be applicable to many dynamic
models. While Calvo's model is very simple, solving for its competitive
equilibria is a nontrivial infinite horizon problem. Hence Calvo's model
presents the crucial difficulties associated with characterizing time con-
sistency in models with long-lived agents. As a consequence, the intuition,
the power, and the possible limitations of the methods proposed below are
well illustrated in Calvo's setup. The price may be that Calvo's model is not
very ``realistic;'' in particular, there is no physical state variable. However,
it should become clear that our methods can be readily adapted to more
complicated and ``realistic'' models, which may include physical capital,
uncertainty, and so on, as long as their competitive equilibria can be
expressed as a system of (possibly stochastic) Euler equations.

This paper is, or course, related to a very large literature. In particular,
the concept of time consistency employed in this paper is the appropriate
generalization of the ``sustainable plans'' concept proposed by Chari and
Kehoe [6] and Stokey [24]. Both the Chari�Kehoe and Stokey papers
adapt results from Abreu [2] to characterize the set of all the sustainable
plans of their models. Abreu's method involves finding the worst continua-
tion time consistent outcome, which may be very difficult in many models
of interest. In contrast, the recursive methods developed in this paper do
not require finding the worst continuation; in fact, they yield the worst and
the best continuations as part of the solution.6
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A very similar recursive approach to time consistency in models with long-
lived agents has been independently developed by Phelan and Stachetti
[22] in the context of a capital�labor taxation problem. As in my analysis,
they combine the work of Abreu, Pearce, and Stachetti, and Kydland and
Prescott to arrive to a recursive characterization of the set of sustainable
plans. Our papers are obviously complementary.

Two recent noteworthy attempts at characterizing time consistent
monetary policy in infinite horizon models are Obstfeld [20] and Ireland
[13]. Obstfeld [20] studies a dynamic seigniorage problem and, in charac-
terizing time consistent outcomes, focuses on the Markov perfect equilibria
of the model, taking as state variables the previous real quantity of money
and the inherited government debt. Hence this approach only provides a
partial characterization of the set of time consistent outcomes. Our analysis
emphasizes that, in a similar problem, a small enlargement of the set of
state variables yields the set of all time consistent outcomes, and that all
such outcomes are Markovian.

[13] analyzes a cash-in-advance model and is able to characterize all of
its time consistent equilibria. This is achieved by showing that the the
worst allowable hyperinflation is a time consistent outcome, which is then
used to support all other time consistent outcomes as in [1, 6, 24]. As pre-
viously emphasized, Ireland's paper is insightful but his solution method
depends on very special features of his environment, in particular that the
worst possible hyperinflation is a dominant strategy for the government.
Hence his arguments are not generally useful in finding the worst time
consistent outcome in other models. In contrast, the recursive approach
pursued below can probably be extended to a wide class of models and
makes it unnecessary to look for the worst time consistent outcome.

The paper proceeds as follows. Section 2 sets up the economic environ-
ment under study. Section 3 discusses competitive equilibria; it is empha-
sized, in particular, that the set of competitive equilibria is recursive in a
precise sense. Section 4 examines optimal government policy under com-
mitment. Following arguments of [16], we show that the Ramsey problem
can be written as a dynamic programming problem after the introduction
of a fictional state variable. More importantly, the set of possible fictional
states is shown to be the largest fixed point of a particular operator and
can be computed recursively. Section 5 discusses the solution concept,
sustainable plans, that is used later to characterize time consistency.
Sections 6 and 7 contain the paper's main results. Section 6 studies an
operator inspired by [2] and [16], whose largest fixed point yields the set
of all sustainable outcomes. It is also shown there that the repeated
application of that operator yields a sequence of sets that converges to the
sustainable set. Section 7 studies a second operator, motivated by [10] and
[16], whose largest fixed point also yields the set of sustainable outcomes,

434 ROBERTO CHANG



and whose repeated application also converges to that set. To demonstrate
the computational feasibility of the theory, Section 8 computes and dis-
cusses the solutions for a parametric version of the model. Section 9 con-
cludes. Some proofs are delayed to an Appendix.

2. THE MODEL

We will analyze a discrete time version of a model first proposed by
Calvo [4]. Before proceeding, it must be stressed again that Calvo's model
is not chosen because of its realism: That model is clearly too simple to be
``realistic.'' However, for our purposes its simplicity is a virtue: While
Calvo's model is fairly manageable, it is a truly infinite horizon dynamic
model. We believe that the intuition and the power of the recursive
methods proposed in this paper are best illustrated in this setup.

Time is discrete and indexed by t=0, 1, 2, ... . In each period there is only
one consumption good and currency is the only asset. The economy is
populated by a large number of identical households and a government.
The representative household lives forever and has preferences over con-
sumption and real money holdings given by:

:
�

t=0

;t[u(ct)+v(mt)] (1)

where ct denotes consumption in period t, mt #qtMt the real value of
money holdings, Mt currency holdings at the end of period t, and qt the
price of currency in terms of the consumption good (the inverse of the price
level). The functions u and v satisfy:

[A1] u : R+ � R is C2, strictly concave, and strictly increasing.

[A2] v : R+ � R is C2, and strictly concave.

[A3] limc � 0 u$(c)=limm � 0 v$(m)=�.

[A4] There is a finite m=m f>0 such that v$(m f )=0.

The assumptions [A1]�[A3] are fairly standard.7 [A4] defines m f as
the satiation level of money. It will become clear that these four assump-
tions can be generalized substantially, as long as the model has a recursive
structure and some boundedness conditions hold.
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The household will maximize (1) subject to ct , Mt�0 and

qt Mt� yt&xt&ct+qtMt&1 , (2)

qt Mt�m� , (3)

for all t�0, where yt denotes a period t endowment of the consumption
good, xt is a lump sum tax (or transfer, if negative), and m� �m f is an
exogenously given constant. The household takes the sequences [qt], [xt],
[ yt], and its initial currency holdings M&1 as given.

(2) is a typical accumulation equation that defines the real value of
money holdings at the end of period t. (3) is less standard. The main
reason to impose it is that, as discussed later, our analysis will require that
real money balances be bounded above in equilibrium. (3) is one way to
ensure that a bound exists; there may be other ways, if stronger assump-
tions are placed on preferences for instance. However, (3) is simpler and
could be motivated by assuming that managing large amounts of cash is
costly.8 Note also that the bound m� can be taken to be arbitrarily large.
In such case one would expect (3) not to bind in well-behaved equilibria,
given that large money holdings are associated with negative marginal
utility. Consequently we see (3) as fairly harmless.

The government chooses how much money to create or to withdraw
from circulation. Its choices completely determine the path of the money
supply, given M&1 . We shall express money growth in terms of the inverse
growth rates, ht #Mt&1 �Mt , and assume that:

[A5] For some ?
�
, ?� such that 0<?

�
<1<1�;�?� , ht # [?

�
, ?� ]#6.

[A5] bounds admissible rates of money creation and, like (3), is needed
for technical reasons. It is probably uncontroversial to impose that the
supply of money be positive; imposing that Mt�Mt&1 be not less than
1�?� >0, where 1�?� can be arbitrarily small, is only a mild strengthening of
that requirement. A stronger restriction is that money growth must be
bounded above by some (arbitrarily large) number 1�?

�
. Although this

assumption can probably be defended on the basis of realism, it may be
interesting to see what happens if it is dropped. This is left for future
research.

The government uses the money newly printed in period t to finance the
transfers or taxes to households according to its budget constraint:

qt(Mt&Mt&1)=&xt . (4)
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Taxes or transfers are assumed to be distortionary. One can introduce,
for example, a model of production and distortionary labor taxation. But
since I am trying to formalize things as simply as possible, I will assume
as in [4] that the household's endowment, yt , is a function f (xt) of the
taxes collected in period t. Now, f : R � R is at least C2 and is assumed to
satisfy:

[A6] f (0)>0, f $(0)=0, f "(x)<0.

[A7] f is symmetric about zero: f (x)= f (&x), all x # R.

[A6] ensures that imposing taxes or giving subsidies is increasingly
costly in terms of the consumption good. This is an admittedly simple way
to model the idea that taxation is distortionary. Symmetry [A7] is
imposed only to simplify notation.

The government budget constraint (4) can now be rewritten as:

&xt=qtMt(1&ht)=mt(1&ht). (5)

Since mt # [0, m� ] and ht # 6, xt must belong to the interval [(?
�
&1) m� ,

(?� &1) m� ]#X. Equation (5) emphasizes that ht , the inverse of the money
growth rate in period t, can be thought of as the (gross) rate of the
inflation tax.

Our last assumption will ensure that output is always strictly positive:

[A8] f is strictly positive on X.

Together with [A1] and [A6], [A8] ensures that given any sequence of
taxes such that xt # X, all t, the marginal utility of consumption u$[ f (xt)]
is a uniformly bounded sequence. The importance of this fact will become
apparent shortly.

In this model, it is clearly desirable to bring the quantity of money
towards the satiation level m f. However, in equilibrium this can only be
achieved by steadily reducing the supply of money which, given
[A6]�[A7], has negative effects on output. Hence it is clear that an
optimal policy will imply some positive deflation, although not as fast as
the rate of time preference.

3. COMPETITIVE EQUILIBRIA

In this section competitive equilibrium is defined in the usual way and,
to prepare the ground for our main discussion, some facts about equilibria
are collected. In particular, this section makes precise the idea that com-
petitive equilibria have a recursive structure.
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For the rest of the paper, bold letters will denote sequences, and a
subscript (resp. superscript) will denote the first (resp. last) date of the
sequence. Thus xs

t=(xt , xt+1 , ..., xs). If the subscript is omitted, the first
date is understood to be t=0, while an omitted superscript implies that
the last date is s=�. Thus xt=(x0 , ..., xt), xt=(xt , xt+1 , ...) and x=
(x0 , x1 , ...).

A policy is a sequence h=(h0 , h1 , ...) describing money growth, and a
sequence of tax amounts, x=(x0 , x1 , ...), such that ht # 6=[?

�
, ?� ] and

xt # R, all t�0. An allocation is a set of nonnegative sequences of
consumptions, c, real money demands, m, endowments, y, and inverse
price levels, q. Given M&1 , a policy (h, x) and an allocation (c, m, y, q)
form a competitive equilibrium if:

(i) Markets clear in every period t�0: mt=qt Mt and yt= f (xt).

(ii) The government budget constraint (4) is satisfied and Mt=
Mt&1 �ht .

(iii) The pair (c, M) solves the consumer's problem, given the
sequence of prices q, endowments y, and taxes x.

Let E=[0, m� ]_X_6, and E�=E_E_E_ } } } . Under assumptions
[A1]�[A8], one can prove that:

Proposition 1. A competitive equilibrium is completely characterized by
a sequence (m, x, h) such that, for all t, mt # [0, m� ], ht # 6, xt # X, and :

&xt=mt(1&ht) (6)

mt[u$[ f (xt)]&v$(mt)]

�;u$[ f (xt+1)](mt+1+xt+1), with equality if mt<m� . (7)

Proof. See Appendix.

Proposition 1 says that a sequence (m, x, h) is consistent with a com-
petitive equilibrium if it belongs to E� and if it satisfies the government
budget constraint (6) and the household's Euler condition (7) in all
periods. Hence the set of competitive equilibria can be described as the
solution of an infinite sequence of conditions, each of which connects at
most two periods. This observation is crucial for understanding our
approach later.

The perceptive reader will have noted that Proposition 1 makes no men-
tion of the household's transversality condition. The justification, as shown
in the Appendix, is that the transversality condition is satisfied if (m, x, h)
belongs to E�. Here is where [A8] plays an important role. Without it,
equilibrium consumption could approach zero. Given [A3], the marginal
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utility of consumption would then be unbounded, invalidating my argu-
ment for ignoring the transversality condition. In such a case, the transver-
sality issue must be dealt with in some other way in order to apply the
methods of this paper.

Also, the need for imposing a bound on the household's real money
holdings and for assuming that money growth rates belong to a compact
set should be apparent. An important part of Proposition 1 is that, in any
competitive equilibrium, mt and xt must belong to compact sets. This is
ensured by imposing (3), [A5], and by the fact that, in equilibrium, xt

must satisfy the government budget constraint (5).
To proceed, note that E� is compact when endowed with the product

topology. Given Proposition 1, an element of E� satisfying (6)�(7) will be
called a competitive equilibrium sequence. The set of all such sequences will
be denoted by CE=[(m, x, h) # E� | (6) and (7) are satisfied].

The following facts are now are easy to prove:

Corollary 1. CE is not empty.

Proof. There is a competitive equilibrium with a constant supply of
money.

Corollary 2. CE is compact.

Proof. See Appendix.

Corollary 3. The continuation of a competitive equilibrium is a com-
petitive equilibrium. In other words, if (m, x, h) # CE, then (mt , xt , ht) # CE
for all t.

The proof of Corollary 3 follows immediately from Proposition 1 and is
left to the reader. In spite of its simplicity, Corollary 3 is a crucial aspect
of the model: It makes precise a sense in which the set of competitive equi-
libria has a recursive structure.

4. RECURSIVE TREATMENT OF THE RAMSEY PROBLEM

From now on we shall assume that the government's objective is to max-
imize the welfare of its representative citizen. The government's menu of
choices to achieve its objective depends, however, on the ``commitment
technology'' available to it. A natural starting point is to suppose that the
government can fix the entire path of money growth rates once and for all
at the beginning of time. This case of perfect commitment is the subject of
this section.
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The government's problem under commitment is to choose a policy h
and an associated competitive equilibrium such that there is no other com-
petitive equilibrium that results in higher consumer's welfare. This problem
can be restated more precisely, given the results of the previous section, as
that of choosing (m, x, h) in CE to maximize (1), with ct= f (xt). Following
previous authors,9 this problem will be called the Ramsey problem.

Since (1) is continuous on E�, and CE is compact, we know that the
Ramsey problem has a solution. Also, given Proposition 1, we know that
the solution must solve:

Max (1) subject to (6)�(7) and ct= f (xt)

where the maximization is over sequences in E�.
The Ramsey problem, as stated above, can be solved (at least in prin-

ciple) with a variety of methods. Since our objective is ultimately to look
at recursive methods, next we describe a procedure that solves the Ramsey
problem in a recursive way. My procedure is a variant of that originally
proposed by [16].

The key to the procedure is to use a recursive description of competitive
equilibria. From the perspective of any period t, a competitive equilibrium
can be seen as the collection of a current policy and allocation, together
with a ``promise'' of policies and allocations from period (t+1) on that
satisfies some conditions. By Proposition 1, it follows that the essential
feature of the ``promise'' made in period t is given by the scalar u$[ f (xt+1)]
(mt+1+xt+1)#%t+1 in the Euler equation. Roughly speaking, %t+1 can be
seen as the period (t+1) marginal utility of money ``promised'' by the equi-
librium in period t.

Hence we need to study a set 0 defined by:

0=[% # R : %=u$[ f (x0)](m0+x0) for some (m, x, h) # CE].

0 is the set of initial marginal utility of money ``promises'' consistent
with competitive equilibria.

Proposition 2. 0 is a nonempty and compact subset of R+ .

Proof. Since CE is not empty, 0 is not empty. In any competitive equi-
librium, (mt+xt)=htmt # [0, ?� m� ]. Since u$[ f (xt)] is a positive, con-
tinuous function on X, its range is a bounded subset of R+ . Hence 0 is
included in some compact interval [0, %� ], for some %� .

To see that 0 is compact, it is enough to show that 0 is closed. Let [%n]
be a sequence in 0 converging to % # [0, %� ]. By definition, there is a
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sequence (mn, xn, hn) in CE such that %n=u$[ f (xn
0)](mn

0+xn
0) for each n.

Since CE is compact, (mn, xn, hn) can be assumed without loss of generality
to converge to some (m, x, h) in CE. Finally, continuity of u$ and f implies
that %=u$[ f (x0)](m0+x0). Hence 0 is closed and compact. K

Now we can follow [16] and formulate the Ramsey problem in two
stages. First, suppose momentarily that the government were constrained
not only be the requirement of equilibria, but also by an initial ``promise''
% # 0. Then its problem would be:

w*(%)=Max :
�

t=0

;t[u( f (xt))+v(mt)] s.t. (m, x, h) # 1(%) (8)

where 1(%)=[(m, x, h) # CE | %=u$[ f (x0)](m0+x0)].
Given any initial ``promise'' % in 0, 1(%) is a nonempty, compact subset

of CE. Since the objective in (8) is clearly continuous, the function w* is
well defined on 0.

Finally, if the function w*( } ) can be obtained, the value of the Ramsey
problem is simply be given by the max of w*(%) on 0.

The usefulness of recasting the Ramsey problem in this way is that now
we obtain a ``dynamic programming'' formulation:

Proposition 3. w*(%) satisfies the functional equation:

w(%)=Max u[ f (x)]+v(m)+;w(%$) (9)

s.t. (m, x, h, %$) # E_0

%=u$( f (x))(m+x) (10)

&x=m(1&h) (11)

m[u$[ f (x)]&v$(m)]�;%$, with equality if m<m� . (12)

Conversely, if a bounded function w : 0 � R satisfies the above functional
equation, then w=w*.

The proof is closely related to the proof of Bellman's optimality principle
and given in the Appendix.

Proposition 3 provides a way in which the Ramsey problem can be
solved��provided that we can compute the set 0, which is not a trivial
matter. Now we will show that 0 can be computed taking advantage of the
fact that 0 must be the fixed point of a particular operator.10 It turns out
that the analysis of that operator is crucial not only to solve the Ramsey
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problem but also, and more importantly, to find the solution of the policy
problem without commitment.

Let Q be a nonempty and bounded subset of R+ . Define a new set B(Q)
as follows:

B(Q)=[% # R : there is (m, x, h, %$) # E_Q such that (10)�(12) hold].

Then one can show that:

Proposition 4. (i) Q�B(Q) implies that B(Q)�0. (ii) 0=B(0).

Proof. Left to the reader (a simple extension of Abreu, Pearce, and
Stachetti's arguments).

In other words, 0 is the largest fixed point of the operator B. Following
[2], we will refer to property (i) in Proposition 4 as self generation, and to
property (ii) as factorization.

One advantage of this formulation is that it delivers a way to compute
0 as follows. Let Q0=[0, %� ], where %� is as in Proposition 2. For
n=1, 2, ..., define Qn=B(Qn&1). Now, the definition of B clearly implies
that B is monotone in the sense that Q�Q$ implies B(Q)�B(Q$). This
implies that the sequence [Qn]�

n=0 is decreasing. Also, one can show that
B preserves compactness. Hence each Qn is a compact set. Define Q�=
��

n=0 Qn , i.e., Q� is obtained in the limit by repeated application of the
operator B, starting with [0, %� ]. Now it turns out that:

Proposition 5. 0=Q� .

Proof. Obviously it suffices to show that Q� �0. We shall prove this
by showing that Q� �B(Q�); the desired result will then follow by self
generation.

Suppose that % # Q� . By definition of the sequence Qn , it follows that
% # Qn=B(Qn&1), all n=1, 2, ... . By definition of B, there is for each
n=0, 1, 2... a vector (mn, xn, hn, %$n) in E_Qn that satisfies (10)�(12). The
sequence (mn, xn, hn, %$n), when seen as a sequence in E_[0, %� ], can be
assumed without loss of generality to converge to some (m, x, h, %$) #
E_[0, %� ]. By the continuity of u$, v$, and f, (m, x, h, %$) satisfies (10)�(12).
Finally, %$ can be shown in fact to belong to Q� by the following argu-
ment: Fix any n=0, 1, ... . Then, given any k>n, %$k # Qk �Qn . Hence %$,
which is the limit of the sequence [%$k], must also belong to Qn . Since this
is true for any n, %$ # Q� .

The preceding argument shows that Q� �B(Q�). By self generation,
Q� �0 and the proof is complete. K
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Together, Propositions 3 and 5 provide a procedure that one can use to
solve for w*(%), and hence to compute the Ramsey outcome. 0 can be
computed by iterating on the operator B. Once 0 is known, the functional
equation in Proposition 4 can be solved by standard methods to obtain w*.
In this sense, the Ramsey problem can be solved recursively.

It should be reiterated that, for our purposes, the computation of 0 is
the most important part of the above procedure: The solution of the no
commitment case will be found by appropriately modifying the operator B.

Before ending this section, note that our results imply that the Ramsey
problem has a Markovian structure. Along an optimal path, the ``state'' can
be defined to be %t ; the optimal ``action'' (mt , xt , ht) and next period state
%t+1 can be chosen to be time invariant functions of %t . The introduction
of the state variable %t takes care of the requirement that a Ramsey plan
be consistent with a perfect foresight competitive equilibrium.11

5. SUSTAINABLE PLANS: DEFINITION

Henceforth we will assume that the government does not have the ability
to commit to an infinite sequence of money growth rates. Instead, we shall
assume that the government sets period t's money growth at the beginning
of the period. Under such assumption, it is known from [4] and [15] that
the government faces a ``credibility'' or ``time consistency'' problem. Charac-
terizing the ``credible'' outcomes of the model is difficult and requires a well-
defined equilibrium concept. In this section we define such a concept, a
direct extension of that developed by Chari and Kehoe [6] and Stokey
[24] for related environments. Following Chari and Kehoe, we will refer
to equilibria as ``sustainable plans'' (SPs).

A history in period t, denoted by ht=(h0 , h1 , ..., ht) describes the actual
sequence of money growth rates in every period up to t. Recalling that ht

is assumed to belong to a compact interval 6, a strategy for the government
is a sequence of functions [_t]�

t=0 such that _0 # 6 and _t : 6 t&1 � 6.
In order to have well-defined decision problems we will impose an addi-

tional restriction on the strategy space available to the government. This is,
roughly speaking, because some strategies may imply that, after some
history, the continuation of the strategy be inconsistent with the existence
of a competitive equilibrium. This will be ruled out as follows: Let CE?=
[h # 6� : there is some (m, x) such that (m, x, h) # CE]. CE? is the set of
infinite horizon money growth sequences that are consistent with com-
petitive equilibria; it is clearly nonempty and compact. A strategy _ will
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be called admissible if, after any history ht&1, the continuation history ht ,
defined by the continuation of _ in the natural way, belongs to CE? .
In what follows we will restrict the government to choose an admissible
policy. Intuitively, this says that, after any history, the government has to
``announce'' a policy for the infinite future that is consistent with the exist-
ence of a competitive equilibrium.

Note in particular that, after any history ht&1, the above considerations
restrict the government's choice in period t to the set CE 0

?=[h # 6 : there
is h # CE? with h=h0].12

Now we are ready to describe market behavior. An allocation rule is a
sequence of functions :=[:t]�

t=0 such that, for each t, :t : 6 t � [0, m� ]_X.
Here, :t(h

t)=(mt(h
t), xt(h

t)) denotes the real value of money and taxes in
period t, after history ht has been observed.

Given an admissible government strategy _, an allocation rule : will be
called competitive if given any history ht&1 and ht # CE 0

? , the continuations
of _ and : after (ht&1, ht) induce, in the obvious way, a competitive equi-
librium sequence.13

Finally, a government strategy _ and an allocation rule : constitute a
sustainable plan if (i) _ is admissible; (ii) : is competitive given _; (iii) After
any history ht&1, the continuation of _ is optimal for the government, that
is, the sequence ht induced by _ after ht&1 maximizes (1) over CE? , given :.

The definition of a sustainable plan has some nice properties. One of
them is that the continuation of a sustainable plan is itself a sustainable
plan. This in turn will enable us to apply recursive methods in the rest of
the paper.

Proposition 6. Given any history ht&1, the continuation of a sustainable
plan is itself a sustainable plan.

Proof. Left to the reader ( just a matter of accounting).

To conclude this section, note that any sustainable plan induces, in the
natural way, a competitive equilibrium sequence (m, x, h). In view of this
fact, a competitive equilibrium sequence will be called a sustainable out-
come if it is induced by some sustainable plan.
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t+1), k=0, 1, 2, ... . For : to be com-
petitive given _, the sequence (mt , xt , ht) must be in CE.



6. SUSTAINABLE OUTCOMES: A RECURSIVE APPROACH

This section and the next discuss the key results of this paper. The goal
of this section is to fully characterize the set of sustainable outcomes in a
recursive manner. To do this, two aspects of the model need to be taken
into account. The first is that, because the government has a time con-
sistency problem, any SP must provide incentives for the government not
to deviate from equilibrium behavior. It will be shown that these incentive
constraints can be handled by introducing as a state variable the continua-
tion value of the equilibrium, as advocated by [1] and [23] in other
dynamic incentive problems. In our context this is not enough, though,
because one has to ensure, after any history, that the continuation of a SP
is consistent with a competitive equilibrium for the infinite future. But we
saw that, in the Ramsey problem, this constraint can be handled by intro-
ducing the promised marginal utility of money as a state variable. Hence
one would guess that a recursive approach to the set of sustainable plans
should include at least two state variables, one for the continuation values
and another for the promised marginal utility of money. In addition, one
would guess that it is possible to characterize the state space in a recursive
fashion. We shall see that these guesses are in fact correct.

The analysis takes for granted that there exists at least one sustainable
plan. For the model at hand this can in fact be proven. However, the
details are somewhat peripheral to my main discussion and hence left to
the Appendix.

Let 3=[(m, x, h) # CE | there is a SP whose outcome is (m, x, h)] be
the set of all sustainable outcomes. Then define:

S=[(w, %) | there is a sustainable outcome (m, x, h) # 3 with value w,

and such that u$[ f (x0)](m0+x0)=%].

By [A1]�[A2] and Proposition 1, the value of any competitive equi-
librium must belong to some compact interval, say W=[w

�
, w� ]. Hence S

is a subset of the compact set W_0. It is nonempty since there is at least
one SP.

The set S is the set of all pairs of continuation values and promised
marginal utilities of money that may emerge in the first period of a SP. Our
main objective is to characterize S in a recursive fashion. To this end, the
following remarks may be useful.

Consider what a SP must describe in the first period: It must describe an
initial, ``recommended'' action, say h� and, for each possible deviation h that
the government may consider (i.e., for each h in CE 0

?), the SP must specify
the real quantity of money m(h) and seigniorage x(h). Moreover, the SP
must specify the whole future path of the economy; however, our previous
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discussion suggests that the future may be summarized by a continuation
value, w$(h), and a continuation ``promise'' %$(h), which must belong to S.
Finally, all of these objects must be such that h� is optimal for the govern-
ment, and that the government budget constraint and the Euler equation
are satisfied after any deviation. These objects imply a first period (w, %)
which, by assumption, belongs to S.

These considerations motivate the following approach. Let Z denote any
nonempty subset of W_0; the reader can think of Z as a set from which
tomorrow's pairs (w$, %$) can be chosen. Define a new set D(Z)�W_0,
the set of pairs (w, %) that can be ``enforced'' today, by:

D(Z)=[(w, %) | there is h� # CE 0
? and, for each h # CE 0

? , a four-tuple

(m(h), x(h), w$(h), %$(h)) in [0, m� ]_X_Z such that:

w=u[ f (x(h� ))]+v[(m(h� )]+;w$(h� ) (13)

%=u$[ f (x(h� ))][m(h� )+x(h� )] (14)

and for all h # CE 0
? :

w�u[ f (x(h))]+v[m(h)]+;w$(h) (15)

x(h)=m(h)(h&1), and (16)

m(h)[u$( f (h))&v$(h)]�;%$(h), with equality if m(h)<m� ]. (17)

The constraints (13)�(14) are usually called ``regeneration constraints,''
while (15) is an ``incentive'' constraint. (16) and (17) are novel, and are
necessary to ensure that the continuation of a sustainable plan after any
deviation is consistent with a competitive equilibrium.

As in [2], the operator D has the following properties, which imply that
S is the largest fixed point of D:

Proposition 7. (i) Self Generation: If Z�D(Z), then D(Z)�S;
(ii) Factorization: S=D(S).

Proof. (i) Suppose Z�D(Z) and let (w, %) be in D(Z). Set (w0 , %0)=
(w, %), and construct a SP (:, _) recursively as follows. For any ht&1,
suppose that we can define (wt(ht&1), %t(ht&1)) in Z. Since Z�D(Z), there
is h� t # CE 0

? and, for each ht # CE 0
? , a four-tuple (m(ht), x(ht), w$(ht), %$(ht))

in [0, m� ]_X_Z such that (13)�(17) are satisfied. Define, then, _t(ht&1)=
h� t , and :t(h

t)=(m(ht), x(ht)) if ht # CE 0
? , and =(0, 0) if not. Finally,

define (wt+1(ht), %t+1(ht))=(w$(ht), %$(ht)) if ht # CE 0
? , and =(w, %) if not.

By definition, then, (wt+1(ht), %t+1(ht)) # Z for all ht.
Checking that (:, _) is a SP with value w, initial promise % is

straightforward and left to the reader.
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(ii) By self generation, it is enough to show that S�D(S). This is
easy from the definitions and also left to the reader. K

It should be noted that the proof of part (i) of the Proposition shows
how one can construct a sustainable plan given any element of S. In addi-
tion, the construction reveals that any sustainable outcome has essentially
a Markovian structure in the sense that, as is easily seen, _t(ht&1) and
the functions :t(h

t&1; ht), wt+1(ht&1; ht), and %t+1(ht&1; ht) depend on
ht&1 only through the ``state'' (wt(h

t&1), %t(h
t&1)). Hence our approach to

finding S gives a lot of information about the set of SPs.
Next we can derive properties of S by studying the operator D. It is easy

to show that D is nicely behaved, in the sense that it has a monotonicity
property and it preserves compactness:

Proposition 8. (i) Monotonicity: Z�Z$ implies D(Z)�D(Z$); (ii) If
Z is compact, D(Z) is compact.

Proof. (i) is obvious from the definition of D. To prove (ii), it is suf-
ficient to show that if Z is compact, D(Z) is closed.

Let (w(n), %(n)) be a sequence in D(Z) converging to (w, %) # W_0.
By definition, for each n there is a recommended action h� (n) in CE 0

? and,
for each h in CE 0

? , a 4-tuple (m(h)(n), x(h) (n), w$(h) (n), %$(h) (n)) in [0, m� ]_
X_Z that satisfies (13)�(17).

Since CE 0
? is compact, there is no loss of generality in assuming that the

sequence h� (n) converges to some h� in CE 0
? . Likewise, for each h in CE 0

? ,
(m(h)(n), x(h) (n), w$(h) (n), %$(h) (n)) is a sequence in the compact set [0, m� ]_
X_Z and can be assumed to converge to an element (m(h), x(h), w$(h),
%$(h)) of [0, m� ]_X_Z.

It is easily checked that the continuity of u, f, v, u$ and v$ ensure that the
recommended action h� and the function (m(h), x(h), w$(h), %$(h)) thus
defined satisfy (13)�(17). Hence (w, %) belongs to D(Z). Since D(Z) con-
tains all its limit points, it is closed, and hence compact. K

In particular, the above two properties now imply that S is compact:

Proposition 9. S is compact.

Proof. As discussed above, S is bounded. Hence it is enough to show
that S is closed. Let cl(Z) denote the closure of a set Z. Factorization and
monotonicity imply S=D(S)�D(cl(S)). Since S is bounded, cl(S) is com-
pact; hence D(cl(S)) is compact. It follows that cl(D(cl S))=D(cl(S)). But
then cl(S)=cl(D(S))�cl(D(cl(S)))=D(cl(S)). Self generation implies
now that cl(S)�S, that is, S is closed. K

An immediate implication is:
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Corollary 4. There are a best and a worst SP.

This Corollary can be usefully compared against other results available
in the literature. [6] and [24], extending arguments of [1], showed that
one can fully characterize every sustainable outcome if one can calculate
the ``worst'' sustainable outcome. However, finding the worst sustainable
outcome is very difficult in many dynamic models. In contrast, our recur-
sive methods do not rely on finding the worst sustainable outcome; instead,
its existence is derived as one implication of the analysis.

Finally, by modifying the proof of Proposition 5 we obtain an algorithm
that computes S. Recall that S must be included in W_0. If we define
S0=W_0, the monotonicity of D implies S=D(S)�D(S0)#S1 . Defining
now, for each n�1, Sn=D(Sn&1), we obtain a decreasing sequence of sets
S0$S1$S2$ } } } . Moreover, each Sn contains S and is compact (because
S0 is compact and D preserves compactness). One can then conjecture that
the sequence [Sn] must converge to S, in the sense that S�#��

n=0 Sn=S.
The following Proposition confirms the validity of such conjecture:

Proposition 10. Let S0=W_0 and Sn=D(Sn&1), n=1, 2, ... . Then
S�#��

n=0 Sn=S.

Proof. The proof is essentially the same as that of Proposition 5 and
left to the reader. K

The preceding results amount to a complete characterization of the set
of sustainable plans. We have learned that the set of sustainable plans is
compact. This means, in particular, that a best and a worst sustainable
plan exist. Proposition 10 provides a way to compute the set S, and the
proof of Proposition 7 provides a way to compute a sustainable plan
corresponding to any (w, %) in S.

The remaining issues are ``only'' computational. In particular, the dif-
ficulty of computing any sustainable plan arises solely from the difficulty of
computing the mapping D. For the problem at hand, computing D(Z)
given Z seems fairly complicated in particular by the presence of the con-
straints (15)�(17). These constraints can be simplified somewhat; this is the
subject of the next section.

7. ALTERNATIVE RECURSIVE METHOD

In this section we study a second operator whose largest fixed point is
the set S and whose repeated application also yields a decreasing sequence
of sets that converges to S. The analysis is related to that developed by
Cronshaw and Luenberger [10] for repeated games.
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The intuition for a simpler approach is that the government, when con-
sidering whether or not to obey an equilibrium ``recommendation,'' need
not consider the consequences of all alternative deviations, but only the
payoff associated with the ``best'' deviation. On the other hand, in order to
provide incentives for following equilibrium recommendations, one can
restrict attention to sustainable plans that prescribe the harshest available
punishment in response to a government deviation. In this section I show
how these considerations motivate an alternative operator whose largest
fixed point is the set S which characterizes sustainable plans.

To start let h be any element of CE 0
? ; the reader can interpret h as a

``deviation.'' Let Z be a compact set such that S�Z�W_0. Now define:

P(h; Z)=Min u[ f (x)]+v(m)+;w$ subject to (18)

&x=m(1&h) (19)

m[u$[ f (x)]&v$(m)]�;%$, with equality if m<m� (20)

(m, x, w$, %$) # [0, m� ]_X_Z (21)

If Z were equal to S, P(h; Z) would be the worst possible SP continua-
tion after a deviation h in CE 0

? . This notion is extended to allow for
punishments that can be supported by pairs of future (w, %) in sets Z
possibly larger than S.

In the above definition, the condition that Z be a subset of S is required
mainly to ensure that the set defined by (19)�(21) be nonempty.

Now let:

BR(Z)=Max P(h; Z) s.t. h # CE 0
? .

If Z were equal to S, BR(Z) would be the government's ``best deviation.''
Finally, define:
E(Z)=[(w, %) # W_0 | there is (m, x, h, w$, %$) # E_Z s.t. (19)�(20)

hold and:

w=u[ f (x)]+v(m)+;w$ (22)

%=u$[ f (x)](m+x) and (23)

w�BR(Z)]. (24)

The intuition behind the operator E should be clear from the observation
that, if Z were equal to S, E(Z) would include all pairs (w, %) that could
be ``enforced'' by a threat of reverting to the continuation that is least
favorable to the government. Hence the operator E can be seen as a recur-
sive extension of the methods developed in [1].
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From the preceding discussion the following properties of E should be
intuitive:

Proposition 11. Let Z be a compact set such that S�Z�W_0. Then:
(i) Self generation: Z�E(Z) implies Z=S; (ii) factorization: S=E(S).

Proof. In Appendix.

Hence the operator E has the key properties of self generation and fac-
torization. As in previous sections, we can derive a lot of mileage from
showing that E has nice properties:

Proposition 12. (i) E is monotone in the sense that S�Z1 �Z2 implies
S�E(Z1)�E(Z2). (ii) If Z is compact and S�Z, then E(Z) is compact.

Proof. (i) Let S�Z1 �Z2 be given and suppose that (w, %) is in E(Z1).
To show that (w, %) is in E(Z2) it is sufficient to show that BR(Z1)�
BR(Z2). This follows from the definition of BR. Hence E(Z1)�E(Z2).
Now, S�E(Z1) follows by applying the preceding result to S�Z1�Z2

and noting that S=E(S). (ii) The proof is easy and left to the reader. K

Finally, we can use Propositions 11�12 to obtain an algorithm to com-
pute S as follows. We know that S�W_0. Set Z0=W_0 and, for all
n=1, 2, ..., Zn=E(Zn&1). By the preceding results, the sequence [Zn] is a
decreasing sequence of compact sets which include S. Hence a plausible
conjecture is that S=Z�#��

n=0 Zn . This is in fact true, as shown by:

Proposition 13. S=Z� .

Proof. See Appendix.

In summary, the approach in this section also provides a useful charac-
terization of the set of sustainable outcomes and yields a successful algorithm
for computing it. The operator E seems somewhat simpler to implement
than the operator D of the previous section.

8. COMPUTATIONAL ISSUES

In order to examine computational issues related to the theory just
advanced, this section presents and analyzes a parametric example. Our
objective will be to show that implementing the theory is feasible and to
illustrate some of the difficulties involved. We have not attempted here to
develop efficient and accurate computational algorithms for the theory; we
believe that task to be a nontrivial endeavor and better left for future
research.
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We will focus on the question of computing the set S of SP (w, %) pairs
given functional forms and parameter values for the model of the previous
sections. Our choices were motivated by the objective of illustrating the
implementation of the theory and are not intended to be necessarily
realistic. Our assumptions on functional forms and parameters were:

u(c)=10000 log c,

f (x)=64&(0.2x)2,

v(m)=40m&m2�2,

;=0.9,

6=[?
�
, ?� ]=[0.25, 1.25], and

m� =40=m f.

This parameterization of the model ensures that assumptions [A1]�
[A7] are met. As shown above, we assume u to be logarithmic in con-
sumption, and f and v to be quadratic.14 Maximal feasible output was set
at 64 and the satiation level of money was set at 40. The assumption on 6,
the range of permitted values of ht=Mt&1 �Mt , implies that the nominal
quantity of money can at most quadruple between periods, and that it can
shrink by twenty percent. The assumptions that ; is equal to 0.9 and that
m� =m f were made mostly for simplicity.

With these values, the set of possible values of seigniorage revenue is
given by X=[&30, 10]; then [A8] is satisfied. Now one can calculate
ranges of values of w and % that are consistent with this parameterization.
The representative agent's utility, w, must be bounded above by w� =
[u[ f (0)]+v(m f )]�(1&;), which is the discounted value of extracting no
seigniorage while enjoying the satiation level of real balances. A lower
bound for w is in turn given by w

�
=[u[ f (Max[x� , x

�
])]+v(0)]�(1&;), the

discounted value of living with the worst possible tax distortions and
worthless money. Hence any equilibrium value of w will belong to W=
[w

�
, w� ]. For our example, w

�
=144716 and w� =188618. Note, for future

reference, that the value of the nonmonetary equilibrium is 180618, the
value of the constant money supply equilibrium is 187397, and the value of
the competitive equilibrium associated with the Friedman rule (i.e., defla-
tion at the rate of time preference) is 188078. Both the constant money
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supply rule and the Friedman rule come very close to achieving the maxi-
mum feasible utility level w� .

As for %, recall that %=u$[ f (x)](m+x)=u$[ f (x)] hm. Since u$, h, and
m are nonnegative, % is bounded below by zero. An upper bound for % is
given by %� #u$[ f (x� )] ?� m f; for our example, %� =17857.

The next task is to compute 0, the set of % 's consistent with a com-
petitive equilibrium. To do this, we can implement Proposition 5, taking
Q0=[0, %� ] and applying B repeatedly to obtain a decreasing sequence of
sets Qn+1=B(Qn) which converges to 0. This procedure presents two
main difficulties. The first is that, although Q0 is a ``nice'' compact interval,
the sets Qn need not be as well behaved. In particular, those sets may not
be convex, which greatly complicates their representation in a computer.
To deal with this, we approximated the interval Q0=[0, w� ] by 101 equally
spaced points. Any subset of Q0 can be then represented, in the obvious
way, by a 101-tuple of ones and zeros, with ones denoting inclusion in the
set.

The second difficulty is related to the definition of B. Suppose that an
approximation to Qn , call it Q� n , is given (by a vector of zeros and ones).
The computation of Q� n+1=B(Q� n) amounts to checking, given any % in
Q� n , whether there is (m, x, h) in E and %$ in Q� n that solve (10)�(12). Given
the nonlinearity of (10)�(12), this is a nontrivial task, and we proceeded
as follows. We eliminated x by inserting (11) in (10) and (12). Then, the
ranges of values of m and h, given by [0, m� ] and 6 in the model, were
discretized: The interval [0, m� ] was approximated by 121 equally spaced
points, and 6 by 51 equally spaced points. ln other words, the set [0, m� ]_6
was represented by a 121_51 matrix which we will refer to as Egrid for the
discussion.

Now, given any % in Q� n , a finite search suffices to check whether there
is (m, h) in Egrid and %$ in Q� n that solve (10)�(12). There is one more
detail to deal with. Because of the discretization procedure, it is possible
that no (m, h, %$) in Egrid _Q� n solve (10)�(12) exactly, even if there is
(m, h, %$) in E_Qn that solve (10)�(12). To correct for this, we allowed an
element % of Q� n to be an element of Q� n+1 if there was (m, h, %$) in Egrid_
Q� n , such that (10)�(12) were satisfied approximately. For the example, the
maximum margin of (combined) error was set at one tenth of the size of
the intervals of the grid for %.

Summarizing, given an approximation Q� n (a vector of zeros and ones)
one can compute Q� n+1 by checking, for each nonzero element % of Q� n ,
whether there is an (m, h, %$) in Egrid _Q� n that approximately solves
(10)�(12). If there is such (m, h, %$), % is kept at one; if not, % is set to zero.
One can iterate on this procedure until convergence to obtain an approxi-
mation to 0; because of the discretization, convergence is guaranteed in a
finite number of iterations.
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To perform the computations, we wrote a GAUSS program and ran it
in my personal computer (a Pentium 200).15 These are relatively modest
resources, in spite of which the computation of 0 was relatively quick,
taking less than 10 minutes. However, the amount of computation and the
time required to compute 0 seem to increase quite fast as one increases the
number of points used to approximate the different sets involved.

The computations converged on a vector whose first 47 elements were
ones and the rest zeros. This result implies that 0 can be approximated by
the interval [0, 8399]. Hence, the procedure revealed that 0 is much
smaller than [0, %� ]. It also suggests that 0 is an interval, although further
investigation on this issue seems to be warranted.16

With the estimate of 0 in hand (call it 0� ), we proceeded to compute
an approximation to S, the set of all (w, %)'s consistent with a sustainable
plan. To this end one can exploit Proposition 13, taking Z0=W_0 and
applying E recursively to obtain a sequence Zn+1=E(Zn) which converges
to S. The computation of E presents essentially the same difficulties as the
computation of B, except that the amount of computation required is now
much more demanding.

To start the computations one needs a finite approximation to Z0=
W_0. 0 was naturally approximated by 0� , while W=[w

�
, w� ] was

approximated by a grid of 51 equally spaced points. Hence the subsets of
Z0 that emerge in the iterative procedure can be represented by matrices of
ones and zeros, with ones denoting inclusion. It will be seen that, for some
questions, one would like to study a finer approximation of W. This is
where our computational constraints became importantly binding: Even
with a grid this coarse, the computation of S took about 24 hours, and we
found that the amount of computing time grew very quickly with the fine-
ness of the grid for W. Nevertheless, we were able to take a further step
to improve the quality of the computation. My first computations showed
conclusively that very low values of w would not be consistent with any
sustainable plan. Since the application of Proposition 13 only requires that
Z0 contain the sustainable set S, in a final run we restricted the w values
under consideration to the interval [179837,188618], which was in turn
approximated by a grid of 51 points.

The other details related to the computation of S are very similar to
those associated with computing 0 and need not be repeated. Figure 1 dis-
plays the resulting approximation to S. Only the ``relevant'' part of the
computation is depicted. The algorithm sets entries belonging to the
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FIG. 1. For the parameterization of the text, the rectangle depicts (w, %) candidates in the
region [179837, 188618]_[0, 8399]. The dark set represents a computed approximation to
the sustainable set S.

approximation to S equal to one; they are the black squares in the figure.
The remaining, omitted entries were found to be zeros in our calculations
and hence need not be displayed. It has to be noted that our procedure
starts with W_[0, %� ] and shrinks to less than one tenth its original size.

Figure 1 shows that the SP values of w are approximated by the interval
[180716, 188091]. The lower bound is rather close to the value of the
nonmonetary equilibrium, and the difference is likely to be due to approxi-
mation error. Hence our computation suggests that the nonmonetary equi-
librium is the worst sustainable outcome for our example. Perhaps one
can arrive at the same conclusion by analytical means;17 it is nonetheless
remarkable that the result emerges directly from the computation.
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On the other hand, the upper bound of the computed S coincides almost
exactly with the value of the Friedman rule. Again, even though one may
be able to derive this result analytically, it is remarkable that it emerges
directly from the computation.

Finally, Fig. 1 suggests that S is not convex. It also suggests that S may
not be connected, although it is unclear whether this result is due to our
approximation procedure.

Computing sustainable paths for money growth, real balances, output,
etc. is now straightforward. We omit the details for brevity and because in
this example the result seems to be, simply, that any competitive equi-
librium path, whose continuation value is at all times no less than the value
of the nonmonetary equilibrium, is sustainable.

Although the results for the example just discussed are quite simple, our
discussion (we believe) has been fruitful. We know now that computing an
approximation to the whole set of sustainable plans is possible. In this
example, it has turned out that the nonmonetary equilibrium seems to be
the worst sustainable outcome; that result may not hold for other
parameterizations, though, while our procedures are still applicable and
deliver the whole sustainable set. One can perhaps criticize the quality of
my approximations, but improving them is just a matter of using more
powerful computer resources. In any case, we have learned that computa-
tional constraints may be binding and, therefore, that developing alter-
native procedures is an important topic for future research. Progress has
been made recently by Conklin and Judd [9] and Cronshaw [11],18 but
much more remains to be done.

9. FINAL REMARKS

This paper has provided recursive methods that yield a complete charac-
terization of the set of sustainable outcomes in Calvo's monetary economy.
The recursive characterization yields valuable insights about the set of
sustainable outcomes, and suggests algorithms for computing it.

It should be clear that the methods of this paper are applicable to a wide
variety of models. The essential requisite seems to be that the set of com-
petitive equilibria should have a recursive structure. This will typically be
the case if competitive equilibria can be described by the solution of
(possibly stochastic) difference equations. Hence, it is clear that the recur-
sive approach will be applicable to models that have physical state
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18 Both [9] and [11] focus on the problem of computing the fixed point of the Abreu,
Pearce, and Stachetti operator. They both assume that the fixed point is a convex set, which
simplifies the computer representation and implies a much smaller computational burden.



variables, uncertainty, etc. Indeed Phelan and Stachetti [22] have arrived
to a similar conclusion in the context of capital�labor taxation.

The results of this paper reduce the time consistency problem to a ques-
tion of computing two operators between sets. We implemented a brute
force way to deal with this computation that clearly leaves room for
improvement. It should be noted that this computing problem is still not
very well understood, as witnessed by Conklin and Judd's and Cronshaw's
recent attempts to create algorithms for applying the methods of [2].
Hence the development of simple and efficient computational procedures
should be a priority of future research.

The methods of this paper may be useful to investigate policy problems
under alternative assumptions. For example, they may be adapted to cases
in which governments' objectives differ from maximizing public welfare, as
assumed by the rapidly expanding literature on political economy.

Finally, the approach in this paper may be adapted to some problems in
which information may be imperfect, because of imperfect monitoring for
example. However, it is unclear whether other time consistency problems
with asymmetric information can be handled with the same approach.
These questions are also interesting for future research.

APPENDIX

Proof of Proposition 1. In any competitive equilibrium, mt # [0, m� ] by
our assumptions on the household's problem. That ht # H follows from
[A5]. It has already been shown that xt # X.

(6) follows from the government budget constraint. Finally, straight-
forward analysis implies that the Euler equation for the consumer is

mt[u$[ f (xt)]&v$(mt)]

�;u$[ f (xt+1)] ht+1mt+1 , with equality if mt<m� . (25)

Using (5), ht+1mt+1=mt+1+xt+1 . Inserting this in (25) gives (7).
Conversely, suppose (m, x, h) satisfy (6), (7), and (mt , xt , ht) # E, all t.

Define Mt=Mt&1 �ht , qt=mt�Mt , ct= f (xt). Then it is easy to check that
the policy (h, x) and the allocation (c, m, y, q) are a competitive equi-
librium. To see this, note that (6) and (7) ensure that, respectively, the
government budget constraint and the representative agent's Euler condi-
tions are satisfied. It is then sufficient to prove that the transversality condi-
tion for the representative agent holds, that is, that ;tu$[ f (xt)] mtht � 0 as
t � �. Now, since E is compact, the continuity of u$ and f ensures that
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u$[ f (x)] mh must belong to a compact interval for any (x, m, h) in E. Hence
u$[ f (xt)] mtht is a uniformly bounded sequence, and ;tu$[ f (xt)] mtht must
indeed converge to zero. K

Proof of Corollary 2. CE is a nonempty subset of the compact set E�.
Let (mn, xn, hn) be a sequence in CE converging to some sequence
(m, x, h). Since E� is compact, it is closed, and hence (m, x, h) belongs to
E�. By [A1]�[A2] and the fact that (6) and (7) are satisfied for each n
we can conclude that (m, x, h) must satisfy (6)�(7) as well. Hence (m, x, h)
belongs to CE. This implies that CE is a closed subset of the compact set
E�, hence it is compact. K

Proof of Proposition 3. For any bounded function w: 0 � R, let Tw be
the sup of u[ f (x)]+v(m)+;w(%$) over all (m, x, h, %$) # E_0 that satisfy
(10)�(12). The first claim of the Proposition is that w*=Tw*, and that
the sup is in fact achieved. To prove this, fix %=%0 # 0, and let (m, x, h)
attain the max in (8). Define %1=u[ f (x1)](m1+x1). Then (m0 , x0 , h0 , %1)
satisfies (10)�(12). Hence Tw*(%0)�u[ f (x0)]+v(m0)+;w*(%1)�w*(%0).
Suppose the inequality is strict. Then there is (m$0 , x$0 , h$0 , %$1) in E_0 that
satisfies (10)�(12) and such that u[ f (x$0)]+v(m$0)+;w*(%$1)>w*(%0). But
then there must be a plan (m$, x$, h$) # 1(%0) whose value is more than
w*(%0), which is a contradiction. Hence w*=Tw*, and the sup is achieved
by (m0 , x0 , h0 , %1).

To prove the second claim, let w be bounded and satisfy (9)�(12). Given
any %=%0 in 0, define a sequence (m, x, h) recursively as follows: If %t is
given in 0, choose (mt , xt , ht , %t+1) in E_0 that satisfies (10)�(12); such
a choice is possible by assumption. Clearly (m, x, h) # 1(%0) and has value
w(%0) by the boundedness of w. Hence w*(%0)�w(%0). The proof that
w(%0)�w*(%0) is easy and left to the reader. K

Proof of the Existence of a Sustainable Plan. It is easy to prove that
there is a sustainable plan in which money has no value; the reader can
supply the details. There is also a sustainable plan whose outcome is a con-
stant supply of money. The proof below may be of independent interest.

Let m̂ be the real quantity of money associated with zero money growth
and no taxes; that is, m̂ is the only solution to

u$[ f (0)](1&;)=v$(m̂). (26)

Then we claim that the following is a sustainable plan

_t(h
t&1)=1
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mt(h
t)=z(ht), where z(ht) is the (only) value of z # [0, m f] that solves:19

z[u$[ f (z(ht&1))]&v$(z)]=;u$[ f (0)] m̂. (27)

Finally, set xt(h
t)=(ht&1) mt(ht).

Before proceeding, note the intuition behind the candidate sustainable
plan. The government's strategy _ prescribes keeping the money supply
constant after any history. The allocation rule implicitly defined by (27)
states that, after any history ht, the private sector believes that the money
supply will be constant from period (t+1) on. In other words, any devia-
tion from the constant money supply rule is taken to be temporary. Hence,
the price level in period t adjusts to ensure that the supply of money in
period t is willingly held.

Now we check that the strategy _ and the allocation rule :t(h
t)=

(m(ht), x(ht)) are in fact a SP. _ is clearly admissible. To check that : is
competitive given _, note that the continuation of _ after any ht implies
that the money supply will be constant from period t on.

To check that _ is optimal given :, we shall show that the government
cannot gain from any one shot deviation from the constant money supply
rule, given any ht&1. Then the Principle of Optimality applies and implies
that no (finite or infinite) deviation from the constant money supply rule
can be profitable.

The allocation rule and the government's strategy imply that, after any
one shot deviation, the continuation of (:, _) deliver the same utility no
matter the value of the initial deviation. Hence a one-shot deviation is
profitable if and only if there is ht such that u[ f ((ht&1) mt]+v(mt)>
u[ f (0)]+v(m̂), i.e., if it improves current utility, with mt=z(ht). Now, the
definition of z(ht) implies that z(ht) is maximized at ht=1. But then the
above inequality cannot hold for any ht . K

Proof of Proposition 11. (i) Suppose Z�E(Z) and let (w, %) # Z. We
shall construct a SP that ``delivers'' (w, %) as follows. Set w0=w, %0=%.
Consider any period t�1, and an arbitrary history ht&1. To use an induc-
tive step, assume that (wt(ht&1), %t(ht&1)) # Z. By hypothesis, (wt(ht&1),
%t(ht&1)) # E(Z); hence there is (m~ , x~ , h� , w~ $, %� $) in E_Z s.t. (19)�(20) and
(22)�(24) are satisfied. Set _t(h

t&1)=h� , and define (mt(ht), xt(ht), wt+1(ht),
%t+1(ht)) to be equal to (m~ , x~ , w~ $, %� $) if ht=h� , and equal to any solution to
the problem (18)�(21) if ht{h� but ht # CE 0

? . If ht is not in CE 0
? , set (mt(h

t),
xt(h

t))=(0, 0) and (wt+1(ht), %t+1(h
t))=(w, %).
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T(m f )=m fu$[ f (m f (ht&1))]>m fu$[ f (0)]>;u$[ f (0)] m̂. The result follows.



By induction, the strategy _t(h
t&1), and the allocation rule :t(h

t)=
(mt(ht), xt(h

t)) are well-defined for all ht. It can be easily checked that
(:, _) are a SP, and that it ``delivers'' (w, %).

(ii) It suffices to show that S�E(S). This is easy and left to the
reader. K

Proof of Proposition 13. By Self generation it suffices to show that
Z� �E(Z�). Let (w, %) be in Z� . By definition, (w, %) belongs to E(Zn) all
n. Hence, for each n, there is (mn, xn, hn, w$n, %$n) in E_Zn that satisfies
(19)�(20), (22)�(23), and w�BR(Zn). Without loss of generality, assume
that (mn, xn, hn, w$n, %$n) converges to some (m, x, h, w$, %$) in E_W_0.
Clearly (m, x, h, w$, %$) satisfies (19)�(20) and (22)�(23). Moreover, it is
easily shown that (w$, %$) # Z� .20

It remains to show that w�BR(Z�). Fix an arbitrary n. For k�n,
wk�BR(Zk)�BR(Zn). Hence w�BR(Zn) for all n. Suppose that w<
BR(Z�). Then there is an h # CE 0

? such that BR(Z�)=P(h; Z�)>w. But
this implies a contradiction, because P(h; Zn) must converge to P(h; Z�)
for all h # CE 0

? , as shown next.
Suppose that P(h; Zn) does not converge to P(h; Z�) for some h # CE 0

? .
Then there is an =>0 such that, given any N, there is n�N such that
P(h; Z�)&P(h; Zn)>=. This means that for any k=1, 2, ... there is n(k)
and a subsequence (mn(k), xn(k), w$n(k), %$n(k)) in [0, m� ]_X_Zn(k) such that
n(k)�n(k&1), (19)�(21) are satisfied, and P(h; Zn(k))=u[ f (xn(k))]+
v(mn(k))+;w$n(k). The subsequence (mn(k), xn(k), w$n(k), %$n(k)) can be
assumed without loss of generality to converge to some (m, x, w$, %$) in
[0, m� ]_X_Z� . This (m, x, w$, %$) satisfies (19)�(21) and is such that
P(h; Z�)�u[ f (x)]+v(m)+;w$+=. But this contradicts the optimality of
P(h; Z�). The proof is complete. K
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