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Output Dynamics in Real-Business-Cycle Models

By TimotHY COGLEY AND JAMES M. NasoN*

The time-series literature reports two stylized facts about output dynamics in the
United States: GNP growth is positively autocorrelated, and GNP appears to
have an important trend-reverting component. This paper investigates whether
current real-business-cycle (RBC) models are consistent with these stylized facts.
Many RBC models have weak internal propagation mechanisms and must rely
on external sources of dynamics to replicate both facts. Models that incorporate
labor adjustment costs are partially successful. They endogenously generate
positive autocorrelation in output growth, but they need implausibly large
transitory shocks to match the trend-reverting component in output. (JEL E32,

C52)

There is an extensive empirical literature
on the time-series properties of aggregate
output. For example, prominent univariate
studies include papers by Charles R. Nelson
and Charles 1. Plosser (1982), Mark W.
Watson (1986), John Y. Campbell and N.
Gregory Mankiw (1987), John H. Cochrane
(1988), and James D. Hamilton (1989). Mul-
tivariate analyses include papers by Olivier
Jean Blanchard and Danny Quah (1989),
Robert G. King et al. (1991), and Cochrane
(1994). This literature documents two styl-
ized facts about output dynamics in the
United States. First, GNP growth is posi-
tively autocorrelated over short horizons and
has weak and possibly insignificant negative
autocorrelation over longer horizons (e.g.,

*Economic Research Department, Federal Reserve
Bank of San Francisco, 101 Market St., San Francisco,
CA 94105, and Department of Economics, University
of British Columbia, 1873 East Mall, Vancouver, BC
V6T 1Z1, respectively. We are grateful to two referees
for their comments; we have also benefited from dis-
cussion and correspondence with Jack Beebe, John
Cochrane, Roger Craine, Allan Gregory, Thomas
Sargent, Anthony Smith, Gregor Smith, Richard
Startz, and George Tauchen. Desiree Schaan provided
exceptional research assistance. Much of this work was
done while the authors were visiting the Haas School
of Business at UC-Berkeley, whose hospitality is grate-
fully acknowledged. Opinions expressed in this paper
do not necessarily represent the views of the Federal
Reserve Bank of San Francisco or the Federal Reserve
System.
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Nelson and Plosser, 1982; Cochrane, 1988).
Second, GNP appears to have an important
trend-reverting component that has a
hump-shaped impulse-response function
(e.g., Blanchard and Quah, 1989; Cochrane,
1994).

This paper links the empirical literature
on output dynamics with the theoretical lit-
erature on real-business-cycle (RBC) mod-
els. In particular, it considers whether vari-
ous RBC models are consistent with these
stylized facts. Our approach is similar in
spirit to the “test of the Adelmans” (e.g.,
Irma Adelman and Frank L. Adelman, 1959;
King and Plosser, 1994; Scott P. Simkins,
1994), except that we concentrate on a dif-
ferent set of stylized facts."? We ask how
often an econometrician armed with the
techniques used in the time-series literature
would observe the same kind of stylized
facts in data generated by RBC models. To

'These authors consider whether various models
can replicate Burns-Mitchell stylized facts.

There is also an extensive literature on testing for
unit roots. All the models that we study replicate the
univariate persistence found in U.S. GNP. This follows
directly from the specification of technology shocks. In
models where technology shocks are difference-
stationary, output has a unit root. In models where
technology shocks are trend-stationary, output has a
near unit root that conventional tests cannot distin-
guish from unity.
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be specific, we generate artificial data by
simulating a variety of RBC models, we
compute autocorrelation and impulse-
response functions for each artificial sam-
ple, and then we count the fraction of arti-
ficial samples that yield results like those
found in U.S. data. Formally, our procedure
can be regarded as a specification test of a
particular RBC model. Alternatively, one
can regard this as an informal guide to
model reformulation.’

We find that standard RBC models must
rely heavily on exogenous sources of dynam-
ics in order to replicate both stylized facts.
Many RBC models have weak endogenous
propagation mechanisms and do not gener-
ate interesting output dynamics via their
internal structure.* For example, in models
that rely on capital accumulation and in-
tertemporal substitution to spread shocks
over time, output dynamics are essentially
the same as impulse dynamics. Hence, these
models must rely on impulse dynamics to
replicate observed autocorrelation and
impulse-response functions.

Other RBC models incorporate gestation
lags or costs of adjusting the capital stock.
For example, time-to-build models assume
that it takes several quarters to install new
capital (e.g., Finn E. Kydland and Edward
C. Prescott, 1982), while g-theoretic models
assume that the marginal cost of installing
new capital is an increasing function of the
rate of investment (e.g., Marianne Baxter
and Mario J. Crucini, 1993). Gestation lags
and quadratic adjustment costs have little
effect on output dynamics. Although these
factors alter the flow of investment, the
change in the flow is very small relative to
the stock of capital. Hence gestation lags
and capital adjustment costs have little ef-
fect on the trajectory of the capital stock.
Since the capital stock is what matters for

Allan W. Gregory and Gregor W. Smith (1991)
discuss various aspects of this approach to analyzing
macroeconomic models.

4For example, see Lawrence J. Christiano (1988) or
King et al. (1988a,b).
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production, these factors do not generate
business-cycle dynamics in output. There-
fore, time-to-build and simple g-theoretic
models must also rely on impulse dynamics
to replicate observed output dynamics.

Finally, we examine RBC models that
incorporate lags or costs of adjusting labor
input. For example, Craig Burnside et al.
(1993) assume that firms are subject to a
one-quarter lag in adjusting employment.
We also consider dynamic labor-demand
models in which the marginal cost of adjust-
ing employment is an increasing function of
the rate of change in employment. These
models are partially successful. They en-
dogenously generate positive autocorrela-
tion in output growth and a small hump in
the transitory impulse-response function.
However, they must rely on implausibly large
transitory shocks in order to match the large
hump found in the transitory component of
GNP.

Our discussion is organized as follows.
Section I replicates the time-series evidence
and motivates our interest in it. Section II
discusses models that abstract from gesta-
tion lags, employment lags, and costs of
adjustment. Section III examines the effects
of incorporating gestation lags and capital
adjustment costs, and Section IV investi-
gates employment lags and labor adjust-
ment costs. The final section summarizes
our results.

I. Stylized Facts about Output Dynamics

According to Prescott (1986), the “busi-
ness-cycle phenomenon” has three dimen-
sions: the periodicity of output, comove-
ments of other variables with output, and
the relative volatilities of various series. This
paper provides information on the first di-
mension by comparing output dynamics in
RBC models with stylized facts reported in
the time-series literature.

Before proceeding to this comparison, we
undertake two preliminary tasks. First, since
the data used in the empirical literature
differ in a number of ways from the custom-
ary treatment in RBC models, we replicate
the time-series evidence so that it is con-
formable with the RBC literature. Second,
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FiGure 1. StyLizep Facts aBout GNP DyNaMics

we explain why students of the business
cycle might care about these stylized facts.

A. The Autocorrelation Function
for Output Growth

Nelson and Plosser (1982) and Cochrane
(1988) report that output growth is posi-
tively and significantly autocorrelated over
short horizons and negatively but insignifi-
cantly autocorrelated over longer horizons.
While their results are based on annual
data, RBC models are typically calibrated to
generate quarterly data. There are two ways
to reconcile the difference in sampling fre-
quency. One is to time-aggregate data gen-
erated by RBC models, and the other is to
replicate the time-series evidence using
quarterly data. Since temporal aggregation

involves a loss of information, we prefer to
do the latter.

The upper left panel of Figure 1 reports
the autocorrelation function (ACF) for real
per capita GNP growth, 1954:1-1988:4,
along with bands that mark plus and minus
two standard errors.’ At lags of 1 and 2
quarters, the sample autocorrelations are
positive and statistically significant. At
higher lags, the autocorrelations are mostly
negative and statistically insignificant. This
is basically the same pattern as found in
annual data.

5The starting date was chosen to match other RBC
simulations (e.g., Prescott, 1986). The standard errors
are robust to serial correlation and heteroscedasticity
in output growth.
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The economic significance of the autocor-
relation function becomes apparent when it
is transformed into frequency domain. The
lower left panel of Figure 1 shows the spec-
trum for output growth, which was esti-
mated by smoothing the periodogram using
a Bartlett window. The spectrum decom-
poses the variance of output growth by fre-
quency. A peak in the spectrum indicates
that the corresponding periodic components
have greater amplitude than other compo-
nents and therefore contribute a greater
portion of the variance. The spectrum for
output growth has a broad peak that ranges
from approximately 2.33 to 7 years per cy-
cle, with maximum power at roughly 3.2
years per cycle. Thus a relatively large pro-
portion of the variance of output growth
occurs at business-cycle frequencies.

B. Impulse-Response Functions for Output

While the autocorrelation function pro-
vides some information about business-cycle
periodicity, it also masks differences in the
dynamic response of output to various kinds
of shocks. This problem does not arise in
one-shock RBC models. However, in multi-
shock RBC models, the autocorrelation
function is a complicated function of the
various impulse-response functions. Since
these models imply that output responds
differently to different kinds of shocks, the
impulse-response functions contain addi-
tional useful information about output dy-
namics.

To estimate impulse-response functions,
we use the structural VAR technique devel-
oped by Blanchard and Quah (1989). They
use information on output growth and the
unemployment rate to decompose GNP into
permanent and transitory components. In
particular, they assume that there are two
kinds of orthogonal shocks, one that has a
permanent effect on output and another
that has only a transitory effect, and these
assumptions are sufficient to identify the
two components.

RBC models do not generate data on
the unemployment rate. To make the
Blanchard-Quah model conformable with
RBC models, we substitute per -capita
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CHRrisTIANO-E1cHENBAUM (CE) MODEL

hours worked for the unemployment rate.
Balanced-growth RBC models imply that
per capita hours are stationary, so the modi-
fied VAR satisfies the Blanchard-Quah as-
sumptions. A second-order VAR was esti-
mated for per capita output growth and
hours over the period 1954:1-1988:4, and
impulse-response functions were estimated
using the Blanchard-Quah technique. The
solid lines in the right-hand panels of Fig-
ure 1 illustrate the results. In response to a
permanent shock, output rises gradually and
reaches a plateau after about six years. In
response to a transitory shock, output rises
for a few quarters and then returns to its
stochastic trend. A substantial portion of
the variation in output growth is due to
transitory fluctuations. Thus, output ap-
pears to have an important trend-reverting
component.

As a robustness check, we also estimated
impulse-response functions by applying the
Blanchard-Quah technique to a vector
error-correction model for output and con-
sumption. The results are shown as dotted
lines in the right-hand side of Figure 1, and
they are quite similar to those obtained
from the output—hours model. For example,
the contemporaneous correlation between
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the permanent innovations in the two mod-
els is 0.89. Output rises more quickly in
response to a permanent shock, and the
transitory impulse-response function is a bit
smaller in magnitude, but these differences
do not affect any of the results reported
below. To save space, we focus on results
derived from the output—hours model.
Finally, when applied to data generated
by two-shock difference-stationary RBC
models, the Blanchard-Quah decomposition
extracts reasonable estimates of the popula-
tion impulse-response functions. For exam-
ple, Figure 2 compares the population
impulse-response functions from the model
of Christiano and Martin Eichenbaum
(1992) with the mean estimate from 1,000
Monte Carlo replications. The estimated
impulse-response functions exhibit the right
qualitative pattern, but they are biased
downward due to the usual small-sample
bias in time series.® Nonetheless, for the
multishock models that we consider, the
Blanchard-Quah method allows us to esti-
mate reasonable sample analogues to the
population impulse-response functions.

I1. Baseline Real-Business-Cycle Models

Broadly speaking, RBC models rely on
three kinds of propagation mechanisms:
capital accumulation, intertemporal substi-
tution, and various kinds of adjustment lags
or costs. This section studies a number of
models that abstract from adjustment lags
or costs and that rely entirely on capital
accumulation and intertemporal substitu-
tion to spread shocks over time. Our list
includes the models of King et al. (1988b),
Jeremy Greenwood et al. (1988), Gary D.
Hansen (1989), Jess Benhabib et al. (1991),
Christiano and Eichenbaum (1992), and
R. Anton Braun (1994).

®The reduced-form VAR has a near unit root, and
the estimated root is biased downward in finite sam-
ples. This causes the estimated impulse-response func-
tions to decay faster than the population impulse-
response functions. We obtain similar results for the
other two-shock models studied in this paper.
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These models have similar structures and
parameter values, and they generate similar
output dynamics. For expositional purposes,
it will be convenient to discuss our results in
terms of a single model and then to indi-
cate how the results for other models differ.
We begin by outlining the Christiano-
Eichenbaum model. In this model, there is
a representative agent whose preferences
are given by

(1) E,{ _ioﬁf[ln(cm) +y(N - n,+,.)]}

where ¢, is consumption, N is the total
endowment of time, n, is labor hours, and
B is the subjective discount factor. Follow-
ing Christiano and Eichenbaum, we assume
that B =1.03"%% and y = 0.0037.

There is also a representative firm that
produces output by means of a Cobb-
Douglas production function:

(2) yt=kf(atnt)l-g

where y, is output, k, is the capital stock,
and a, is a technology shock. The capital
stock obeys the usual law of motion:

(3) kt+1=(1_8)kt+it

where 6 is the depreciation rate and i, is
gross investment. Christiano and Eichen-
baum (1992) estimate that 6 =0.344 and
6 = 0.021.

The model is driven by technology and
government spending shocks. Technology
shocks are assumed to be difference-
stationary, but none of our results depends
on this assumption.” We initially assume
that technology shocks follow a random walk
with drift and that government spending
shocks evolve as a persistent AR(1) process

"We have also studied trend-stationary representa-
tions for each of the models discussed in the paper,
and the results are essentially the same.
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around the stochastic technology trend:
(4) (1-L)h‘l(at)=[.L+ea,
(5) ln(gt)*ln(at)=g+3gt/(l‘pL)

where g, denotes government spending and
&, and &,, are the technology and govern-
ment spending innovations, respectively.
Later we consider models with more com-
plicated impulse dynamics. Christiano and
Eichenbaum (1992) estimate u = 0.004, g =
0.177, and p=0.96. We assume that the
relative volatility of the two shocks is the
same as in Christiano and Eichenbaum
(1992), but we rescale the innovation vari-
ances so that the model matches the sample
variance of per capita GNP growth. This
yields o, = 0.0097 and o, = 0.0113.

The model has a balanced-growth equi-
librium. The natural logarithm of per capita
output inherits the trend properties of
total factor productivity and is therefore
difference-stationary. Preferences are re-
stricted so that technical progress has no
long-run effect on labor supply. Hence per
capita hours follow a stationary process.

The other models in the group differ in
various ways. The King et al. (1988b),
Hansen (1989), and Greenwood et al. (1988)
models assume that technology shocks are
the only source of fluctuations. Greenwood
et al. also assume that technology shocks
affect new capital goods but not existing
capital and that firms vary capacity utiliza-
tion in response to variation in the user
cost of capital. Braun (1994) extends the
Christiano-Eichenbaum model by including
distortionary taxes on labor and capital. Fi-
nally, Benhabib et al. (1991) study a two-
sector model in which goods are produced
at home as well as in the market. These
variations have important effects on co-
movements and relative volatilities, but in
most cases they have little influence on out-
put dynamics.®

8In replicating these models, we follow the original
construction as closely as possible. For example, we use
the same preference and technology parameter values
as in the original. However, in the Greenwood et al.
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The remainder of this section considers
whether these models are consistent with
the stylized facts discussed in the previous
section. Our statistical approach is based on
Monte Carlo simulation. The models were
used to generate artificial data over a time
horizon of 140 quarters, which matches the
length of the sample period, 1954:1-1988:4.
Each model was simulated 1,000 times.
Autocorrelation and impulse-response func-
tions were estimated for each artificial sam-
ple, and the results were collected into
empirical probability distributions. The em-
pirical distributions were then used to calcu-
late the probability of observing the statis-
tics estimated from U.S. data under the
hypothesis that the data were generated by
a particular RBC model.

A. Autocorrelation Functions

Our first question is whether the models
replicate the autocorrelation function for
output growth. To test the match between
sample and theoretical autocorrelation
functions, we compute generalized Q statis-
tics, which are defined as follows:

(6)  Qur=(e—¢)V'(e-0).

The vector ¢ is the sample autocorrelation
function, and ¢ is the model-generated au-
tocorrelation function. The latter was esti-
mated by averaging autocorrelations across

(1988) model, the original specification generates time
series that are stationary around a steady-state equilib-
rium. We transform this to a sustained-growth econ-
omy by adding nonstationary technical progress. Simi-
larly, in the Benhabib et al. (1991) model, the original
specification generates series that are stationary around
a deterministic trend. We transform this to a
difference-stationary model by assuming that market
technology shocks follow a random walk with drift.
Finally, we rescale the shocks in all the models so that
they match the sample variance of output growth. A
technical appendix, which is available from the authors
upon request, provides details about the model speci-
fications and parameter values, and it discusses the
numerical techniques used to solve the models.
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the ensemble of artificial samples:

N
(7) c=(1/N) X ¢

i=1

where c¢; is the autocorrelation function on
replication i, and N =1,000 is the number
of replications. The covariance matrix, V,, is
estimated by taking the ensemble average of
the outer product of the autocorrelation
function for simulated data:

(8) V.=N"! % [e; —¢][c; —c].

i=1

Generalized Q statistics are approximately
chi-square with degrees of freedom equal to
the number of elements in ¢. As with an
ordinary Q statistic, some judgment is re-
quired in choosing the number of lags. Since
the autocorrelations die out at high-order
lags, too high a choice will diminish the
power of the test. We report results for a
lag order equal to 8, but the results are not
sensitive to this choice.

The first column of Table 1 reports Q,
statistics for each model, with chi-square
probability values shown in parentheses. A
large value of Q, indicates that the theo-
retical autocorrelation function is a poor
match for the sample autocorrelation func-
tion. The models are all rejected at roughly
the 1-percent level or better.

The upper left panel of Figure 3 illus-
trates the results for the model of Chris-
tiano and Eichenbaum (1992). The solid
line shows the sample autocorrelation func-
tion, and the dotted line shows the model-
generated autocorrelation function. The
dotted line is hard to see because it lies on
top of the horizontal axis. Since the model-
generated autocorrelations are all close to
zero, output growth is close to being white
noise. The main discrepancy between the
sample and theoretical autocorrelations is
the absence of positive dependence at lags 1
and 2.

Further insight can be obtained by look-
ing at the problem in frequency domain.
The lower left panel of Figure 3 compares
the sample power spectrum, which is shown

JUNE 1995

TABLE 1—BaseLINE REAL-BUsINEss-CYCLE MODELS

Oirs
Model Qact Yp YT
King et al. (1988b) 23.0 — —
(0.003)
Hansen (1989) 20.5 — —
(0.008)
Greenwood et al. (1988) 25.7 — —
(0.001)
Christiano and 22.1 50.1 449.3
Eichenbaum (1992) (0.005) (0.018) (0.000)
Benhabib et al. (1991) 31.2 23.0 163.9
(0.0001) (0.064) (0.001)
Braun (1994) 19.9 25.2 194.3
(0.011) (0.054) (0.001)

Notes: This table reports test statistics for the autocor-
relation and impulse-response functions. The statistics
Q. and Q;; are defined by equations (6)-(8) and
(9)-(11), respectively. The variable yp refers to the
permanent component of output, and y; refers to
the transitory component. The autocorrelation and
impulse-response functions are truncated at lag 8, and
probability values are in parentheses.

by the solid line, with the model-generated
spectrum, which is shown by the dotted line.
The dashed lines show upper and lower
2.5-percent probability bounds implied by
the model.” The Christiano-Eichenbaum
model does not generate business-cycle
periodicity in output growth. Instead, its
spectrum is quite flat, which indicates that
business-cycle components are no more im-
portant than other periodic components.
Further, the disparity between sample and
theoretical spectra cannot be dismissed as
sampling error, since the business-cycle peak
in the sample spectrum lies well above the
2.5-percent upper probability bound im-
plied by the model. Data generated by this
model rarely exhibit business-cycle peaks of
this magnitude.

These results also apply to four of the
other five models in this group. The
Benhabib et al. (1991) model is the only one

The theoretical spectrum was estimated by smooth-
ing the ensemble averaged periodogram with a Bartlett
window. Upper and lower probability bounds were
computed using the approximation given by theorem
5.5.3 in David R. Brillinger (1981).
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Note: Solid lines show sample moments, and dotted lines show moments that are generated by the Christiano-

Eichenbaum model.

that endogenously generates serial correla-
tion in output growth, but it generates nega-
tive autocorrelation and is rejected even
more strongly than the others (see the fifth
row of Table 1).

B. Impulse-Response Functions

Our second question is whether the base-
line models replicate observed impulse-
response functions. To test the match
between sample and model-generated
impulse-response functions, we compute the
following statistic:

9 Qu=(F-0)V'(F-r).

The vectors t and r are the sample and

model-generated impulse-response func-
tions, respectively. Theoretical impulse-
response functions are estimated by aver-
aging across the ensemble of artificial
samples,

(10) r=(I/N) L,

i=1

where r; is the impulse-response function
on iteration i. The covariance matrix, V,, is
estimated by taking the ensemble average of
the outer product of the simulated impulse
response functions:

(11) V,=N"! % [r, —r][r;—r].
i=1
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Again, since we are interested in short-run
dynamics, we truncate at lag 8.1°

The second and third columns of Table 1
report impulse-response statistics for the
Christiano-Eichenbaum, Benhabib et al.,
and Braun models, with Monte Carlo prob-
ability values shown in parentheses. (The
other models in this group are driven by a
single shock, so their bivariate VAR’s have
stochastic singularities.) These models have
some success matching the permanent
impulse-response function but do not match
the transitory impulse-response function. On
this dimension, the models are rejected at
better than the 1-percent level.

The right-hand panels of Figure 3 illus-
trate the results for the model of Christiano
and Eichenbaum. The solid lines show the
sample impulse-response functions, and
dotted lines show model-generated impulse-
response functions. The model strongly
damps transitory shocks, so most of the
variation in output growth is due to perma-
nent movements. Furthermore, while GNP
first rises and then falls in response to a
transitory shock, the model generates
monotonic decay. Thus the model does not
generate an important trend-reverting com-
ponent in output. Similar results apply to
the Braun (1994) and Benhabib et al. (1991)
models.

C. Impulse and Propagation

These results can be interpreted in terms
of the model’s impulse dynamics and propa-
gation mechanisms. First consider the infor-
mation in the autocorrelation function. In
the Christiano-Eichenbaum model, technol-
ogy shocks account for most of the variation
in output growth. So far, we have assumed
that technology shocks follow a random
walk, which implies that the autocorrela-
tions for growth in total factor productivity

19 the chosen lag order is too low, we lose infor-
mation about the shape of the transitory impulse-
response function. Choosing too high a lag order re-
duces the power of the test because the transitory
impulse-response function dies out and the standard
errors for the permanent impulse response grow large.

JUNE 1995

are zero. Figure 3 shows that the autocorre-
lations for output growth are also close to
zero. Thus the dynamics of output growth
are essentially the same as the dynamics of
total factor productivity growth. This sug-
gests that the model has weak propagation
mechanisms.

The impulse-response functions provide
additional information. In the Christiano-
Eichenbaum model, the permanent compo-
nent of output can be written as:

eu(1) 1-0.87L
(12) yp(t)=[1_LH(1‘°4)(1———o.97Z)]

(see Cogley and Nason, 1993). The right-
hand side is partitioned so that the first
term shows shock dynamics and the second
term shows propagation effects. The perma-
nent component inherits a random-walk
term from the technology shock and an
ARMA(,1) term from the propagation
mechanisms. However, the ARMA(, 1)
term contains near common factors. Since
these roughly cancel, the propagation ef-
fects nearly vanish. Hence the model weakly
propagates technology shocks.

The transitory component of output can
be written as

£g(1)

1-0.96L ](0‘16)'

(13) yr(t)=[

This is also partitioned so that the first term
shows shock dynamics and the second term
shows propagation effects. The transitory
impulse-response function inherits the
AR(1) dynamics of the government spend-
ing shock. Propagation mechanisms damp
government spending shocks but do not al-
ter their dynamics. Hence there are no dy-
namic propagation effects on government
spending shocks.

In the Christiano-Eichenbaum model,
output dynamics are determined primarily
by impulse dynamics, with little contribution
from propagation mechanisms. Since propa-
gation mechanisms are weak, the model does
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not endogenously generate business-cycle
dynamics in output. Similar results apply to
four of the other five models in this group.

The Benhabib et al. (1991) model is the
only one in this group that has a strong
propagation mechanism, but it generates
negative autocorrelation in output growth.
This arises from intersectoral labor flows,
which enhance intertemporal substitution
into and out of market employment. To
understand how this works, it is useful to
think about the response of market output
to Cholesky innovations.!! A transitory shock
is defined as a one-unit increase in home
productivity, while a permanent shock con-
sists of a one-unit increase in market pro-
ductivity plus a fractional increase in home
productivity.

In response to a temporary increase in
home productivity, labor flows out of the
market and into the home sector, causing
market output to fall at impact. Home pro-
ductivity shocks follow an AR(1) process, so
home productivity peaks at impact and then
begins to decline. As it falls, labor gradually
returns to the market, and measured output
rises back toward its stochastic trend. Thus,
in response to a transitory shock, measured
output falls at impact and then rises back
toward trend, generating negative autocor-
relation in the transitory component of out-
put growth.

The response to a permanent shock is a
combination of the responses to home and
market innovations. Qutput rises in re-
sponse to a positive innovation in market
productivity, but the impact effect is par-
tially damped by a positive innovation in
home productivity, which draws some labor
out of the market sector. Subsequently, as
home productivity declines, labor gradually
returns to the market, generating further
small increases in output. The positive im-
pact effect on market output is followed by
a sequence of further small increases, and
this generates modest positive autocorrela-

1'Home and market technology shocks are positively
correlated, and this thought experiment implicitly ac-
counts for the covariance term.
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tion in the permanent component of output
growth.

The autocorrelation function for output
growth depends on both effects. But since
the permanent-growth component involves
partially offsetting effects, the negative
autocorrelation in the transitory-growth
component dominates. Therefore the home-
production model generates negative auto-
correlation in output growth.

D. External Sources of Dynamics

Models that have weak propagation
mechanisms must rely on external sources
of dynamics to replicate observed output
dynamics. This section briefly considers
three possible candidates: temporal aggre-
gation, serially correlated increments to
total factor productivity, and higher-order
autoregressive representations for transitory
shocks. While all three are sufficient to gen-
erate positive serial correlation in output
growth, the first two do not generate a
hump-shaped transitory impulse-response
function. Furthermore, all three require
shock dynamics that are counterfactual in
some dimension.

We investigate these issues in the context
of the Christiano-Eichenbaum model. We
first consider whether temporal aggregation
might account for observed output dynam-
ics. Suppose, for example, that households
and firms make decisions on a weekly basis.
To convert from a quarterly to a weekly
model, we followed the procedure of
Christiano (1989). The parameters with time
dimensions, such as the discount rate, 1
minus the depreciation rate, and the au-
toregressive coefficients, were adjusted by
raising them to the 1/13 power. The time
endowment and means of the disturbances
were divided by 13, and the innovation
variances were rescaled so that the time-
aggregated data match the sample variance
of output growth. The modified model was
used to generate weekly data, the weekly
data were flow-averaged to generate quar-
terly series, and autocorrelation and
impulse-response functions were estimated
from the temporally aggregated quarterly
data. The first row of Table 2 reports test
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TABLE 2—EXTERNAL SOURCES OF DYNAMICS

Qirf

Source Qact yp yr

Temporal aggregation 7.7 11.6 803.7
(0.467) (0.182) (0.000)

ARIMA(1,1,0) 8.6 117.7 152.1
technology shocks (0.376)  (0.003)  (0.003)

AR(2) government 5.5 23.2 14.4
spending shocks (0.705)  (0.070)  (0.126)

Notes: This table reports test statistics for the autocor-
relation and impulse-response functions. The statistics
Q. and Q; are defined by equations (6)-(8) and
(9) (11) respectively. The variable yp refers to the
permanent component of output, and yr refers to
the transitory component. The autocorrelation and
impulse-response functions are truncated at lag 8, and
probability values are in parentheses.

statistics, and the top panels of Figure 4
show the impulse-response functions.

On a weekly basis, output is well approxi-
mated by a random walk, which implies that
quarterly output is well approximated by an
ARIMA(O, 1,1) process with first-order
autocorrelation equal to 0.25. Thus the tem-
porally aggregated model easily passes the
autocorrelation test (see the first row of
Table 2, column 1). However, while the
model generates roughly the right degree of
autocorrelation in output growth, it gener-
ates too much autocorrelation in total factor
productivity growth. In U.S. data, the
first-order autocorrelation for growth in to-
tal factor productivity is —0.015, whereas
the mean autocorrelation in the time-aggre-
gation model is 0.234. The difference is sig-
nificant at the 0.2-percent level.

Furthermore, the impulse-response func-
tions show that temporal aggregation oper-
ates primarily on the permanent component
and has little effect on the transitory com-
ponent. Time aggregation improves the
model’s ability to replicate the permanent
impulse-response function but does not
generate a hump-shaped transitory
impulse-response function. On the latter di-
mension, the model is still rejected at better
than the 1-percent level. Thus, temporal
aggregation does not account for the trend-
reverting component found in U.S. data.
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Next we consider whether serial correla-
tion in total factor productivity growth might
account for observed output dynamics. We
return to the quarterly model but now as-
sume that technology shocks follow an
ARIMA(1,1,0) process with autoregressive
coefficient equal to 0.2. Output growth in-
herits the AR(1) structure of total factor
productivity growth, so this model also
passes the autocorrelation test (see the sec-
ond row of Table 2). But this specification
also generates too much autocorrelation in
total factor productivity growth. Further-
more, since technology shocks drive the per-
manent component of output, this modifi-
cation does not generate a hump-shaped
transitory impulse response (see the second
row of Fig. 4). The model is still rejected on
these dimensions.

To replicate both stylized facts, the model
needs a high-variance transitory shock that
has a hump-shaped moving-average repre-
sentation. Hump-shaped shock dynamics are
needed to match the shape of the sample
impulse-response function, and a high vari-
ance is needed to match its magnitude. For
example, suppose that government spending
shocks follow an AR(2) process with roots
equal to 0.9 and 0.45.'2 Also suppose that
the standard error of the innovation to gov-
ernment spending is 3.5 times larger than in
the baseline model. (To match the sample
variance of output growth, the standard er-
ror of technology shocks must then be re-
duced by roughly 30 percent.) In this case,
the transitory component of output inherits
a large hump-shaped impulse-response
function from the transitory shock (see the
bottom panels of Fig. 4). This generates
positive low-order autocorrelation in out-
put growth, so the model also passes the
autocorrelation test (see the third row of
Table 2).

While this specification can replicate both
stylized facts, it must rely on partially coun-
terfactual shock dynamics to do so. The

2These are roughly the same as the AR roots for
the transitory component of GNP.
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Transitory IRF: Time Aggregation
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FiGURE 4. EXTERNAL SOURCES OF DYNAMICS

Note: Solid lines show sample impulse-response functions, and dotted lines show model-generated impulse-

response functions.

specification for Solow residuals is plausi-
ble, but the representation for government
spending is problematic. In U.S. data, gov-
ernment spending is better approximated by
an AR(1) process around the productivity
trend. If one fits an AR(2) model to these
data, the second root is equal to 0.07 with a
standard error of 0.05. Furthermore, the
assumed innovation variance for govern-
ment spending is much larger than in the
data, so the government-spending shocks
are implausibly large.

III. Gestation Lags and Capital
Adjustment Costs

In the baseline models, there are no costs
or time lags associated with adjusting the
capital stock. This section studies two mod-
els that incorporate these features. The first
is a time-to-build model, which assumes that
firms face multiperiod gestation lags when
installing new capital and that there are
no markets for capital goods in process.
The second is a g-theoretic model, which
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FIGURE 5. GESTATION LAGs AND CAPITAL ADJUSTMENT COSTS

Note: Solid lines show sample moments, and dashed and dotted lines show model-generated moments.

assumes that the marginal cost of installing
new capital is an increasing function of the
rate of investment.

The time-to-build model closely re-
sembles the one studied by K. Geert
Rouwenhorst (1991). In this model, technol-
ogy shocks are the only source of fluctua-
tions. Preferences and technology are re-
stricted so that there is a balanced-growth
equilibrium, and firms face a 3-quarter ges-
tation lag when installing new capital. We
follow Rouwenhorst’s specification because
it isolates the role of the time-to-build tech-
nology and because it has a balanced-growth
equilibrium when driven by labor-augment-
ing technical progress.

The g-theoretic model is a variant of the
Christiano-Eichenbaum model in which the
production function is modified so that there
are quadratic costs of adjusting the capital
stock. In particular, the production function
becomes

(14) In(y,) =In[f(k,,a,n,)]
_(ak/z)[Akt/kt—l]z

while all the other aspects of the model
remain the same. This specification implies
that the marginal cost of adjusting the capi-
tal stock is a linear function of the rate of
net investment, and it is similar to the speci-
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fications used by Matthew D. Shapiro (1986)
and Baxter and Crucini (1993).13

The parameter «, is calibrated from esti-
mates in Shapiro (1986). Using his parame-
ter estimates, the marginal cost of a 1-per-
cent increase in the capital stock amounts
to roughly 2.2 percent of a quarter’s output.
Hence the baseline value for «, is 2.2. To
check whether the results are sensitive to
the choice of «,, we also simulated the
model for a; equal to 2.2/4,2.2/2, 2X2.2,
and 4X2.2, and we found that the results
were not sensitive to the size of the
adjustment-cost parameter.

Figure 5 summarizes output dynamics in
the time-to-build and baseline g-theoretic
models, and Table 3 reports test statistics.
The left-hand panels of Figure 5 report
autocorrelation functions and power spectra
for output growth, with solid lines showing
sample moments and dashed and dotted
lines showing model-generated moments.
Gestation lags and capital adjustment costs
do not generate serial correlation or
business-cycle periodicity in output growth.
As in the baseline RBC models, time-to-
build and g-theoretic models imply that
output growth is approximately white noise,
and this implication is rejected at better
than the 1-percent level (see the first col-
umn of Table 3).!*

BThere are two superficial differences between our
specification and that of Baxter and Crucini. First,
Baxter and Crucini subtract the adjustment cost from
the flow of investment rather than the flow of output.
Second, they start with a general functional form for
adjustment costs and then linearize the marginal
adjustment-cost function when approximating the
model’s first-order conditions. The two formulations
yield similar output dynamics.

The main difference between our specification
and that of Rouwenhorst is that he assumes that tech-
nology shocks are trend-stationary. This has a minor
effect on the results. In the trend-stationary specifica-
tion, the autocorrelation function for output growth
exhibits slowly decaying, low-amplitude, period-3 oscil-
lations (the spectrum has a small peak at 3 quarters per
cycle). This arises directly from the gestation lag. A
positive technology shock generates an increase in out-
put. The increase is temporary, so the representative
consumer saves much of it, thus generating a relatively
large increase in new project starts. Three periods
hence, the new projects come on line as productive
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TABLE 3—GESTATION LAGS AND CAPITAL
ADJUSTMENT COsTs

Qi
Model Qact yp yr
Time-to-build 20.6 — —
(0.008)
Q-theory, a, =2.2 20.1 574 419.3
(0.008) (0.015) (0.000)
Sensitivity analysis:
a,=22/4 21.8 40.1 410.8
(0.005)  (0.028) (0.000)
a,=22/2 21.4 40.0 406.5
(0.006) (0.028) (0.000)
a=222) 19.0 711 385.9
(0.015)  (0.008) (0.000)
a, =4(2.2) 16.4 95.9 387.1
(0.036)  (0.005)  (0.000)

Notes: This table reports test statistics for the autocor-
relation and impulse-response functions. The statistics
Q. and Q;, are defined by equations (6)-(8) and
(9)-(11), respectively. The variable yp refers to the
permanent component of output, and y refers to the
transitory component. The autocorrelation and
impulse-response functions are truncated at lag 8, and
probability values are in parentheses. The parameter
a, governs the marginal cost of a 1-percent change in
the capital stock [see equation (14) and the discussion
in Section III].

The g-theoretic model is driven by tech-
nology and government spending shocks,
and the two impulse-response functions are
shown in the right-hand panels of Figure 5.
For the sake of comparison, the impulse-
response functions for the original model of
Christiano and Eichenbaum (1992) are also
shown. The addition of capital adjustment
costs has almost no effect on the model’s
impulse-response functions. As in the origi-
nal Christiano-Eichenbaum model, output
dynamics are determined primarily by im-
pulse dynamics. Since capital adjustment
costs do not help to propagate shocks over
time, the g-theoretic model does not en-
dogenously generate business-cycle dynam-
ics in output. Thus, the g-theoretic model
must also rely on external dynamics to match
the sample impulse-response functions.

capital, generating a secondary increase in output, and
so on. Since gestation lags are typically assumed to be
three or four quarters, time-to-build cycles do not
account for U.S. business cycles.
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This result may seem counterintuitive.
Initially, our intuition was that gestation
lags and capital adjustment costs would help
to propagate shocks by spreading the re-
sponse of investment over time and that this
might generate interesting output dynamics.
This intuition is half right. Gestation lags
and capital adjustment costs do alter the
flow of investment relative to the baseline
model, but the change in the flow is small
relative to the stock of capital. Quarterly
net investment is only 0.4 percent of the
capital stock, on average, so gestation lags
and capital adjustment costs would have to
have huge effects on investment in order to
have significant effects on the short-term
dynamics of capital. Since these factors have
only modest effects on investment, they have
very little effect on the path of the capital
stock. The capital stock is what matters for
production, so gestation lags and capital
adjustment costs have little effect on the
short-term dynamics of output.

IV. Employment Lags and Labor
Adjustment Costs

Baseline RBC models also abstract from
employment lags and labor adjustment costs,
and this section examines two models that
incorporate these features. The first is a
difference-stationary version of the labor-
hoarding model of Burnside et al. (1993).
They assume that firms must choose the size
of the labor force before observing the cur-
rent state of the economy but can vary the
intensity of work effort after observing the
current state. Although employment adjust-
ment costs are not explicitly modeled, one
can interpret this as the reduced form of a
model in which it is infinitely costly to make
current-quarter adjustments on the exten-
sive margin (e.g., by hiring, layoffs, or over-
time). Thus firms choose to make all their
current-quarter adjustments on the inten-
sive margin (i.e., by varying effort). Since
the ability to vary work effort only partially
compensates for the inability to make
current-quarter employment adjustments,
these assumptions introduce a one-period
lag in adjusting labor input, and this helps
to propagate shocks over time.
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We also consider a dynamic labor-
demand model which assumes that the
marginal cost of adjusting employment is a
linear function of its rate of change. This
model extends the previous section’s g-
theoretic model to include quadratic costs
of adjusting labor input. In particular, the
production function now becomes

(15) ln( yt) = ln[f(k,,a,n,)]
— (e /2)[ Ak, /K, T

- (an/z)[Ant/nt—I]2

while the other elements of the model re-
main the same. For a,, we use the previous
section’s benchmark value of 2.2, but the
results do not depend on the value of this
parameter.

The labor-adjustment parameter, a,, is
calibrated using Shapiro’s estimates. He dis-
tinguishes between adjustment costs for
production and nonproduction workers and
finds that the latter are substantial but that
the former are negligible. In particular, the
marginal cost of a 1-percent change in the
number of nonproduction workers is roughly
0.36 percent of a quarter’s output, while the
marginal cost of a 1-percent change in the
number of production workers cannot be
distinguished from zero.

Since our model has only one kind of
worker, it is a bit difficult to translate
Shapiro’s (1986) estimates directly into a
value of a,. If employment of production
and nonproduction workers varied in the
same proportion, one could simply set a,
equal to 0.36. However, employment of
production workers appears to be more
cyclically sensitive than employment of non-
production workers. If employment adjust-
ments occur primarily on the production-
worker margin, «, should be less than 0.36.
We take a,=0.36 as our benchmark case,
but we recognize that this probably over-
states the size of aggregate labor adjustment
costs. We do sensitivity analysis to deal with
the resulting ambiguity. Fortunately, the re-
sults are robust to the choice of «,,.
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Note: Solid lines show sample moments, dotted lines show moments generated by the cost-of-adjustment model,
and dashed lines show moments generated by the Burnside et al. (1993) model.

Figure 6 summarizes the output dynamics
in the labor-hoarding and adjustment-cost
models, and Table 4 reports test statistics.
The upper left panel of Figure 6 shows the
sample- and model-generated autocorrela-
tion functions. In contrast to the other mod-
els studied in this paper, the labor-hoarding
and adjustment-cost models endogenously
generate positive autocorrelation in output
growth. In the Burnside et al. (1993) model,
output growth is positively autocorrelated at
lag 1 and has modest negative autocorrela-
tion at higher-order lags, and the model
easily passes the autocorrelation test (see
the first row of Table 4, column 1). In the
adjustment-cost model, output growth is well
approximated by an AR(1) representation,
with positive autocorrelation at lag 1 and

monotonic decay at higher-order lags. Al-
though the adjustment-cost model generates
rather modest serial correlation, it still
passes the autocorrelation test (see the sec-
ond row of Table 4). This result is robust to
changes in the value of «,; for example, the
model passes even when a, = 0.09 (see the
third row of Table 4).

The propagation mechanism in the
Burnside et al. (1993) model derives from
the assumption that employment is prede-
termined. Although firms can vary work ef-
fort, this is relatively costly, both because
wages are higher (firms have to pay a pre-
mium in order to compensate workers for
supplying greater effort) and because the
marginal product is lower (there are sharply
diminishing marginal returns to greater ef-
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TABLE 4—EMPLOYMENT LAGS AND LABOR
ADJUSTMENT COSTS

Qirs
Model Qact yp yT

Burnside et al. (1993) 6.7 31.5 727
(0.469) (0.035) (0.014)
Adjustment costs in labor
and capital:
a, =036, a, =2.2 9.2 34.6 76.0
(0.326) (0.031) (0.012)
Sensitivity analysis:
a,=036/4, 0, =22 129 37.0 193.7
(0.116) (0.031) (0.005)
a,=036/2, a,=22 9.8 39.2 123.1
(0.224) (0.024)  (0.008)
a,=(036)2, a, =22 9.0 371 524
(0.339) (0.024) (0.021)
a,=(0.36)4, =22 101 48.7 54.8
(0.257) (0.016) (0.018)

Notes: This table reports test statistics for the autocor-
relation and impulse-response functions. The statistics
Q. and Q¢ are defined by equations (6)—(8) and
(9)-(11), respectively. The variable yp refers to the
permanent component of output, and yp refers to
the transitory component. The autocorrelation and
impulse-response functions are truncated at lag 8, and
probability values are in parentheses. The parameters
a, and a, govern the marginal cost of a 1-percent
change in labor and capital, respectively [see equation
(15) and the discussion in Section IV].

fort). Since effort adjustments are more
costly than employment adjustments, the
marginal cost of a contemporaneous change
in labor input is greater than the marginal
cost of a deferred change.

Thus, when firms experience a positive
technology shock, the optimal response is to
spread labor adjustments over time. Firms
complete part of their adjustment in the
current quarter, by increasing work effort,
and defer the rest to the subsequent quarter
when it becomes feasible to adjust employ-
ment and thus less expensive to increase
labor input. Output rises at impact, both
because of the direct effect of the technol-
ogy shock and because of the increase in
work effort, and it rises again in the subse-
quent quarter because of the delayed in-
crease in employment. Eventually, the in-
come effect of a technology shock begins to
offset the substitution effect, causing per
capita hours to revert to the mean and
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output to decline from its peak. This gener-
ates a hump-shaped response of output to
technology shocks (see the upper right panel
of Fig. 6). If we take first differences, we
find that output growth has positive low-
order autocorrelation and weak negative
high-order autocorrelation.'

The propagation mechanism in the cost-
of-adjustment model operates in a similar
fashion, except that the cost of a contempo-
raneous change in employment is finite and
the cost of a future change is positive. Thus,
the impact effect of a technology shock is
somewhat larger than in the Burnside et al.
model, and the lagged effects are somewhat
smaller. This generates weaker serial corre-
lation in output growth.

Although the labor-hoarding and cost-of-
adjustment models account for serial corre-
lation in output growth, they are less suc-
cessful at replicating the impulse-response
functions (see the right-hand panels of
Fig. 6 and the second and third columns of
Table 4). Both models overstate the short-
term response of output to technology
shocks and understate its response to transi-
tory shocks. In particular, conditional on
the baseline parameterization of the transi-
tory shock, neither model generates an im-
portant trend-reverting component in out-
put. On this dimension, the models are re-
jected at the 1-3-percent level. Although
the models generate the right qualitative
response to transitory shocks, it is strongly
damped and much too small in magnitude.
In order to match the magnitude of the
transitory impulse response, the innovation
variance of government-spending shocks
would have to be considerably larger than
the value found in the data. Thus, the
labor-hoarding and adjustment-cost models

I51f the constraint on current-quarter employment
adjustments were relaxed, firms would immediately
raise employment and would not increase work effort.
In this case, the Burnside et al. model would be-
come observationally equivalent to the Christiano-
Eichenbaum model and thus would not generate serial
correlation in output growth. Therefore, the constraint
on contemporaneous employment adjustments is criti-
cal for generating serial correlation in this model.
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must be joined with large transitory shocks
in order to generate an important trend-
reverting component in output.

V. Conclusion

The time-series literature on aggregate
output dynamics documents two stylized
facts about U.S. GNP. The first is that GNP
growth is positively autocorrelated in the
short run and weakly negatively autocorre-
lated over longer horizons. The second is
that GNP appears to have an important
trend-reverting component that has a
hump-shaped moving-average representa-
tion. This paper considers whether various
RBC models can replicate these stylized
facts.

We find that existing RBC models must
rely heavily on exogenous factors to repli-
cate both stylized facts. Many RBC models
have weak internal propagation mechanisms
and do not generate interesting dynamics
via their internal structure. In particular, in
models that rely on intertemporal substitu-
tion, capital accumulation, and costs of ad-
justing the capital stock, output dynamics
are nearly the same as impulse dynamics.
Hence, these models must rely on impulse
dynamics to replicate the dynamics found in
U.S. data. Models that rely on lags or costs
of adjusting labor input are partially suc-
cessful. Although they endogenously gener-
ate the right pattern of autocorrelation in
output growth and a small hump in the
transitory impulse-response function, they
must rely on implausibly large transitory
shocks to match the large transitory impulse
response found in the data.

From the perspective of the literature of
the 1970’s and early 1980’s, it is perhaps
surprising that RBC propagation mecha-
nisms do not generate business-cycle dy-
namics in output. For example, in response
to James Tobin’s (1977) criticism that equi-
librium monetary business-cycle models fail
to deliver serially correlated movements in
output, Robert E. Lucas and Thomas J.
Sargent (1981) noted that capital accumula-
tion and costs of adjustment could turn seri-
ally uncorrelated shocks into serially corre-
lated movements in output. Although RBC

COGLEY AND NASON: OUTPUT DYNAMICS IN RBC MODELS 509

theorists have explored this idea in great
detail, the propagation mechanisms embod-
ied in current models do not generate the
right kind of output dynamics. Our results
suggest that RBC theorists ought to devote
further attention to modeling internal
sources of propagation.

DATA APPENDIX

Output is defined as real gross national product,
and population is measured by the civilian noninstitu-
tional population aged 16 or older. Labor input is
measured by hours worked by all workers in all indus-
tries, and consumption is defined as real personal
consumption expenditures. Government spending is
measured by real purchases of goods and services by
federal, state, and local governments. The capital stock
measure that was used to compute Solow residuals was
constructed by summing net private investment in
equipment and structures, which was measured by sub-
tracting the capital consumption allowance and the
change in business inventories from gross private do-
mestic investment. The initial value for the quarterly
capital stock series was taken from the annual series on
the stock of private residential and nonresidential capi-
tal. The data are available on the Federal Reserve
System’s FAME Economic Database and on
CITIBASE.
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