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1 Introduction

New Dynamic Public Finance is a recent literature that extends the static Mirrlees [1971] frame-

work to dynamic settings.1 The approach addresses a broader set of issues in optimal policy

than its static counterpart, while not relying on exogenously specified tax instruments as in the

representative-agent Ramsey approach often used in macroeconomics.

In this paper we show that this alternative approach can be used to revisit three issues that

have been extensively explored within representative-agent Ramsey setups. We show that this

alternative approach delivers insights and results that contrast with those from the Ramsey ap-

proach. First, it is optimal to introduce a positive distortion in savings that implicitly discourages

savings (Diamond and Mirrlees [1978], Rogerson [1985], Golosov, Kocherlakota and Tsyvinski

[2003]). This contrasts with the Chamley-Judd [Judd, 1985, Chamley, 1986] result, obtained in

Ramsey settings, that capital should go untaxed in the long run.2 Second, when workers’ skills

evolve stochastically, their labor income tax rates are affected by aggregate shocks: perfect tax-

smoothing, as in Ramsey models (Barro [1979], Lucas and Stokey [1983], Judd [1989], Kingston

[1991], Zhu [1992], Chari, Christiano and Kehoe [1994]), may not be optimal with uncertain and

evolving skills.3 In contrast, it is optimal to smooth labor distortions when skills are heteroge-

nous but constant [Werning, 2005a]. Finally, the nature of the time-consistency problem is very

different from that arising within Ramsey setups. The problem is, essentially, about learning and

using acquired information, rather than taxing sunk capital: a benevolent government is tempted

to exploit information collected in the past. Indeed, capital is not directly at the root of the

problem, in that even if the government controlled all capital accumulation in the economy—or

in an economy without capital—a time-consistency problem arises.

1.1 User’s Guide

We call this paper “a user’s guide” because our main goal is to provide the reader with an overview

of the three implications of the dynamic Mirrlees literature that differ from those of Ramsey’s.

1 However, see Diamond and Mirrlees [1978, 1986, 1995] for early work with dynamic economies with private
information.

2 Judd [1999] extends the analysis to cover cases where no steady state may exist.
3 Aiyagari et al. [2002] and Werning [2005b] study tax-smoothing of labor income taxes when markets are

incomplete. Farhi [2005] studies capital income taxation and ownership in this context.
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Our workhorse model is a two-period economy that allows for aggregate uncertainty regarding

government purchases or rates of returns on savings, as well as idiosyncratic uncertainty regarding

workers’ productivity. The model is flexible enough to illustrate some key results in the literature.

Moreover, its tractability allows us to explore some new issues. We aim to comprehensively ex-

plore the structure of distortions and its dependence on parameters within our dynamic Mirrleesian

economy. Papers by Albanesi and Sleet [2006], Golosov and Tsyvinski [2006a] and Kocherlakota

[2005b] include some similar exercises, but our simple model allows us to undertake a more compre-

hensive exploration.4 Although some of our analysis is based on numerical simulations, our focus

is qualitative: we do not seek definitive quantitative answers from our numerical exercises, rather

our goal is to illustrate qualitative features and provide the feel for their quantitative importance.

The presence of private information regarding skills and the stochastic evolution of skills intro-

duces distortions in the marginal decisions of agents. We focus attention on two such wedges. The

first wedge is a consumption-labor wedge (or, simply, a labor wedge) that measures the difference

between the marginal rate of substitution and transformation between consumption and labor.

The second wedge is the intertemporal (or capital) wedge, defined as the difference between the

expected marginal rate of substitution of consumption between periods and the return on savings.

In this paper, our focus is distinctively on these wedges—which are sometimes termed ‘implicit

marginal tax rates’—rather than on explicit tax systems that implement them. However, we do

devote a section to discussing the latter.

1.2 Ramsey and Mirrlees approaches

The representative-agent Ramsey model has been extensively used by macroeconomists to study

optimal policy problems in dynamic settings.5 Examples of particular interest to macroeconomists

include: the smoothing of taxes and debt management over the business cycle, the taxation of

capital in the long run, monetary policy and a variety of time inconsistency problems.

This approach studies the problem of choosing taxes within a given set of available tax in-

struments. Usually, to avoid the first-best, it is assumed that taxation must be proportional.

4 See also Diamond et al. [1980] for an early quantitative study of models in which taxes are not linear.
5 A few papers have departed from the representative-agent setting. For example, the analysis of optimal capital

taxation in Judd [1985] allowed some forms of heterogeneity.
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Lump-sum taxation, in particular, is prohibited. A benevolent government then sets taxes to

finance its expenditures and maximize the representative agent’s utility. If, instead, lump-sum

taxes were allowed, then the unconstrained first-best optimum would be achieved. One criticism

of the Ramsey approach is that the main goal of the government is to mimic lump-sum taxes with

an imperfect set of instruments. However, very little is usually said about why tax instruments

are restricted or why they take a particular form. Thus, as has been previously recognized, the

representative-agent Ramsey model does not provide a theoretical foundation for distortionary

taxation. Distortions are simply assumed and their overall level is largely determined exogenously

by the need to finance some given level of government spending.

The Mirrlees approach to optimal taxation is built on a different foundation. Rather than

starting with an exogenously restricted set of tax instruments, Mirrlees’s [1971] starting point is

an informational friction that endogenizes the feasible tax instruments. The crucial ingredient is to

model workers as heterogenous with respect to their skills or productivity. Importantly, workers’

skills and work effort are not directly observed by the government. This private information creates

a tradeoff between insurance and incentives, making perfect insurance impractical. Even when

tax instruments are not constrained, distortions arise from the solution to the planning problem.

Since tax instruments are not restricted, without heterogeneity the first-best would be attain-

able. That is, if everyone shared the same skill level then a simple lump-sum tax—that is, an

income tax with no slope—could be optimally imposed. The planning problem is then equivalent

to the first-best problem of maximizing utility subject only to the economy’s resource constraints.

This extreme case emphasizes the more general point that a key determinant of the distortions is

the desire to redistribute or insure workers with respect to their skills. As a result, the level of

taxation is affected by the distribution of skills and risk aversion, among other things.

1.3 Numerical results

We now summarize the main findings from our numerical simulations. We begin with the case

without aggregate uncertainty.

We found that the main determinants for the size of the labor wedge are agents’ skills, the

probability with which skill shocks occurs, risk aversion, and the elasticity of labor supply. Specif-
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ically, we found that the labor wedges in the first period, or for those in the second period not

suffering the adverse shock, are largely unaffected by the size or probability of the adverse shock;

these parameters affect these agents only indirectly through the ex-ante incentive compatibility

constraints. Higher risk aversion leads to higher labor wedges because it creates a higher desire

to redistribute or insure agents. As for the elasticity of labor supply, we find two opposing effects

on the labor wedge: a lower elasticity leads to smaller welfare losses from redistribution but also

leads to less pre-tax income inequality, for a given distribution of skills, making redistribution less

desirable.

Turning to the capital wedge, we find that two key determinants for its size are the size

of the adverse future shock and its probability. A higher elasticity of labor may decrease the

savings wedge if it decreases the desire to redistribute. More significantly, we derive some novel

predictions for capital wedges when preferences over consumption and labor are nonseparable.

The theoretical results in dynamic Mirrleesian models have been derived by assuming additively-

separable utility between consumption and labor. In particular, the derivation of the Inverse Euler

optimality condition, which ensures a positive capital wedge, relies on this separability assumption.

Little is known about the solution of the optimal problem when preferences are not separable.

Here we partially fill this gap with our numerical explorations. The main finding of the model

with a nonseparable utility function is that the capital wedge may be negative when utility is

nonseparable. We show that the sign of the wedge depends on whether consumption and labor

are complements or substitutes in the utility function, as well as on whether skills are expected

to trend up or down.

We now describe the cases with aggregate uncertainty. Most of our numerical findings are novel

here, since aggregate shocks have remained almost unexplored within the Mirrleesian approach.

One exception is Kocherlakota [2005b] who extends the inverse Euler equation to the case of

aggregate uncertainty and includes a numerical illustration of the optimum with two skill types.

When it comes to aggregate shocks, an important insight from representative-agent Ramsey

models is that tax rates on labor income should be smoothed across time [Barro, 1979] and aggre-

gate states of nature [Lucas and Stokey, 1983].6 As shown by Werning [2005a], this notion does

6 See also Kingston [1991] and Zhu [1992] for perfect tax smoothing results within a representative agent Ramsey
economy with proportional taxation.
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not depend on the representative-agent assumption, as it extends to economies with heterogenous

agents subject to linear or nonlinear taxation. Thus, in the our setup perfect tax smoothing

obtains as long as all idiosyncratic uncertainty regarding skills is resolved in the first period.

In our numerical exercises we also consider the case where idiosyncratic uncertainty persists

into the second period. We find that labor wedges then vary across aggregate shocks. Thus, perfect

tax smoothing—where the wedges for each skill type are perfectly invariant to aggregate states—

does not hold. Tax rates vary because individual skill shocks and aggregate shocks are linked

through the incentive constraints. Interestingly, aggregate shocks do not increase or decrease tax

rates uniformly. In particular, we find that a positive aggregate shock (from a higher return on

savings or a lower government expenditure) lowers the spread between labor wedges across skill

types in the second period.

To understand this result, it helps to relate a favorable aggregate shock—e.g. a lower govern-

ment expenditure shock—to a higher aggregate endowment of available goods. Intuitively, in both

cases the extra resources will be consumed, thus, they reduce the relative importance of income

inequality from the second period skill shocks. As a result, insuring the second period shocks

becomes less critical and the solution behaves more like that of an economy without idiosyncratic

skill uncertainty in the second period. In the latter case perfect tax smoothing is optimal for each

first-period skill type. The smaller spread in wedges can be interpreted as moving towards this

perfect tax smoothing ideal.

2 An Overview of the Literature

The dynamic Mirrleesian literature builds on the seminal work by Mirrlees [1971], Diamond and

Mirrlees [1978], Atkinson and Stiglitz [1976] and Stiglitz [1987].7,8 These authors laid down the

foundation for analyzing optimal non-linear taxation with heterogeneous agents and private infor-

mation. Many of the more recent result build on the insights first developed in those papers. The

New Dynamic Public Finance literature extends previous models by focusing on the stochastic evo-

lution of skills and aggregate shocks. Thus, relative to the representative agent Ramsey approach,

7 See also Brito et al. [1991].
8 See Kocherlakota [2005a] for another review of the literature.
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commonly pursued by macroeconomists, it places greater emphasis on individual heterogeneity

and uncertainty; whereas, relative to traditional work in public finance it places uncertainty, at

the aggregate and individual level, at the forefront of the analysis.

Werning [2002] and Golosov, Kocherlakota and Tsyvinski [2003] incorporated Mirrleesian

framework into the standard neoclassical growth model. Werning [2002] derived the conditions

for the optimality of smoothing labor income taxes over time and across states. Building on the

work of Diamond and Mirrlees [1978] and Rogerson [1985], Golosov et al. [2003] showed that it is

optimal to distort savings in a general class of economies where skills of agents evolve stochasti-

cally over time. Kocherlakota [2005b] extended this result to the economy with aggregate shocks.

We discuss these results in Section 4. Werning [2002], Shimer and Werning [2005], Abraham and

Pavoni [2003] and Kocherlakota [2005b] study optimal taxation when capital is not observable

and its rate of return is not taxed. da Costa and Werning [2002], Golosov and Tsyvinski [2006b],

da Costa [2005] consider economies where individual borrowing and lending are not observable

so that non-linear distortions of savings are not feasible, but the government may still uniformly

influence the rate of return by taxing the observable capital stock.

Unlike taxation of savings, less work has been done in studying optimal labor wedges in the

presence of stochastic skills shocks. Battaglini and Coate [2005] show that if the utility of

consumption is linear, labor taxes of all agents asymptotically converge to zero. Risk neutrality,

however, is crucial to this result. Section 5 of this paper explores dynamic behavior of labor

wedges for risk averse agents in our two-period economy.

Due to space constraints we limit our analysis in the main body of the paper only to capital and

labor taxation. At this point we briefly mention recent work on other aspects of tax policy. Farhi

and Werning [2005] analyze estate taxation in a dynastic model with dynamic private information.

They show that estate taxes should be progressive: richer parents should face a higher marginal tax

rate on bequests. This result is a consequence of the optimality of mean reversion in consumption

across generations, which tempers the intergenerational transmission of welfare. Rich parents

must face a lower net rates of return on their transfers so that they revert downward towards

the mean, while poor parents require the opposite to revert upwards. Albanesi [2006] considers

optimal taxation of entrepreneurs. In her setup an entrepreneur exerts unobservable effort that
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affects the rate of return of the project. She shows that the optimal intertemporal wedge for the

entrepreneurs can be either positive or negative. da Costa and Werning [2005] study a monetary

model with a continuum of heterogeneous agents with privately observed skills, where they prove

the optimality of Friedman rule, that the optimal inflationary tax is zero.

The analysis of the optimal taxation in response to aggregate shocks has traditionally been

studied in macro-oriented Ramsey literature. Werning [2002, 2005a] reevaluated the results on tax

smoothing in a model with private information regarding heterogeneous skills. In his setup, all

idiosyncratic uncertainty is revealed in the first period. In Section 6, for the two period economy

introduced in this paper, we explore the extent of tax smoothing in response to aggregate shocks

when idiosyncratic shocks are also present in the second period.

Some papers, for example Albanesi and Sleet [2006], Kocherlakota [2005b] and Golosov and

Tsyvinski [2006a], consider implementing optimal allocations by the government using tax policy.

Those analyses assume that no private markets exist to insure idiosyncratic risks and agents are

able to smooth consumption over time by saving at a market interest rate. Prescott and Townsend

[1984] shows that the first welfare theorem holds in economies with unrestricted private markets

and the efficient wedges can be implemented privately without any government intervention. When

markets are very efficient, distortionary taxes are redundant. However, if some of the financial

transactions are not observable, the competitive equilibrium is no longer constrained efficient.

Applying this insight, Golosov and Tsyvinski [2006b] and Albanesi [2006] explore the implications

of unobservability in financial markets on the optimal tax interventions. We discuss some of these

issues in Section 4.

In step with theoretical advances, several authors have carried out quantitative analyses of the

size of the distortion and welfare gains from improving tax policy. For example, Albanesi and

Sleet [2006] study the size of the capital and labor wedges in a dynamic economy. However they

are able to conduct their analyses only for the illustrative case of i.i.d. shocks to skills. Moving to

the other side of the spectrum, with permanent disability shocks, Golosov and Tsyvinski [2006a]

show that the welfare gains from improving disability insurance system might be large. Recent

work by Farhi and Werning [2006] develops a general method for computing the welfare gains

from partial reforms, starting from any initial incentive compatible allocations with flexible skill
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processes, that introduce optimal savings distortions.

All the papers discussed above assume that the government has full commitment power. The

more information is revealed by agents about their types, the stronger the incentive of the govern-

ment is to deviate from the originally promised tax sequences. This motivated several authors to

study optimal taxation in environments where the government cannot commit. Optimal taxation

without commitment is technically a much more challenging problem since the simplest versions

of the Revelation Principle do not hold in such an environment. One of the early contributors was

Roberts [1984] who studies an economy where individuals have constant skills which are private

information. Bisin and Rampini [2006] study a two period version of this problem. Sleet and

Yeltekin [2005] and Acemogly, Golosov and Tsyvinski [2006] show conditions under which even

the simplest versions of the Revelation Principle can be applied along the equilibrium path. We

discuss these issues in Section 4.

3 A Two-Period Mirrleesian Economy

In this section we introduce a two-period Mirrleesian economy with uncertainty.

Preferences. There is a continuum of workers that are alive in both periods and maximize their

expected utility

E[u(c1) + v(n1) + β(u(c2) + v(n2))],

where ct represents consumption and nt is a measure of work effort.

With two periods, the most relevant interpretation of our model is that the first period repre-

sents relatively young workers, say those aged 20–45, while the second period represents relatively

older workers and retired individuals, say, those older than 45. It is straightforward to extend the

model by allowing the third period to explicitly distinguish retired individuals from older workers.

Indeed, if we assume no labor decision in the third period, nothing is lost by ignoring it and

lumping consumption into the second period, as we implicitly do here.

Skills. Following Mirrlees [1971], workers are, at any time, heterogenous with respect to their

skills, and these skills are privately observed by workers. The output y produced by a worker with

skill θ and work effort n is given by the product, effective labor: y = θn. The distribution of skills
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is independent across workers.

For computational reasons, we work with a finite number of skill types in both periods. Let

the skill realizations for the first period be θ1(i) for i = 1, 2, . . . , N1 and denote by π1(i) their

ex ante probability distribution, equivalent to the ex post distribution in the population. In the

second period, the skill becomes θ2(i, j) where j = 1, 2, . . . , N2(i) with probability π2(j|i) is the

conditional probability distribution for skill type j in the second period, given skill type i in the

first period. We start by assuming that the aggregate shock does not affect the distribution of the

population’s skills π.

Technology. We assume production is linear in efficiency units of labor produced by workers. In

addition, there is a linear savings technology.

We consider two types of shocks in the second period: (i) a shock to the rate of return; and (ii)

a shock to government expenditures in the second period. To capture both shocks we introduce a

state of the world s ∈ S, where S is some finite set, which is realized at the beginning of period

t = 2. The rate of return and government expenditure in the second period are now functions of

s. The probability of state s is denoted by µ(s).

The resource constraints are

∑
i

(c1(i)− y1(i))π1(i) +K2 ≤ R1K1 −G1, (1)

∑
i,j

(c2(i, j)− y2(i, j))π2(j|i)π(i) ≤ R2(s)K2 −G2(s), for all s ∈ S, (2)

where K2 is capital saved between periods t = 1 and t = 2, and K1 is the endowed level of capital.

An important special case is one without aggregate shocks. In that case we can collapse both

resource constraints into a single present value condition by solving out for K2:

∑
i

(
c1(i)− y1(i) +

1

R

∑
j

[c2(i, j)− y2(i, j)]π2(i, j)
)
π1(i) ≤ R1K1 −G1 −

1

R
G2. (3)

Planning problem. Our goal is to characterize the optimal tax policy without imposing any ad-

hoc restrictions on the tax instruments available to a government. The only constraints on taxes

arise endogenously because of the informational frictions. It is convenient to carry out our analysis
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in two steps. First, we describe how to find the allocations that maximize social welfare function

subject to the informational constraints. Then, we discuss how to find taxes that in competitive

equilibrium lead to socially efficient allocations. Since we do not impose any restrictions on taxes

a priori, the tax instruments available to the government may be quite rich. The next section

describe features that such a system must have.

To find the allocations that maximize social welfare it is useful to think about a fictitious social

planner who collects reports from the workers about their skills and allocates consumption and

labor according to those reports, as well as decides on the aggregate investments in the first period.

Workers make skill reports ir and jr to the planner in the first and second period, respectively.

Given each skill type i, a reporting strategy is a choice of a first-period report ir and a plan for the

second period report jr(j, s) as a function of the true skill realization j and the aggregate shock.

Since skills are private information, the allocations must be such that no worker has an incentive

to misreport his type. Thus the allocations must satisfy the following incentive constraint

u(c1(i)) + v

(
y1(i)

θ1(i)

)
+ β

∑
s,j

[
u(c2(i, j, s)) + v

(
y2(i, j, s)

θ2(i, j, s)

)]
π2(i|j)µ(s) ≥

u(c1(ir)) + v

(
y1(ir)

θ1(i)

)
+ β

∑
s,j

[
u(c2(ir, jr(j, s), s)) + v

(
y2(ir, jr(j, s), s)

θ2(i, j)

)]
π2(j|i)µ(s), (4)

for all alternative feasible reporting strategies ir and jr(j, s).
9 If one assumes that the support

of skills does not shift, then it is possible to divide the incentive constraints into simpler first

and second period incentive constraints, where only one-shot deviations are considered. For our

numerical work, however, it is important to allow the support of the skill distribution to shift.

In our applications we will concentrate on maximizing a utilitarian social welfare function.10

The constrained efficient planning problem maximizes expected discounted utility

∑
i

[
u(c1(i)) + v

(
y1(i)

θ1(i)

)
+ β

∑
s,j

[
u(c2(i, j, s)) + v

(
y2(i, j, s)

θ2(i, j)

)]
π2(j|i)µ(s)

]
π1(i),

subject to the resource constraints in (1) and (2) and the incentive constraints in (4). Let (c∗, y∗, k∗)

9A powerful Revelation Principle guarantees that the best allocations can always be achieved by a mechanism
where workers makes report about their types to the planner.

10See Diamond [1998] and Tuomala [1990] how choice of the welfare function affects optimal taxes in static
framework.
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denote the solution to this problem. To understand the implications of these allocation for the

optimal tax policy, it is important to focus on three key relationships or wedges between marginal

rates of substitution and technological rates of transformation:

The consumption-labor wedge (distortion) in t = 1 for type i is

τy1(i) ≡ 1 +
v′ (y∗1(i)/θ1(i))

u′(c∗1(i))θ1(i)
, (5)

The consumption-labor wedge (distortion) at t = 2 for type (i, j) in state s is

τy2(i, j, s) ≡ 1 +
v′ (y∗2(i, j, s)/θ2(i, j))

u′(c∗1(i, j, s))θ2(i, j)
, (6)

The intertemporal wedge for type i is

τk(i) ≡ 1− u′(c∗1(i))

β
∑

s,j R2(s)u′(c∗2(i, j, s))π2(j|i)µ(s)
(7)

Note that in the absence of government interventions all the wedges are equal to zero.

4 Theoretical Results and Discussion

In this section we review some aspects of the solution to the planning problem that can be derived

theoretically. In the next sections we illustrate these features in our numerical explorations.

4.1 Capital Wedges

We now characterize the intertemporal distortion, or implicit tax on capital. We first work with an

important benchmark in which there are no skill shocks in the second period. That is, all idiosyn-

cratic uncertainty is resolved in the first period. For this case we recover Atkinson and Stiglitz ’s

[1976] classical uniform taxation result, implying no intertemporal consumption distortion: cap-

ital should not be taxed. Then, with shocks in the second period we obtain an Inverse Euler

Equation, which implies a positive intertemporal wedge [Diamond and Mirrlees, 1978, Golosov,

Kocherlakota, and Tsyvinski, 2003]
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4.1.1 Benchmark: Constant Types and a Zero Capital Wedge

In this section, we consider a benchmark case in which the skills of agents are fixed over time

and there is no aggregate uncertainty. Specifically, assume that N2(i) = 1, ∀i, and that θ1(i) =

θ2(i, j) = θ(i). In this case the constrained efficient problem simplifies to:

max
∑

i

[
u(c1(i)) + v

(y1(i)

θ(i)

)
+ u(c2(i)) + v

(y2(i)

θ(i)

)]
π1(i)

subject to the incentive compatibility constraint that ∀i ∈ {1, ..., N1}, and ir ∈ {1, ..., N1} :

u(c1(i)) + v
(y1(i)

θ(i)

)
+ β

[
u(c2(i)) + v

(y2(i)

θ2(i)

)]
≥

u(c1(ir)) + v
(y1(ir)

θ(i)

)
+ β

[
u(c2(ir)) + v

(y2(ir)

θ(i)

)]
,

and subject to the feasibility constraint,

∑
i

[
c1(i)− y1(i) +

β

R

∑
j

(
c2(i)− y2(i)

)]
π1(i) ≤ 0.

We can now prove a variant of a classic Atkinson and Stiglitz [1976] uniform commodity

taxation theorem which states that the marginal rate of substitution should be equated across

goods and equated to the marginal rate of transformation.

To see this note that only the value of total utility from consumption u(c1)+βu(c2) enters the

objective and incentive constraints. It follows that for any total utility coming from consumption

u(c1(i)) + βu(c2(i)) it must be that resources c1(i) + c2(i) are minimized, since the resource

constraint cannot be slack. The next proposition then follows immediately.

Proposition 1 Assume that the types of agents are constant. A constrained efficient allocation

satisfies

u′(c1(i)) = βRu′(c2(i)) ∀i

Note that if β = R then c1(i) = c2(i). Indeed, in this case the optimal allocation is simply a

repetition of the optimal one in a static version of the model.
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4.1.2 Inverse Euler Equation and Positive Capital Taxation

We now return to the general case with stochastic types and derive a necessary condition for

optimality: the Inverse Euler Equation. This optimality condition implies a positive marginal

intertemporal wedge.

We consider variations around any incentive compatible allocation. The argument is similar

to the one we used to derive Atkinson and Stiglitz’s [1976] result. In particular, it shares the

property that for any realization of i in the first period we shall minimize the resource cost of

delivering the remaining utility from consumption.

Fix any first period realization i. We then increase second period utility u(c2(i, j)) in a parallel

way across second period realizations j. That is define u(c̃2(i, j; ∆)) ≡ u(c2(i, j)) + ∆ for some

small ∆. To compensate, we decrease utility in the first period by β∆. That is, define u(c̃1(i; ∆)) ≡

u(c1(i))− β∆ for small ∆.

The crucial point is that such variations do not affect the objective function nor the incentive

constraints in the planning problem. Only the resource constraint is affected. Hence, for the

original allocation to be optimal it must be that ∆ = 0 minimizes the resources expended

c̃1(i; ∆) +R−1
∑

j

c̃2(i, j; ∆)π(j | i)

= u−1(u(c1(i))− β∆) +R−1
∑

j

u−1(u(c2(i, j)) + ∆)π(j | i)

for all i. The first order condition for this problem evaluated at ∆ = 0 then yields the Inverse

Euler equation summarized in the next proposition, due originally Diamond and Mirrlees [1978]

and extended to an arbitrary process for skill shocks by Golosov, Kocherlakota and Tsyvinski

[2003].

Proposition 2 A constrained efficient allocation satisfies an Inverse Euler Equation:

1

u′(c1(i))
=

1

βR

∑
j

1

u′(c2(i, j))
π2(j|i). (8)

There are two cases for which this condition reduces to a standard Euler equation. Both cases

involve situations where there is no uncertainty in second period consumption, after conditioning
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on the first period shock. The first case is when there is no heterogeneity in skills in the second

period, i.e., for some i, N2(i) = 1. In the two-type example above, if θ2(1) = θ2(2), c2(1) = c2(2) =

c̄2, and the condition becomes

1

u′(c1)
=

1

βR

1

u′(c̄2)
⇒ u′(c1) = βRu′(c̄2), (9)

which is the standard Euler equation that must hold for a consumer who optimizes savings without

distortions. The same is true ifN2(i) > 1 but skills evolve deterministically, i.e. π(j|i) = 1 for some

i, j. The second case is when there is no private information. Suppose that, for some i, skills θ2(i, j)

are observable. Then the planner can ensure that full insurance is achieved c2(i, j) = c2(i, j
′) = c̄2

for all j and j′ following such j. In both examples c2(1) = c2(2) = c̄2, and the Inverse Euler

equation would then reduce to the standard Euler equation (9).

Whenever skills are private information and stochastic, then the standard Euler equation must

be distorted. This result follows directly by applying Jensen’s inequality to the reciprocal function

“1/x” in equation (8).11

Proposition 3 Suppose that for some i, there exists j such that 0 < π(j|i) < 1 and that c2(i, j)

is not independent of j. Then constrained efficient allocation satisfies:

u′(c1(i)) < βR
∑

j

u′(c2(i, j))π2(j|i) ⇒ τk(i) > 0.

The intuition for this intertemporal wedge is that implicit savings affect the incentives to

work. Specifically, consider an agent who is contemplating a deviation. Such an agent prefers to

implicitly save more than the agent who is planning to tell the truth. An intertemporal wedge

worsens the return to such deviation. We use the phrase ”implicitly save” here to indicate that

all savings are controlled by the planner here. A reader of this intuition should think about such

”implicit savings” as perturbations of the optimal allocation.

The Inverse Euler Equation can be extended to the case of aggregate uncertainty [Kocherlakota,

11 That is, we use that E[1/x] > 1/E[x] when V ar(x) > 0, where x in our case is the marginal utility u′(c2(i, j)).
In our case V ar(c2(i, j)|i) > 0 is guaranteed as long as the solution does not hit corners, since bunching all agents
in the second period is never optimal.

15



2005b]. At the optimum

1

u′(c1(i))
=

1

βE

[
R(s)

[∑
j π(j|i) [u′(c2(i, j, s)]

−1
]−1

]

If there is no heterogeneity in skills in the second period, this expression reduces to

u′(c1) = βE [R(s)u′(c2(s))]

so that the intertemporal marginal rate of substitution is undistorted. However, if the agent

faces idiosyncratic uncertainty about his skills and consumption in the second period, Jensen’s

inequality implies that there is a positive wedge on savings:

u′(c1(i)) < β
∑ ∑

µ(s)π(j|i)R(s)u′(c2(i, j, s)).

4.2 Tax Smoothing

One of the main results from the representative-agent Ramsey framework is that tax rates on

labor income should be smoothed across time [Barro, 1979] and states [Lucas and Stokey, 1983].

This result extends to cases with heterogenous agents subject to linear or nonlinear taxation

[Werning, 2005a], that is, where all the idiosyncratic uncertainty about skills is resolved in the first

period. To see this, take θ2(j, i) = θ1(i) = θ(i). We can then write the allocation entirely in terms

of the first period skill shock and the second period aggregate shock. The incentive constraints

then only require truthful revelation of the first period’s skill type i,

u(c1(i)) + v

(
y1(i)

θ1(i)

)
+ β

∑
s

[
u(c2(i, s)) + v

(
y2(i, s)

θ2(i)

)]
µ(s) ≥

u(c1(ir)) + v

(
y1(ir)

θ1(i)

)
+ β

∑
s

[
u(c2(ir, s)) + v

(
y2(ir, s)

θ2(i, s)

)]
µ(s) (10)

for all i, ir. Let ψ(i, ir) represent the Lagrangian multiplier associated with each of these inequal-

ities.

The Lagrangian for the planning problem that incorporates these constraints can be written
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as

∑
i,ir,s

{
(1 + ψ(i, ir))

[
u(c1(i)) + v

(y1(i)

θ1(i)

)
+ β

(
u(c2(i, s)) + v

(y2(i, s)

θ2(i, s)

))]
− ψ(i, ir)

[
u(c1(ir)) + v

(y1(ir)

θ1(i)

)
+ β

(
u(c2(ir, s)) + v

(y2(ir, s)

θ2(i, s)

))]}
µ(s)π1(i)

To derive the next result we adopt an iso-elastic utility of work effort function v(n) = −κnγ/γ

with κ > 0 and γ ≥ 1. The first-order conditions are then

u′(c1(i))γ
c(i) = λ1π(i) βu′(c2(i, s))γ

c(i) = λ2(s)π(i)

− 1

θ(i)
v′

(y1(i)

θ(i)

)
γy(i) = λ1π(i) − 1

θ(i)
v′

(y2(i, s)

θ(i)

)
γy(i) = λ2(s)π(i)

where λ1 and λ2(s) are first and second period multipliers on the resource constraints and where

we define

γc(i) ≡ π(i) +
∑

i′

(ψ(i, i′)− ψ(i′, i))

γy(i) ≡ π(i) +
∑

i′

(
ψ(i, i′)− ψ(i′, i)

θ(i)

θ(i′)

)

for notational convenience. Combining and cancelling terms then leads to

τ1 ≡ 1− 1

θ(i)

−v′
(y1(i)

θ(i)

)
u′(c1(i))

= 1− γc(i)

γy(i)
τ2(s) ≡ 1− 1

θ(i)

−v′
(y2(i,s)

θ(i)

)
u′(c2(i, s))

= 1− γc(i)

γy(i)

which proves that perfect tax smoothing is optimal in this case. We summarize this result in the

next proposition, derived by Werning [2005a] for a more general dynamic framework.

Proposition 4 Suppose the disutility of work effort is isoelastic: v(n) = −κnγ/γ. Then when

idiosyncratic uncertainty for skills is concentrated in the first period, so that θ2(j, i) = θ1(i) then

it is optimal to perfectly smooth marginal taxes on labor τ1 = τ2(s) = τ̄ .

Intuitively, tax smoothing results from the fact that the tradeoff between insurance and incen-

tives remains constant between periods and across states. As shown by Werning [2005a], even if

idiosyncratic uncertainty is resolved in the first period, but the distribution of skills varies across
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periods or aggregate states, then the optimal marginal taxes should also vary with these shifts in

the distribution. Intuitively, the tradeoff between insurance and incentives then shifts and taxes

should adjust accordingly. In the numerical work in Section 6 we examine another source for de-

partures from the perfect tax smoothing benchmark. We consider the case in which idiosyncratic

uncertainty continues to evolve after the first period, with skill shocks in the second period.

4.3 Tax Implementations

In this section we describe the general idea behind decentralization or implementation of optimal

allocations with tax instruments. The general goal is to move away from the direct mechanism,

justified by the revelation principle to study constrained efficient allocations, and find tax systems

so that the resulting competitive equilibrium yields these allocations. In general, the required

taxes are complex nonlinear functions of all past observable actions, such as capital and labor

supply, as well as aggregate shocks.

It is tempting to interpret the wedges defined in (5)–(7) as actual taxes on capital and labor in

the first and second periods. Unfortunately, the relationships between wedges and taxes is typically

less straightforward. Intuitively, each wedge controls only one aspect of worker’s behavior (labor

in the first or second period, or saving) taking all other choices fixed at the optimal level. For

example, assuming that an agent supplies the socially optimal amount of labor, a savings tax

defined by (7) would ensure that that agent also makes a socially optimal amount of savings.

However, agents choose labor and savings jointly.12

In the context of our economy, taxes in the first period τ1(y1) can depend only on the observable

labor supply of agents in that periods, and taxes in the second period τ2(y1, y2, k, s) can depend on

labor supply in both first and second period, as well as agents’ wealth. In competitive equilibrium,

agent i solves

max
{c,y,k}

{
u(c1(i), y1(i)/θi) + β

∑
s,j

[
u(c2(i, j, s)) + v

(
y2(i, j, s)

θ2(i, j)

)]
π2(j|i)µ(s)

}
12 For example, if an agent considers changing her labor, then, in general, she also considers changing her

savings. Golosov and Tsyvinski [2006a], Kocherlakota [2005b] and Albanesi and Sleet [2006] showed that such
double deviations would give an agent a higher utility that the utility from the socially optimal allocations, and
therefore the optimal tax system must be enriched with additional elements in order to implement the optimal
allocations.
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subject to

c1(i) + k(i) ≤ y1(i)− τ1(y1(i))

c2(i, j) ≤ y2(i, j) +R(s)k(i)− τ2(y1(i), y2(i, j, s), k(i), s)

We say that a tax system implements the socially optimal allocation {(c∗1(i), y∗1(i), c∗2(i, j),

y∗2(i, j, s)} if this allocation solves the agent’s problem, given τ1(y1(i)) and τ2(y1(i), y2(i, j, s), k(i), s).

Generally, an optimal allocation may be implementable by various tax systems so τ1(y1(i)) and

τ2(y1(i), y2(i, j, s), k(i), s) may not be uniquely determined. In contrast, all tax systems introduce

the same wedges in agents’ savings or consumption-leisure decisions. For this reason, in the

numerical part of the paper we focus on the distortions defined in Section 3, and omit the details

of any particular implementation. In this section, however, we briefly review some of the literature

on the details of implementation.

Formally, the simplest way to implement allocations is a direct mechanism, which assigns

arbitrarily high punishments if individual’s consumption and labor decisions in any period differ

from those in the set of the allocations {(c∗1(i), y∗1(i), c∗2(i, j), y∗2(i, j, s)} that solve the planning

program. Although straightforward, such an implementation is highly unrealistic and severely

limits agents’ choices. A significant body of work attempts to find less heavy handed alternatives.

One would like implementations to come close to actual tax systems employed in the US and other

advanced countries. Here we review some examples.

Albanesi and Sleet [2006] consider an infinitely repeated model where agents face i.i.d. skill

shocks over time and there are no aggregate shocks. They show that the optimal allocation can

be implemented by taxes that depend in each period only on agent’s labor supply and capital

stock (or wealth) in that period. The tax function τt(yt, kt) is typically non-linear in both of

its arguments. Although simple, their implementation relies critically on the assumption that

idiosyncratic shocks are i.i.d. and cannot be easily extended to other shocks processes.

Kocherlakota [2005b] considers a different implementation that works for a wide range of shock

processes for skills. His implementation separates capital from labor taxation. Taxes on labor in

each period t depend on the whole history of labor supplies by agents up until period t and in

general can be complicated non-linear functions. Taxes on capital are linear and also history

dependent. Specifically, the tax rate on capital that is required is given by (written, for simplicity,

19



for the case with no aggregate uncertainty)

τ̃k(i, j) = 1− u′(c∗(i))

βRu′(c∗(i, j))
(11)

Incidentally, an implication of this implementation is that, at the optimum, taxes on capital

average out to zero and raise no revenue. That is, the conditional average over j for τ̃k(i, j)

given by equation (11) is zero when the Inverse Euler equation (8) holds. At first glance, a zero

average tax rate may appear to be at odds with the positive intertemporal wedge τk(i) defined by

equation (7) found in Proposition 3, but it is not: savings are discouraged by this implementation.

The key point is that the tax is not deterministic, but random. As a result, although the average

net return on savings is unaffected by the tax, the net return R(s)(1 − τ̃k(i, j, s)) is made risky.

Indeed, since net returns are negatively related to consumption, see equation (11), there is a risk-

premium component (in the language of financial economics) to the expected return. This tax

implementation makes saving strictly less attractive, just as the positive intertemporal wedge τk

suggests.

In some applications the number of shocks that agents face is small and, with a certain struc-

ture, that allows for simple decentralizations. Golosov and Tsyvinski [2006a] study a model of

disability insurance, where the only uncertainty agents face is whether, and when, they receive a

permanent shock that makes them unable to work. In this scenario, the optimal allocation can be

implemented by paying disability benefits to agents who have assets below a specified threshold,

i.e., asset testing the benefits.

4.4 Time Inconsistency

In this section we argue that the dynamic Mirrlees literature and Ramsey literature both prone

to time consistency problems. However, the nature of time inconsistency is very different in those

two approaches.

An example that clarifies the notion of time inconsistency in Ramsey models is taxation of

capital. A Chamley-Judd [Judd, 1985, Chamley, 1986] result states that capital should not be

taxed at zero in the long run. One of the main assumptions underlying this result is that a

government can commit to a sequence of capital taxes. However, a benevolent government would
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choose to deviate from the prescribed sequence of taxes. The reason is that, once capital is

accumulated, it is sunk, and taxing capital is no longer distortionary. A benevolent government

would choose high capital taxes once capital is accumulated. The reasoning above leads to the

necessity of the analysis of time consistent policy as a game between a policy maker (government)

and a continuum of economic agents (consumers).13

To highlight problems that arise when we depart from the benchmark of a benevolent planner

with full commitment, it is useful to start with Roberts’ (1984) example economy, where, similar

to Mirrlees [1971], risk-averse individuals are subject to unobserved shocks affecting the marginal

disutility of labor supply. But differently from the benchmark Mirrlees model, the economy is

repeated T times, with individuals having perfectly persistent types. Under full commitment,

a benevolent planner would choose the same allocation at every date, which coincides with the

optimal solution of the static model. However, a benevolent government without full commitment

cannot refrain from exploiting the information that it has collected at previous dates to achieve

better risk sharing ex post. This turns the optimal taxation problem into a dynamic game between

the government and the citizens. Roberts showed that as discounting disappears and T → ∞,

the unique sequential equilibrium of this game involves the highly inefficient outcome in which all

types declare to be the worst type at all dates, supply the lowest level of labor and receive the

lowest level of consumption. This example shows the potential inefficiencies that can arise once we

depart from the case of full commitment, even with benevolent governments. The nature of time

inconsistency in dynamic Mirrlees problems is, therefore, very different from time inconsistency

in Ramsey model. In dynamic Mirrlees model the inability of a social planner not to exploit

information it learns about agents types is a central issues in designing optimal policy without

commitment. As well as Roberts [1984], a recent important paper by Bisin and Rampini [2006]

considers the problem of mechanism design without commitment in a two-period setting. Bisin

and Rampini extend Roberts’s analysis and show how the presence of anonymous markets acts as

an additional constraint on the government, ameliorating the commitment problem.

13A formalization of such game and an equilibrium concept, sustainable equilibrium, is due to Chari and Kehoe
[1990]. They formulate a general equilibrium infinite horizon model in which private agents are competitive, and
the government maximizes the welfare of the agents. Benhabib and Rustichini [1997], Klein et al. [2005] and Phelan
and Stacchetti [2001] and Fernandez-Villaverde and Tsyvinski [2004] solve for equilibria in an infinitely lived agent
version of the Ramsey model of capital taxation.
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Acemoglu, Golosov and Tsyvinski [2006] depart from Roberts’ (1984) framework and consider,

instead of a finite-horizon economy, an infinite-horizon economy. This enables them to use pun-

ishment strategies against the government to construct a sustainable mechanism, defined as an

equilibrium tax-transfer program that is both incentive compatible for the citizens and for the gov-

ernment (i.e., it satisfies a sustainability constraint for the government). The (best) sustainable

mechanism implies that if the government deviates from the implicit agreement, citizens switch

to supplying zero labor, implicitly punishing the government. The infinite-horizon setup enables

them to prove that a version of the revelation principle, truthful revelation along the equilibrium

path, applies and is a useful tool of analysis for this class of dynamic incentive problems with

self-interested mechanism designers and without commitment.14 The fact that the truthful rev-

elation principle applies only along the equilibrium path is important, since it is actions off the

equilibrium path that place restrictions on what type of mechanisms are allowed (these are encap-

sulated in the sustainability constraints). This enables them to construct sustainable mechanisms

with the revelation principle along the equilibrium path, to analyze substantially more general

environments, and to characterize the limiting behavior of distortions and taxes.

4.5 The Government’s Role as Insurance Provider

In the previous discussion we assumed that a government is a sole provider of insurance. However,

in many circumstances, markets can provide insurance against shocks that agents experience. The

presence of competitive insurance markets may significantly change optimal policy prescriptions

regarding desirability and extent of optimal taxation and social insurance policies.

We assumed that individual asset trades and, therefore, agents’ consumption, is publicly ob-

servable. In that case, following Prescott and Townsend [1984], Golosov and Tsyvinski [2006b]

show that allocations provided by competitive markets are constrained efficient and the first wel-

fare theorem holds. Intuitively, efficiency results, even in the absence of governmental policy,

when firms and agents can write contracts that provide agents with insurance. The competitive

nature of the insurance markets, even in the presence of private information, can provide optimal

insurance as long as consumption and output are publicly observable. Note that individual insur-

14See also Sleet and Yeltekin [2005] who prove similar result when agents’ shocks follow an i.i.d process and the
government is benevolent.
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ance contracts, between agents and firms, would feature the same wedges as the social planning

problem we studied, providing another motivation for focusing on wedges, rather than taxes that

implement them.

In this paper we do not model explicitly reasons why private insurance markets may provide

the inefficient level of insurance. Arnott and Stiglitz [1986], Arnott and Stiglitz [1990], Greenwald

and Stiglitz [1986], Golosov and Tsyvinski [2006b] explore why markets may fail in the presence

of asymmetric information.

5 Numerical Exercises

We now perform numerical exercises with baseline parameters and perform several comparative

static experiments. The exercises we conduct strike a balance between flexibility and tractabil-

ity. The two period setting is flexible enough to illustrate the key theoretical results and explore

a few new ones. At the same time, it is simple enough that a complete solution of the opti-

mal allocation is still possible. In contrast, most work on Mirrleesian models focused on either

partial characterization of the optimum, e.g., showing that the intertemporal wedge is positive

[Golosov, Kocherlakota and Tsyvinski, 2003] or on numerical characterizations for a particular

skills processes, e.g., i.i.d. skills in Albanesi and Sleet [2006] or absorbing disability shocks in

Golosov and Tsyvinski [2006a]. In a recent paper, Farhi and Werning [2006] takes a different

approach, by studying partial tax reforms—that fully capture the savings distortions implied by

the Inverse Euler equation—the problem remains tractable even with empirically relevant skill

processes.

While we can only conjecture whether the results of our two-period model can be extended

to a more general multi-period setup, we are confident that many insights developed here would

hold true in a more general model.

Parameterization. When selecting parameters it is important to keep the following neutrality

result in mind. With logarithmic utility, if productivity and government expenditures are scaled

up within a period then: (i) the allocation for consumption is scaled by the same factor; (ii)

the allocation of labor is unaffected; and (iii) marginal taxes rates are unaffected. This result is
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relevant for thinking about balanced growth in an extension of the model to an indefinite horizon.

It is also convenient in that it allows us to normalize, without any loss of generality, the second

period shock for our numerical explorations.

Below we discuss how we choose parameters for the benchmark example. We use the following

baseline parameters. We first consider the case with no aggregate uncertainty. Assume that there

is no discounting and that the rate of return on savings is equal to the discount factor: R = β = 1.

We choose the skill distribution as follows. In the the first period, skills are distributed uni-

formly. Individual skills in the first period, θ1(i), are equally spaced in the interval [θ1, θ̄1]. The

probability of realization of each skill are equal to π1(i) = 1/N1 for all i. We choose baseline

parameters to be θ1 = 0.1, θ̄1 = 1 and N1 = 50. Here, a relatively large number of skills allows

us to closely approximate a continuous distribution of skills such as in Mirrlees [1971]. In the

second period, an agent can receive a skill shock. For computational tractability, we assume that

there are only two possible shocks to an agent’s skill in the second period, N2(i) = 2 for all i.

Skill shocks take the form of a proportional increase θ2(i, 1) = α1θ1(i) or proportional decrease

θ2(i, 2) = α2θ1(i). For the baseline case, we set α1 = 1, and α2 = 1/2. This means that an

agent in the second period can only receive an adverse shock α2. We also assume that there is

uncertainty about realization of skills and set π2(1|i) = π2(2|i) = 1/2. The agent learns his skill in

the second period only at time t = 2. We chose the above parametrization of skills to allow a stark

characterization of the main forces determining the optimum. The assumption of uniformity of

distribution of skills is not innocuous. Saez [2001], a state of the art treatment of static Mirrlees

models, provides a calibrated example of distribution of skills. Diamond [1998] also uses Pareto

distribution of skills. Here, we abstract from the effects of varying the skill distribution.

We choose the utility function to be power utility. The utility of consumption is u(c) = c1−σ

1−σ
.

As our baseline we take σ = 1, so that u(c) = log(c). The utility of labor is given by v(l) = −lα;

as our benchmark we set α = 2. The choice of the baseline utility to be separable is motivated

by the fact that most of the theoretical results in the dynamic Mirrlees literature are derived

for the case of separable utility functions. Most importantly, the Inverse Euler equation and the

optimality of a positive intertemporal wedge are derived only for separable utility functions. In

the sections that follow, we provide a numerical characterization of the optimum for the utility
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function more common in macroeconomic literature on optimal taxation, a nonseparable utility

function consistent with a balanced growth path.

In the sections that follow, we use the following conventions in the figures below:

1. The horizontal axis displays the first period skill type i = 1, 2, . . . , 50;

2. The wedges (distortions) in the optimal solutions are labelled as follows:

(a) “Distortion t=1” is a consumption-labor wedge in period 1– τy1 ;

(b) “Distortion high t=2” is a consumption-labor wedge in period 2 for an agent with a

high skill shock – τy2(i, 1);

(c) “Distortion low t=2” is a consumption-labor wedge in period 2 for an agent with a low

skill shock – τy2(i, 2);

(d) “Distortion capital” is an intertemporal (capital) wedge – τk(i);

5.1 Characterizing the benchmark case

In this section, we describe the numerical characterization of the optimal allocation. Suppose first

that there were no informational friction and agents’ skills were observable. Then the solution

to the optimal program would feature optimal insurance. The agent’s consumption would be

equalized across time and across realizations of shocks. Labor of agents would be increasing with

their type. It is obvious that when skills are unobservable the unconstrained optimal allocation

is not incentive compatible, as an agent with a higher skill would always prefer to claim to be

of a lower type to receive the same consumption as before the deviation but to work less. The

optimal allocation with unobservable types balances two objectives of the social planner: providing

insurance and respecting incentive compatibility constraints.

The optimal allocation for the benchmark case with unobservable types is shown in Figure 1

and Figure 2. There is no bunching in either period: agents of different skill are allocated different

consumption and labor bundles.

First note that there is a significant deviation from the case of perfect insurance: agents’

consumption increases with type, and consumption in the second period for an agent who claims
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to have a high shock is higher than the that of an agent with the low shock. The intuition for

this pattern of consumption is as follows. It is optimal for an agent with a higher skill to provide

a higher amount of effective labor. One way to make provision of higher effective labor incentive

compatible for an agent is to allocate a larger amount of consumption to him. Another way to

reward an agent for higher effort is to increase his continuation value, i.e., allocate a higher amount

of expected future consumption for such an agent.

[Insert figure 1 and 2 here]

We now turn our attention to the wedges in the constrained efficient allocation. In the uncon-

strained optimum with observable types, all wedges are equal to zero. We plot optimal wedges

for the benchmark case in Figure 3.

[Insert figure 3 here]

We see that the wedges are positive, indicating a significant departure from the case of perfect

insurance. We notice that the consumption-labor wedge is equal to zero for the highest skill type

in the first period and for the high realization of the skill shock in the second period: τy1(θ̄1) =

τy2(θ̄1, 1) = 0. This result confirms a familiar “no distortion the top” result due to Mirrlees [1971]

which states that in a static context the consumption-labor decision of an agent with the highest

skill is undistorted in the optimal allocation. The result that we obtain here is somewhat novel

as we consider an economy with stochastically evolving skills, for which the ”no distortion at the

top” result have not yet been proven analytically.

We also see that the labor wedges at the bottom {τy1(θ1), τy2(θ1, 1), τy2(θ1, 1)} are strictly

positive. A common result in the literature is that with a continuum of types, the tax rate at the

bottom is zero if bunching types is not optimal. In our case, there is no bunching, but this result

does not literally apply because we work with a discrete distribution of types.

We see that the intertemporal wedge is low for agents with low skills θ1 in the first period yet

is quite high for agents with high skills. The reason is that it turns out that lower skilled workers

are quite well insured: their consumption is not very volatile from the second period. It follows

from the Inverse Euler optimality condition that the intertemporal distortion required is smaller.

The intuition is that it is costly to the planner to elicit large effort from those agents and the
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planner chooses to effectively insure them. To illustrate the intuition, note that Figure 1 shows

that consumption uncertainty in the second period increases with the first period shock.

Effects of the size of second period shocks

We now consider the effects of an increase in the size of the adverse second period shock affecting

agents. This is an important exercise as it allows us to identify forces that distinguish the dynamic

Mirrlees taxation in which skills stochastically change over time from a dynamic case in which

types of agents do not change over time. We consider a range of shocks: from a very large shock

(α2 = 0.05) that makes an agent almost disabled in the second period to a small drop (α2 = 0.95)

in which agent’s skill barely changes from previous period. In Figure 4 the bold line corresponds

to the benchmark case of α2 = 0.5; dashed lines correspond to α2 = 0.6, 0.8, 0.9 and 0.95 while

dotted lines correspond to α2 = 0.3, 0.1 and 0.05 respectively.

[Insert figure 4 here]

We now describe the effects of an increase in the size of the skill shocks on the labor wedges.

First notice that the size of the second period shocks practically does not affect the first period

wedge schedule τy1(θ1), and the shape and the level are preserved. This is a surprising result

because even when agents experience a high shock to their skills (e.g., α2 = 0.05), the schedule

of labor wedges in the first period is, essentially, identical to the case when an agent experiences

a very small shock (α2 = 0.95). Similarly, we don’t see large changes in the marginal labor

wedge schedule, τy2(·, 1), in the second period for the high realization of the shocks (i.e., if skills

remain the same as in the previous period). The labor wedge schedule does become steeper as α2

increases, i.e., when downward drops are smaller. Interestingly, the marginal tax on labor in the

second period after a downward drop, τy2(·, 2) changes significantly. As α2 increases, the shock

to skill becomes smaller and the level of wedges at the top falls. To see this effect, compare the

red line for α2 = 0.05 with the bottom black line for α2 = 0.95. The results are intuitive as an

increase in α2 makes the informational frictions smaller and allows the planner to distort agents’

decisions less to provide optimal distortion and redistribution.

To summarize the discussion above, we conclude that the size of the second period shock

has significant effects on labor wedges of only the agents who experience that shock and only in
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that period, while these agents’ previous labor decisions and the labor decisions of agents not

experiencing the adverse shocks are not affected by the shock. Intuitively, the skill distribution

for agents not affected by the shocks matters only indirectly, and, therefore, the labor wedge for

those agents is affected only to a small degree.

We now proceed to characterize the effects of the size of shocks on the capital wedge. The

intertemporal wedge becomes smaller and flatter when α2 increases – compare, for example, the

lower curve associated with α2 = 0.95 to the highest curve associated with α2 = 0.05. The reason

is that consumption becomes less volatile in the second period when the skill drop is smaller. The

inverse Euler equation then implies a smaller distortion. The intuition for this result is simple. If

there were no skill shocks in the second period (α2 = 1) then, as we discussed above, the capital

wedge is equal to zero. The higher is the wedge in the second period, the further away from the

case of constant skills we are, therefore, the distortion increases. Also note that low α2 (large

shocks in the second period) significantly steepens the capital wedge profile.

We conclude that the shape and size of the capital wedge responds significantly to the shocks

that an agent may experience in the future.

Effects of the probability of second period shocks and uncertainty

We now consider effects of changing the probability of the adverse second period shock. This

exercise is of interest because it allows us to investigate the effects of uncertainty about future

skill realizations on the size and shape of wedges.

In Figure 5, we show in bold the benchmark case where π2(2|·) = 0.5; dashed line correspond

to π2(2|·) = 0.7 and 0.9 while the dotted lines correspond to π2(2|·) = 0.3 and 0.1, respectively.

[Insert figure 5 here]

We first notice that the effects of the change in the probability of the adverse shock on labor

wedge are similar to the case of increase in size of the adverse shock. That is, as the probability

π2(2|·) of a drop in skills rises, the informational friction increases and so does the labor wedge.

For the intertemporal wedge there is an additional effect of changing the probability of the

adverse skill shock. We can see from the red line that the wedge is the highest when uncertainty
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about skills is the highest: at the symmetric baseline case with π2(2|·) = 0.5. Intuitively, the reason

is that the uncertainty about next period’s skill is maximized at π2(2|·) = 0.5. We conclude that

it is uncertainty about future skills rather than the level of next period’s skill shock that matters

for the size of the capital wedge.

Effects of Changing Risk Aversion

We proceed to explore effects of risk aversion on optimal wedges and allocations. This exercise is

important as risk aversion determines the need for redistribution or insurance for an agent which

is a primary objective for the social planner. Specifically, we change the risk aversion parameter

σ in the utility function. The results are shown in Figure 6. Our benchmark case of logarithmic

utility σ = 1 is shown in bold. With dotted lines we plot lower risk aversions: σ = 0.8, 0.5, 0.3

and 0.1; and with dashed lines we plot higher risk aversions: σ = 1.5 and 3.

[Insert figure 6 here]

The immediate observation is that a higher degree of risk aversion leads to uniformly higher

distortions. The intuition is again rather simple. We know that if σ = 0, so that utility is linear in

consumption and an agent is risk neutral, private information about the skill would not affect the

optimal allocation and the unconstrained allocation in which all wedges are equal to zero can be

obtained. The higher is risk aversion, the higher is the desire of the social planner to redistribute

and insure agents. Therefore, all distortions rise.

The effects of higher risk aversion on the intertemporal wedge are the outcome of two opposing

forces: (i) a direct effect: for a given consumption allocation, a higher risk aversion σ increases the

wedge—the capital wedge results from the Inverse Euler equation by applying Jensen’s inequality,

which is more powerful for higher σ; (ii) an indirect effect: with higher curvature in the utility

function u(c) it is optimal to insure more, lowering the variability of consumption across skill

realizations, which reduces the capital wedge. For the cases we considered the direct effect turned

out to be stronger and the capital wedge increases with risk aversion.
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Effects of changing elasticity of labor supply

We further investigate the properties of the optimum by considering three modification of the

disutility of labor. Figure 7 shows the results. Our benchmark case, as before, is v(l) = −l2

(plotted in bold in the figure). We also display two more inelastic cases: v(l) = −l3 and v(l) = −l4

(plotted with dashed lines).

[Insert figure 7 here]

We see that the effect on labor distortions is ambiguous. Intuitively, there are two opposing

forces. On the one hand, as labor becomes more inelastic, wedges introduce smaller inefficiencies.

Thus, redistribution or insurance is cheaper. On the other hand, since our exercises hold constant

the skill distribution, when labor supply is more inelastic the distribution of earned income is

more equal. Hence, redistribution or insurance are less valuable. Thus, combining both effects,

there is less uncertainty or inequality in consumption, but marginal wedges may go either up or

down.

The distortion on capital unambiguously goes down. The intuition is that consumption be-

comes less variable (as argued above) and that the Jensen inequality argument applied to the

Inverse Euler equation is less powerful.

5.2 Exploring nonseparable utility

We now consider a modification to the case of non-separable utility between consumption and

labor. When the utility is nonseparable, the analytical Inverse Euler results that ensured a pos-

itive intertemporal wedge may no longer hold. Indeed, the effects of nonseparable utility on the

intertemporal wedge are largely unexplored.

5.2.1 Building on a baseline case

We start with the specification of the utility function that can be directly comparable with our

baseline specification

u(c, l) =
(ce−l2)1−σ

1− σ
.
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Here, the baseline case with separable utility is equivalent to σ = 1. When σ < 1 risk aversion

is lower than in our baseline and consumption and work effort are substitutes in the sense that

ucl < 0, that is, an increase in labor decreases the marginal utility of consumption. When σ > 1

the reverse is true, risk aversion is higher and consumption and labor are complements, in that

ucl > 0. For both reasons, the latter case is widely considered to be the empirically relevant one.

We first consider σ < 1 cases. Figure 8 shows the schedules for σ = 1, 0.9, 0.7, 0.65. The

baseline with σ = 1 is plotted as a dotted line. Lower σ correspond to the lower lines on the

graph.

[Insert figure 8 here]

We notice that lower σ pushes the whole schedule of labor distortions down. Intuitively, with

lower risk aversion it is not optimal to redistribute or insure as much as before: the economy

moves along the equality-efficiency tradeoff towards efficiency.

The results for capital taxation are more interesting. First, lower σ is associated with a

uniformly lower schedule of capital distortions. Second, lower σ introduces a non-monotonicity

in the schedule of capital distortions, so that agents with intermediate skills have lower capital

distortion than those with higher or lower skills. Finally, for all the cases considered with σ < 1,

we always find an intermediate region where the intertemporal wedge is negative.

To understand this result it is useful to think of the case without uncertainty in the second

period. For this case, Atkinson and Stiglitz [1976] show that, when preferences are separable,

savings should not be taxed, but that, in general, whenever preferences are non-separable some

distortion is optimal. Depending on the details of the allocation and on the sign of ucl this

distortion may be positive or negative.

We now turn to the case with σ > 1 and consider σ = 1, 2, 3 (see Figure 9). The baseline with

σ = 1 is plotted as the dotted line. Away from the baseline, higher σ correspond to lower lines on

the graph.

[Insert figure 9 here]

We notice that higher σ pushes the whole schedule of labor distortions up. The intuition

is again that higher risk aversion leads to more insurance and redistribution, requiring higher

distortions.
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A higher σ is associated with a uniformly higher schedule of capital distortions and these

are always positive. Second, higher σ may create a non-monotonicity in the schedule of capital

distortions, with the highest distortions occurring for intermediate types.

To show that it is not only the value of the σ that determines the sign of the wedge, we now

turn to the case where the skill shocks in the second period have an upward trend so that α1 = 1.5

and α2 = 1, that is an agent may experience a positive skill shock. The results in this case are

reversed. Intuitively, the trend in skills matters because it affects the trend in labor.

We obtained similar results with the alternative specification of utility also common in macro-

economic models:

u (c, l) =
(c1−γ (L− l)γ)

1−σ

1− σ
.

This utility function was used by Chari et al. [1994] in their quantitative study of optimal monetary

and fiscal policy.

5.3 Summarizing the Case with No Aggregate Uncertainty

The exercises above give us a comprehensive overview of how the optimal allocations and wedges

depend on the parameters of the model. We now summarize what seems to be most important

for the size and the shape of these wedges.

1. Labor wedges on the agent affected by an adverse shock increase with the size or the prob-

ability of that shock. However, labor wedges in other periods and labor wedges for agents

unaffected by the adverse shock are influenced only indirectly by this variable and the effects

are small.

2. Higher risk aversion increases the demand for insurance and significantly increases the size

of both labor wedges. However, the effect of on capital wedges may be ambiguous as the

uncertainty about future skills also matters.

3. Capital wedges are affected by the size of the adverse wedge and by the uncertainty over

future skills.
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4. Higher elasticity of labor decreases the capital wedge but may have ambiguous effects on

labor wedge.

5. If utility is nonseparable between consumption and labor, the capital wedge may become

negative. The sign of the wedge in that case depends on whether labor is complementary or

substitutable with consumption and on whether an agent expects to experience a higher or

a lower shock to skills in the future.

6 Aggregate Uncertainty

In this section we explore the effects of aggregate uncertainty on the optimal allocations. In

Section 4.2 we showed that if agents’ types are constant it is optimal to perfectly smooth labor

taxes, i.e., the labor wedges are constant across states and periods. The main result of this section

is to show numerically that if agents’ types change over time, the labor wedge smoothing result

may no longer hold. This is a novel prediction of this paper.

The literature on new dynamic public finance virtually has not explored implications of ag-

gregate uncertainty on the optimal allocations. A notable exception is Kocherlakota [2005b] who

derives a version of the Inverse Euler Equation for the economy with aggregate shocks and explores

some quantitative implications of a version of the model with two types of agents.

Baseline Parameterization. We use, unless otherwise noted, the same benchmark specifications

as in the case with no aggregate uncertainty. Additional parameters that we have to specify are as

follows. We assume that there are two aggregate states, s = 2. The probability of the aggregate

states are symmetric: µ (1) = µ (2) = 1/2. We take the number of skills in the first period to be

N1 = 30. As before, skills are equispaced and uniformly distributed. We set R1 = 1.

6.1 Effects of Government Expenditure Fluctuations

We now turn to analyzing the effects of government expenditures on optimal allocations. There is

a sense in which return and government expenditure shocks are similar in that they both change

the amount of resources in the second period — that is, for a given amount of savings K2 they are

identical. Comparative statics in both exercises, however, are different in that they may induce
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different effects on savings. In the exercises that follow we assume that there are no return shocks,

and R2 (1) = R2 (2) = 1.

Effects of permanent differences in G

We first consider a comparative static exercise of an increase in government expenditures. Suppose

we increase G1 = G2 (1) = G2 (2) = 0.2, i.e., there is no aggregate uncertainty. Figure 10 shows

labor wedges for this case. We plot in bold the benchmark case of no government expenditures,

G1 = G2 (1) = G2 (2) = 0, and using thin lines the case of G1 = G2 (1) = G2 (2) = 0.2 (solid lines

correspond to the first period distortion; dashed lines – to the second period distortion of the low

types; and dotted lines – to the second period distortion of the high types).

[Insert figure 10 here]

We see that higher G leads to significantly higher labor wedges. Intuitively, if the wedge

schedule were not changed then higher expenditure would lead to lower average consumption and

higher labor. Relative differences in consumption would become larger and increase the desire for

redistribution, given our constant relative risk aversion specification of preferences. The intuition

also parallels the case in which there is a shock to the rate of return. Here, an increase in

government consumption leads to the planner needing to extract a larger amount of resources

from the economy than in the absence of government purchases.

In the Figure 11 we plot the intertemporal wedges for our case of government expenditures

(thin line) and for the case of no government expenditures (bold line). As in the case of labor

wedges, we see that the size of the wedge is higher in the case of government expenditures. A

minor point is that introduction of government expenditures may lead to nonmonotonicity in the

capital wedge schedule especially at the lower levels of skills.

[Insert figure 11 here]

We could have considered a case of transitory changes in government expenditures, i.e., keep

government expenditure deterministic but make it higher or lower in the second period versus

the first. This case is very similar to the one above as it is the present value of the government

expenditures that matters rather than the distribution of them across time.
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Effects of aggregate shocks to government expenditures

We now consider the effects of stochastic shocks to government expenditures. In this specification

we have G1 = 0.2, G2 (1) = 0.3, G2 (2) = 0.2 and µ (1) = 0.7;µ (2) = 0.3. In Figure 12 we plot

labor wedges. The solid line is τy1 ; the dotted line is τy1 1(., 1) (i.e., high type in state 1); the

dashed line is τy1 1(., 2) (i.e., low type in state 1); the dotted line with thick dots is τy1 2(., 1) (i.e.,

high type in state 2); the dashed line with thick dots is τy1 2(., 2) (i.e., low type in state 2).

[Insert figure 12 here]

The most important observation is that there is a difference in taxes across realizations of

government expenditure. This contradicts one interpretation of perfect tax smoothing, which

would lead one to expect wedges to remain constant across these shocks. This finding is new

to both the literature on dynamic Mirrlees taxation and to the Ramsey taxation literature. For

example, Ramsey models call for smoothing labor tax distortions across states of the economy. As

reviewed in subsection 4.2, with fixed types, tax smoothing also obtains in a Mirrleesian model.

Interestingly, the distortions do not move in the same direction for the low and high types. This

is in contrast to the comparative static exercise in Figure 10, where lower government expenditure

leads to lower taxes overall. Here, instead, the spread between the distortions on the low and

high types become smaller when government expenditures are low. Our intuition is that when

government expenditure is low, resources are more abundant. As a consequence output from labor

becomes relatively less important. Thus, insuring the new skill shocks becomes less valuable. The

economy then behaves closer to the benchmark where there are no new skill shocks, where perfect

tax smoothing obtains.

We now turn to Figure 13 that shows the intertemporal distortion. In that figure, the upper

(dashed) line is µ1 = 0.7, the solid line is µ1 = 0.5 and the lower (dotted) line is µ1 = 0.3.

[Insert figure 13 here]

We see that intertemporal wedge becomes higher with higher µ1, indicating a larger informa-

tional distortion.
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6.2 Effects of rate of return shocks

In this section we consider the effects of shocks to returns. We consider a case in which R2 (1) = 1

and R2 (2) = 4, i.e., there is an upward shock to the return on savings technology. In Figure 14

we plot labor distortions. We plot labor wedges as follows. The solid line is τy1 ; the dotted line is

τy1 1(·, 1) (i.e., wedge for the high shock type in state 1); the dashed line is τy1 1(·, 2) (i.e., wedge for

the low type in state 1); the dotted line with thick dots is τy1 2(·, 1) (i.e., wedge for the high type

in state 2); the dashed line with thick dots is τy1 2(·, 2) (i.e., wedge for the low type in state 2).

[Insert figure 14 here]

As in the case of government expenditure shocks, here we also observe that the spread be-

tween wedges on low and high type in a bad state are higher, indicating that in that state the

informational friction is higher.

We now turn to the analysis of the behavior of the capital wedge under aggregate uncertainty.

Figure 15 plots the intertemporal distortion τk for various values of the shock to the rate of return:

R2 = 1 (solid line – the benchmark case of no uncertainty) and R2 = 1.2, 2, 3 and 4 (dotted lines).

[Insert figure 15 here]

We see that distortions decrease with the rate of return shock R2. Intuitively, a higher R leads

to more resources, and with more resources the planner can distribute them in a way that reduces

the relative spread in consumption, making the desire for redistribution lower (given our CRRA

preferences) and thus, lowering the need to distort. We also explored the effects of upwards shocks

for R2 = 1, 1.2, 2, 3 and 4 on labor distortions. Qualitatively, they are similar to the ones in the

picture above.

6.3 Summary

We can now summarize the main implications of our analysis. There are two main points to take

away from this section: (1) aggregate shocks lead to labor wedges differing across shocks, and (2)

a positive aggregate shock (either a higher return on savings or lower realization of government

expenditures) leads to lower capital wedges and to a lower spread between labor wedges.
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7 Concluding Remarks

In this paper we reviewed some main results from recent New Dynamic Public Finance literature.

We also provided some novel explorations in the determinants of capital and labor wedges, and

how these wedges respond to aggregate shocks.

We also argued that this approach not only provides a workable alternative to Ramsey models,

but that it also comes with several significant advantages over its predecessor. First, while Ram-

sey models have provided several insights into optimal policy, their well-understood limitation

regarding the ad hoc nature of tax instruments, may make interpreting their prescriptions prob-

lematic. In contrast, the main premise of the Mirrleesian approach is to model heterogeneity or

uncertainty—creating a desire for insurance or redistribution—and an informational friction that

prevents the first-best allocation and determines the set of feasible tax instruments endogenously.

In particular, although a simple non-discriminatory lump-sum tax component is never ruled out,

the optimum features distortions because these improve redistribution and insurance. Second, we

also argued that this approach has novel implications for the type of dynamic policy issues that

macroeconomists have been interested in: capital taxation, smoothing of labor income taxes, and

the nature of the time-consistency problem. In addition, some new issues may arise directly from

the focus on richer tax instruments—such as the progressivity of taxation.

In what follows we outline what we think are largely unresolved questions that we hope are

explored in future research.

One remaining challenge is the quantitative exploration of the theory using calibrated models

that can capture some empirically relevant features of skill dynamics—such as those studied in, for

example, Storesletten et al. [2004]. The main difficulty is that it is currently not tractable to solve

multiple-period models with such a rich structure for skill shocks. Most current studies impose

simplifying assumptions that provide illustrative insights, but remain unsuitable for quantitative

purposes. One recent route around this problem is provided by Farhi and Werning [2006] who

study partial reforms in a dynamic Mirrleesian setting to evaluate the gains from distorting savings

and provide a simple method which remains tractable even with rich skill processes. There is also

some early progress in analyzing dynamic Mirrlees models with persistent shocks using a first-order

approach in Kapicka [2005].
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A quantitative analysis could also be used to address and evaluate the importance of a common

challenge against the New Dynamic Public Finance literature: that it delivers tax systems that

are “too complicated”. For example, one could compare the level of welfare obtained with the fully

optimal scheme to that which is attained when some elements of the tax system are simplified.

For example, it may be interesting to compute the welfare losses from a tax code close to the one

in the U.S. and other countries, comprised of linear tax on capital and nonlinear labor income

tax, or other systems with limited history dependence.

A related route is to take insights into the nature of optimal taxation from Mirrleesian models

and incorporate them in a simplified fashion in Ramsey-style models, augmented with heterogene-

ity and idiosyncratic uncertainty regarding skills. The work by Conesa and Krueger [2005] and

Smyth [2005] may be interpreted as a step in this direction. These papers compute the optimal

tax schedule in a model where the tax function is arbitrarily restricted but flexibly parameterized

to allow for wide range of shapes, including progressive taxation, non-discriminatory lump-sum

taxation, and various exemptions. Work along these lines, using state-of-the-art computational

models, could explore other tax features, such as certain differential treatments of capital and

labor income, or some forms of history dependence.

Another quantitative direction for research is to consider the implications of the new approach

for classic macroeconomic questions, such as the conduct of fiscal policy over the business cycle.

We only perfunctorily touched on this topic, but there is much more to be done to consider many

of the issues that macroeconomists studied in the Ramsey traditions. Ideally, one could derive a

rich set of quantitative predictions, similar in spirit to the quantitative Ramsey analysis in Chari

et al. [1994].

The main reason we stress the potential value of quantitative work is as follows. In our view,

the approach to optimal taxation pioneered by Mirrlees [1971] and Atkinson and Stiglitz [1976] was

seen as extremely promising in the 70s and early 80s, but received relatively less applied interest

later. One common explanation for this is that the approach made quantitative and applied work

difficult and demanding. We hope that, this time around, the recent surge in interest, combined

with the more advanced quantitative techniques and computing power available today, may soon

create enough progress to make solving realistic quantitative models feasible. Recent quantitative
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work is promising in this regard [e.g. Golosov and Tsyvinski, 2006a, Farhi and Werning, 2006],

but more is needed.

Another direction for future research is to relax the assumption of mechanisms operated by

benevolent social planners. A relevant question in this context is whether the normative insights

of the dynamic Mirrlees literature apply to the positive real-world situations where politicians care

about reelection, self-enrichment or their own individual biases, and cannot commit to sequences

of future policies. A related question is under what conditions markets can be better than optimal

mechanisms. The potential misuse of resources and information by the government may make

mechanisms less desirable relative to markets. Certain allocations resulting from anonymous

market transactions cannot be achieved via centralized mechanisms. Nevertheless, centralized

mechanisms may be preferable to anonymous markets because of the additional insurance they

provide to risk-averse agents. Acemoglu, Golosov and Tsyvinski [2006] approach these questions

with a model that combines private information regarding individual skill types with the incentive

problems associated with self-interested rulers.

Finally, we close by emphasizing that New Dynamic Public Finance approach can be used to

analyze a large variety of new topics, rarely explored within Ramsey settings. For instance, one

recent line of research focuses on intergenerational issues. Phelan [2005] and Farhi and Werning

[2005] consider how intergenerational incentives should be structured, while Farhi and Werning

[2005] and Farhi et al. [2005] derive implications for optimal estate taxation. This is just one

example of how this approach promises more than just new answers to old questions, but also

leads to new insights for a large set of unexplored questions.
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Appendix: Numerical Approach

In this appendix we describe the details of the numerical computations that we performed in this

paper. The major conceptual difficulty with computing this class of models is that there are a large

number of incentive constraints, and there is no result analogous to static models that guarantee

that only local incentive compatibility constraints can bind to reduce them. Our computational

strategy in this regard is as follows:

1. We start with solving several examples in which we impose all of the IC constraints. This

step gives us a conjecture on what kind of constraints may bind.

2. We then impose constraints that include deviations that bind in step 1. In fact, we include

a larger set that also includes constraints in the neighborhood (of reporting strategies) to

the ones that bind.

3. Finally, once the optimum is computed we check that no other constraints bind.

This approach is very much like the active set approach in constrained optimization: one

begins with a set of constraints that are likely to be the binding ones, one then solves the smaller

problems, checking all constraints, and adding the constraints that are violated in the set of

constraints that are considered for the next round (and possibly dropping some of those that were

not binding) and repeat the procedure.15

15We thank Ken Judd for pointing this to us.
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Figure 1: Consumption allocation. Middle
dotted line shows first period consumption;
outer solid lines are second period consump-
tion.
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Figure 2: Effective labor allocation. Dashed
line is for first period. Solid lines are for sec-
ond period, top is high shock, bottom low
shock.
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Figure 3: Benchmark implicit marginal tax rates.
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Figure 4: Varying α2.
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Figure 5: Varying the probability of skill drop π2(2|·).
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Figure 6: Varying Risk Aversion
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Figure 7: Changing elasticity of labor.
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Figure 8: Nonseparable utility with σ ≤ 1.
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Figure 9: Nonseparable utility with σ ≥ 1.
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Figure 10: Labor Distortion
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Figure 11: Intertemporal Distortion
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Figure 12: Shocks to government expenditure
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Figure 13: Intertemporal distortion
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Figure 14: Rate of Return Shocks
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Figure 15: Intertemporal distortion varying
R2.
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