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Implications of Security Market Data
for Models of Dynamic Economies

Lars Peter Hansen

Unwversity of Chicago, National Bureau of Economic Research, and
National Opinion Research Center

Ravi Jagannathan

Unaversity of Minnesota and Federal Reserve Bank of Minneapolis

We show how to use security market data to restrict the admissible
region for means and standard deviations of intertemporal marginal
rates of substitution (IMRSs) of consumers. Our approach (i) is non-
parametric and applies to a rich class of models of dynamic econo-
mies, (ii) characterizes the duality between the mean—standard devi-
ation frontier for IMRSs and the familiar mean—standard deviation
frontier for asset returns, and (iii) exploits the restriction that IMRSs
are positive random variables. The region provides a convenient
summary of the sense in which asset market data are anomalous
from the vantage point of intertemporal asset pricing theory.

I. Introduction

In this paper we investigate the implications of asset market data for
a rich class of models of dynamic economies. The models within this
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class differ with respect to the heterogeneity of consumers’ prefer-
ences, the span of the payoffs on tradable securities, and the role of
money in the acquisition of consumption goods. In spite of these
differences, a common implication of these models is that the equilib-
rium price of a future payoff on any traded security can be repre-
sented as the expectation (conditioned on current information) of the
product of the payoff and an appropriately interpreted intertemporal
marginal rate of substitution (IMRS) of any consumer (see, e.g.,
LeRoy 1973; Rubinstein 1976; Lucas 1978; Breeden 1979; Harrison
and Kreps 1979; Hansen and Richard 1987). This representation is
a generalization of the familiar tenet from price theory that prices
should equal marginal rates of substitution. To apply this principle
to models of asset pricing, securities are viewed as claims to a numer-
aire good indexed by future states of the world.

If price data were available from a complete set of security markets,
the IMRSs of all consumers could be inferred from Arrow-Debreu
prices. However, economic agents may not trade in a complete set of
contingent-claims markets. Furthermore, it may be practical for an
econometrician to use data on only a small array of securities. Because
of these limitations, asset market data alone are typically not sufficient
to identify IMRSs.

One approach that has been used extensively is to identify IMRSs
by restricting them to be parametric functions of data observed by
an econometrician (see, e.g., Hansen and Singleton 1982; Brown and
Gibbons 1985; Epstein and Zin, this issue). This approach imposes
potentially stringent limits on the class of admissible asset pricing
models and then tests whether the particular parameterizations are
consistent with the observed asset market data.

While this parametric approach has yielded interesting insights into
the empirical plausibility of particular families of models, the ap-
proach proposed in this paper goes to another extreme. We pur-
posely enlarge the class of asset pricing models under investigation
by imposing as little structure as possible on the admissible class of
models. In doing so we eliminate most of the testable implications
except possibly the law of one price (portfolios with the same payoffs
have the same price) and the absence of arbitrage opportunities (non-
negative payoffs that are positive with positive probability have posi-
tive prices). Although we are not able to identify the IMRSs fully,
we can extract information about them. When IMRSs are constant,
portfolio payoffs with the same price must also have the same mean.
Thus the existence of portfolios of securities with the same price but
distinct expected payoffs implies that IMRSs must vary. We exploit
this observation to derive greatest lower bounds on the standard devi-
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ations of IMRSs, that is, volatility bounds. These bounds are ex-
pressed most conveniently as regions of admissible mean—standard
deviation pairs for the IMRSs.

The existence of volatility bounds on IMRSs was originally noted
by Shiller (1982) (see also Hansen 1982). His goal was to construct a
diagnostic for a particular family of asset pricing models that is insen-
sitive to the alignment of the data. The volatility implications he de-
duced for IMRSs used only two asset returns and, even for the two-
asset case, are weaker than those reported here.

Our reasons for examining volatility bounds are somewhat differ-
ent from Shiller’s. First, our nonparametric approach can serve as a
useful complement to the parametric approach that is prevalent in
the literature. In particular, it can assist in understanding better why
particular models are rejected on the basis of statistical tests: does the
parameterization admit too little variability in the IMRSs? Second,
our approach provides a common set of diagnostics for a potentially
large class of asset pricing models. These diagnostics can also be used
to evaluate models in which IMRSs are parameterized as functions
of observables as well as models for which moments can be computed
from characterizations of the stochastic equilibria. Third, our ap-
proach allows us to determine which asset market data sets present
the most stringent restrictions for IMRSs and consequently the most
startling implications for dynamic economic models. It allows us to
make these comparisons without having to focus on a parametric
family of such models.

To illustrate these points, we provide an alternative characteriza-
tion of the so-called equity premium puzzle (see, e.g., Mehra and Prescott
1985). In contrast to other characterizations, ours does not depend
either on a Markov chain approximation with a small number of
states or on a narrow class of asset valuation models. Figure 1 reports
a restricted region for the means and standard deviations of IMRSs
implied by the annual (1891-1985) time-series data on stocks and
bonds used by Campbell and Shiller (1988). The shaded region gives
the admissible pairs of means and standard deviations for IMRSs. As
benchmarks, we also report time-series sample means and standard
deviations for IMRSs implied by a representative consumer model

with commonly used period utility functions of the form
At -1
vo==">7

for negative values of +y. For this specification of preferences, the
IMRS can be measured by forming a consumption ratio for two dif-
ferent points in time, raising it to the power y and discounting. For
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illustrative purposes, the annual subjective discount factor is taken to
be .95. The “boxes” in the figure represent mean—standard deviation
pairs for alternative values of vy ranging from zero to —30. As |vy|
increases, the volatility of the IMRS increases but the effect on the
mean of the IMRS is not uniform. Initially the mean decreases but
subsequently increases so that for large | y| the boxes are in the admis-
sible shaded region.

Our strategy for constructing regions such as that reported in fig-
ure 1 is to construct minimum variance random variables with pre-
specified means that are related to asset payoffs and prices in the
same manner as the IMRSs. We refer to such random variables as
being on the mean—standard deviation frontier for IMRSs. In Section
III, we construct these frontier random variables ignoring the fact
that IMRSs must be positive. In this case the minimum variance ran-
dom variables are simply linear combinations of the asset payoffs
translated by a constant. As a by-product of this construction, we
relate our analysis to two commonly used empirical paradigms in
finance: mean-variance analysis and linear factor pricing. More pre-
cisely, we characterize the duality between the mean—standard devia-
tion frontier for IMRSs and the familiar mean—standard deviation
frontier for asset payoffs. This analysis reveals that asset payoffs on
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the mean—standard deviation frontier are sufficient to generate the
mean-—standard deviation frontier for IMRSs. Hence the dimension-
ality reduction techniques used in linear factor pricing models can be
exploited to derive a region like that reported in figure 1.

In Section IV, we modify the analysis of Section III by incorporat-
ing the restriction that IMRSs are positive random variables. For pre-
specified means, we construct nonnegative random variables that
behave like IMRSs and have minimum variances. These random vari-
ables are not necessarily linear functions of the payoffs but instead
can be interpreted as European call and put options on portfolios of
these payoffs. In contrast to the analysis in Section III, for some
prespecified means there may not be any nonnegative random vari-
ables with finite second moments that behave like IMRSs. While the
approach of this section yields more restrictive (and therefore more
informative) volatility bounds, these sharper bounds are harder to
compute.

In Section V, we illustrate the results in Sections III and IV by
displaying volatility bounds computed using alternative data sets and
generating mean—standard deviation pairs for alternative parametric
models of IMRSs. Among other things, we use these bounds to help
assess the plausibility of some parametric models of asset prices.

II. A General Model of Asset Pricing

In this section we present a general model of asset valuation. Consider
an environment in which multiple consumers trade in securities mar-
kets. The preferences and information sets of these consumers may
be heterogeneous. We fix both the trading period (say time 0) and
the time period for the receipts of the asset payoffs (say time T > 0).
Let I’ denote the information set of consumer j at time 0, and I = N
I/, where the intersection is taken over the consumers in the economy
who trade securities. The prices of securities traded at date 0 are
presumed to be in the individual information set I/ of individual j for
each j and hence in I. Let P denote a set of portfolio payoffs of the
numeraire good at time T that are traded at time 0. Since the prices
of the portfolio payoffs are in I, we represent these prices as a func-
tion m, mapping P into I. Hence m;(p) is the price at time 0 of a
portfolio that will pay p units of a numeraire good at a future date T.
Consumers are presumed to solve optimal portfolio problems in
determining their asset holdings. This imposes restrictions relating
marginal rates of substitution to asset payoffs and prices. To see this,
let muj, and mu’ denote the equilibrium marginal utilities of con-
sumer j in terms of the numeraire consumption good at dates 0 and
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7, respectively. In equilibrium the marginal utility—scaled price must
equal the expected marginal utility—scaled payoff conditioned on I/

mulymw,(p) = E(mulp|l’) forallpinP. (1)

As long as consumer j is not satiated at time 0, mu{ > 0 and we can
divide both sides of (1) by muj, which yields m,(p) = E(pm’|I’) for
all p in P, where m/ = mul/muj is the IMRS of consumer j. Since
asset prices are presumed to be observed by all consumers, it follows
from the law of iterated expectations that

m,(p) = E(pmI|I) forallpinP. 2)

In a world with common information sets and complete markets,
marginal rates of substitution are equated across consumers (m’ = m
for all j). In such a world, P can be chosen to be sufficiently large
that the common IMRS is uniquely determined by (2). In general, (2)
does not uniquely determine m/. As we shall see, however, (2) does
restrict the unconditional moments of m’/ even when markets are
incomplete.! Since the restrictions we derive apply to all the individ-
ual IMRSs, to simplify notation we drop the j superscript on m.

We now give a more complete description of P and the associated
asset pricing function w;. We do not require that P contain all the
portfolio payoffs that are traded by consumers. Omitting payoffs will,
however, weaken the implications for m. As a matter of convenience,
we consider the case in which there is an n-dimensional vector x of
asset payoffs at date 7. The time O prices of these assets can also be
represented as an n-dimensional vector, say q, and pricing relation
(2) can be expressed as

q = E(xm|I). (3)

We are interested in the implications of (3) for the IMRS m. To
investigate this relation empirically, we must have some way to repli-
cate observations on payoffs, prices, and information over time. As
in Hansen and Richard (1987), we imagine an environment in which
relation (3) is replicated over time. In other words, there is a compos-
ite process {(m, x,, q,)} and a sequence of information sets {I,} that
satisfy a version of (3) for all ¢. Econometricians seeking to study this
economy are presumed to have data on a finite record (x,, q,), for
t=1,2,...,T, and the composite process {(m,, X,, q,)} is presumed
to be sufficiently regular that a time-series version of a law of large
numbers applies. Thus sample moments formed from the finite rec-

! In the case of incomplete markets, formula (2) abstracts from the possible existence
of short sale constraints.
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ords of data converge to population counterparts as the sample size
T becomes large. Even though asset prices are determined 7 periods
prior to the realization of the asset payoffs, from the vantage point
of econometricians, we model {q,} as a stochastic process to accommo-
date possible variation over time in the asset prices. In what follows
we use the unconditional expectation operator E to represent the
limit points of the time-series averages of the sample moments.?

We now impose restrictions on m, x, and q, which are expressed in
terms of unconditional expectations.

AssuMPTION 1. E|m|? < «, E|x|? < , Exx’ is nonsingular, and
E|q| <.

The restriction that the second-moment matrix of x is nonsingular
is made as a matter of convenience to rule out cases in which the
entries of x are linearly dependent. Among other things, this guaran-
tees that the law of one price holds trivially for linear combinations
of x. If the moment restrictions imposed on x and q are not satisfied
for an original vector of assets, then it is often possible to scale the
payoffs and prices so that these restrictions are satisfied. A special
case of such scaling occurs when all the payoffs are constructed to
have a unit price as in the case of measured returns to holding securi-
ties between time 0 and time 7.

Applying the law of iterated expectations to the pricing relation (3)
results in the following restriction.

ResTrICTION 1. Eq = EXm.

We focus on the unconditional moment restriction 1 instead of
the conditional moment restriction (3) because it is typically easier to
estimate unconditional moments than conditional moments. Restric-
tion 1, however, is in general weaker than (3). Gallant, Hansen, and
Tauchen (1990) show how to extend some of the analysis in this paper
by exploiting characterizations of the moments of x conditioned on
(possibly a subset of) I.

As long as consumers are not satiated in the numeraire consump-
tion good at time 7, the IMRS should be strictly positive.

RESTRICTION 2. m > 0.

Restriction 2 is sufficient to imply the absence of arbitrage opportu-
nities. That is, the restriction guarantees that nonnegative payoffs
that are strictly positive with positive probability conditioned on [/
have positive prices. In the next two sections we explore the implica-

2 Our use of the unconditional expectation operator in this context is justified for-
mally when the time series converges appropriately to a stochastic steady state and is
ergodic. In this case, unconditional expectations are computed using the stationary
distribution. For processes that are asymptotically stationary but not ergodic, the limit
points can often be represented as conditional expectations in which the conditioning
occurs on the invariant sets for the approximating stationary stochastic process.
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tions that restrictions 1 and 2 have for the mean and standard devia-
tion of m.

So far, we have treated the case in which only a finite vector of
asset payoffs and prices is investigated. In our subsequent analysis, it
will be convenient to extend the pricing function and its uncondi-
tional expectation to the linear span of x. Define P = {c - x: ¢ in R"}.?
In Section IV, we shall also consider derivative claims formed by
taking particular nonlinear functions of payoffs in P. In light of as-
sumption 1, each portfolio payoff in P has a finite second moment.
With this in mind we define a norm on P to be ||p|| = [E(p?)]"2. Notice
that the standard deviation of a portfolio payoff p, denoted o(p), is
given by [p — Epl.

Since the portfolio payoffs in x are linearly independent, for each
p in P there is a unique ¢ in R" for which p is equal to ¢ - x. We
extend the pricing function so that the prices of these payoffs are
given by the corresponding linear combinations of q: m,(c - x) = ¢ -
q. As required, 7; maps P into I. Notice that m; is constructed so that
(8) extends to the linear span x: m,(p) = E(pm|I) for all p in P.

It is also of interest to define a functional m mapping portfolio
prices into the expected value of the prices: w(p) = Em/(p). Hence =
maps P linearly into the real line R. Again the law of iterated expecta-
tions implies that

w(p) = E(mp) forallpinP. (4)

It is straightforward to show that restriction (4) is equivalent to restric-
tion 1.

III. Implications of Restriction 1

In this section we characterize the volatility restrictions for m as im-
plied by restriction 1. In subsection A we suppose that there is a unit
payoff in P, while in subsection B we consider the more common case
in which such a payoff is not included in P. Finally, in subsection C
we describe how existing empirical methodologies in finance can be
used to characterize these volatility restrictions.

A. Ruskless Payoff

Suppose that P contains a payoff that is equal to one with probability
one. In deriving implications for the volatility of m, we should first

% Notice that a larger set P of portfolio payoffs could be constructed by following
more complex trading strategies in which the vector c is replaced by a vector of random
variables in I. The theoretical analysis in Hansen and Richard (1987) is designed to
accommodate this case as is the econometric analysis in Gallant et al. (1990). We focus
on the linear span of x for pedagogical convenience and empirical tractability.
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construct a random variable m* in P that satisfies restriction 1. This
amounts to finding a vector a, in R” such that

Exx'a, = Eq, (5)

where m* = x - «,. Solving (5) for a, gives @, = (Exx')"'Eq. Notice
that o, depends on the second moment of x and the first moment of
q- Hence m* can be constructed from asset market data.

Consider any other random variable m satisfying restriction 1. Since
P contains a unit payoff, Em = w(l) = Em*. Consequently, all
random variables m that satisfy restriction 1 have the same mean,
and this mean is equal to the expected price of a unit payoff. Also,
E[x(m — m*)] = 0 because both m and m* satisfy restriction 1.
In other words, the discrepancy between m and m* is orthogonal to
the random vector x. Since m* is in P, m* is the least-squares projec-
tion of m onto P and

a?(m) = a?(m*) + a(m — m*).
Therefore, we have the following relations:
o(m) = a(m*), Em* = Em. (6)

The volatility bound in (6) is as sharp as possible because m* satisfies
restriction 1 by construction.

B. No Riskless Payoff

Next we consider the more usual case in which P does not contain a
unit payoff. It turns out that much of the previous analysis can be
exploited in analyzing this case. Let x* denote the (n + 1)-dimen-
sional random vector formed by augmenting x with a unit payoff.
Since Exx' is nonsingular and no linear combination of x is equal to
one with probability one, Ex“x* is also nonsingular. We build an
augmented payoff space P* containing a unit payoff by using x* in
place of x.

To apply the analysis in Section IIIA, we must assign a number v
to m(1), which is the expected price of a unit payoff. Such price data
may not be available, and for this reason we examine implications for
an array of hypothetical expected prices. Let v be any candidate for
w(1) and 7, the corresponding extension of 7 from P to P?. We then
replicate the analysis in subsection A to construct a random variable
m, in P? such that

Exm,= Eq, Em,=v. )
The counterpart to volatility bound (6) is

o(m) = o(m,) ®)
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for any random variable m that satisfies restriction 1 and has mean
v. This volatility bound is as sharp as possible because, by construc-
tion, m, satisfies restriction 1 and has mean v.

We replicate the construction of m, for all real numbers v and
generate an indexed collection {m,: v in R} of random variables, each
of which satisfies restriction 1. This collection is of interest because
for any m satisfying restriction 1, the ordered pair [Em, o(m)] is in
the region

S ={(v,w) in R%: w = o (m,)}. 9)

This region summarizes the volatility implications for m implied by
restriction 1. We refer to the boundary of S as being the mean—stan-
dard deviation frontier for IMRSs, and we refer to members of the
set {m,: v in R} as being on this frontier.

It is of interest to derive an expression for o(m,) that is both easy
to compute and easy to interpret. The moment conditions in (7) can
be rewritten as terms of the covariance of m and x:

E[(x — Ex)(m, — v)] = Eq — vEx. (10)
Now
m, = (x — Ex)'B, + v (11)

for some B, in R" because m, is a linear combination of a unit payoff
and the entries of x and Em, is v. Substituting (11) into (10) and
solving for B, give

B, = =~ (Eq — vEx),
where 3 is the covariance matrix of x. It follows that
o(m,) = [(Eq — vEx)'S~Y(Eq — vEx)]"2. (12)

Notice that for a given v, o(m,) depends only on the means of q and
x and the covariance matrix of x.

The standard deviation bound given in (12) has the following inter-
pretation. Consider a risk-neutral valuation of the asset payoffs in
which m is set to a constant value v for all states of the world. In this
case the means of the prices should be proportional to the means of
the asset payoffs with proportionality factor v. The bound in (12) is
the square root of a quadratic form in the vector of deviations of the
observed average prices from the average risk-neutral prices. For a
fixed X, larger deviations from risk-neutral pricing imply larger
bounds on the volatility of m. Shanken (1987) derived a related bound
on the pricing error induced by using error-ridden proxies in com-
puting the valuation of asset payoffs. When a constant v is used as a
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proxy for m, the bound in (12) can be viewed as a special case of
Shanken’s bound (see his proposition 1, pp. 93-94).

C. Relation to Empirical Models of Asset Prices

In this subsection we derive the relation between the mean—standard
deviation frontier for m and the mean-variance frontier for asset re-
turns. This latter frontier is the focal point of the static capital asset
pricing model. The link we deduce between the two frontiers pro-
vides an alternative interpretation of the volatility bounds for m. We
then describe how linear factor restrictions as imposed in Ross’s
(1976a) arbitrage pricing model (see also Chamberlain 1983; Cham-
berlain and Rothschild 1983; Connor 1984) can be used to character-
ize the mean—standard deviation frontier for m.
Define

R={pinP:m(p) = 1}. (13)

When the vector q is not random, R is the collection of (gross) returns
on portfolios in P. More generally, R contains all the payoffs in P
with expected prices that are equal to one.

Consider first the case in which P contains a unit payoff and m (1)
is different from zero. Then 1/m(1) is in R. A second payoff in R is
r* = m*/7(m*). Note that w(m*) = E[(m*)?], and hence

ey = el - L
lm* |2 [lm*|

Furthermore, Hansen and Richard (1987) established that r* is the
payoff in R that has the smallest norm (second moment). Conse-
quently, r* is the solution to the following optimization problem:

(14)

minimize o(r) subjectto Er = p
rinR
when p is set equal to Er*. Therefore, m* is proportional to a particu-
lar payoff on the mean—standard deviation frontier for R.
To relate the bound for o (m) given in (8) to the slope of the mean—
standard deviation frontier for R, note that

o(m)_ o(m*) _ o (r*)||m* | _o@*)
Em — Em* Em* Evr*

. (15)

Recall that the second moment of a random variable 7 satisfies E (r?)
= o(r)? + (E7)% Since P contains a unit payoff, the mean—standard
deviation frontier for R is a cone with apex at [0, 1/7(1)] and axis
parallel to the horizontal axis. In order for 7* to be the minimum
second-moment payoff in R, the ordered pair [o(r*), Er*] must occur
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at the tangency of a circle with center (0, 0) and the lower (inefficient)
portion of the mean—standard deviation frontier for R. This tangency
point is depicted in figure 2. Since the lower portion of the frontier
is a ray from [0, 1/m(1)] through [o(r*), Er*], the slope of this ray is
the Sharpe ratio of the payoff r*, {Er* — [1/m(1)]}/o(r*), and the slope
of the circle with center (0, 0) that passes through [o(r¥), Er*] is
—a(r*)/Er*. Therefore,

o(r*) _ [1/m(1)] — Er*
Er* o (r*) )
In light of (15) and (16), the bound on the ratio o(m)/Em is given by

the absolute value of the slope of the mean—standard deviation fron-
tier for R.* These relations demonstrate the precise sense in which a

(16)

* An alternative way to derive the bound is as follows. Consider any payoff z with an
expected price equal to zero. By restriction 1, Ezm = 0. It follows from the covariance
decomposition and the Cauchy-Schwarz inequality that o(m)/Em = |Ez|/a(z). The sharp-
est bound on o(m)/Em is given by the zero expected price payoff z with the largest
Sharpe ratio |Ez|/a(z). As is well known from financial economics, the largest Sharpe
ratio is equal to the absolute value of the slope of the mean—standard deviation frontier
when R contains a riskless payoff.
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steep slope of a mean—standard deviation frontier for asset payoffs
can imply a potentially dramatic bound on the volatility of m.

Next we consider the case in which P does not contain a unit payoff
and hence R does not contain an unconditionally riskless payoff. We
follow the strategy used in subsection B by augmenting x with a unit
payoff and assigning this payoff an expected price v. This results in
an expansion of R to R,, where 1/v is now in R,. Let r¥ denote the
payoff in R, with the smallest second moment. Since 7} is on the
mean-standard deviation frontier for R, it is well known from static
capital asset pricing theory that r} is a linear combination (with coef-
ficients that sum to one) of 1/v and any other distinct return on the
mean—standard deviation frontier for R,. As long as 1/v is not equal
to the mean of the minimum variance payoff in R, we can find a
payoff r, that is on the mean—standard deviation frontier for both R
and R,. Also, for each v the variable m, is proportional to r* There-
fore, with one exception, for each random variable m, on the mean—
standard deviation frontier for IMRSs, there is a corresponding pay-
off r, on the mean—standard deviation frontier for R such that m,
is a linear combination of r, and a unit payoff. In this sense the
mean—standard deviation frontier for IMRSs can be thought of as
the dual of the mean—standard deviation frontier for R. The excep-
tional case occurs when 1/v is the mean of the minimum variance
payoff in R. In this case, m, is a linear combination of a unit payoff
and a payoff that is on the mean—standard deviation frontier for the
space of payoffs with expected prices equal to zero.

The impact of augmenting R with 1/v can be seen graphically by
passing a ray from the point (0, 1/v) through a tangent point on the
mean—standard deviation frontier for R. One side of the mean—
standard deviation frontier for the augmented set R, is given by this
tangent ray, and the other is a reflection about a horizontal ray from
(0, 1/v). This construction is displayed graphically in figure 3. In the
special case in which 1/v is the mean of the minimum variance payoff
in R, it is not possible to draw a tangent line to the mean—standard
deviation frontier of R from the point (0, 1/v). Instead the frontier
for R, is given by the two asymptotes.

Once the frontier for the augmented set R, is obtained, the con-
struction illustrated in figure 2 can be mimicked using R, in place of
R. Thus for any m with mean v that satisfies restriction 1,

o(m)_ olm,) _ o) _ [V/=()] — Ery
Em v Er¥ a(rd

(17)

Tae relations in (17) show the connection between the volatility
bound on m’s with mean v and the slope of the mean—standard devia-
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tion frontier for R,. A steeper slope of the frontier for R, implies a
correspondingly sharper volatility bound for m.®

Since the mean—standard deviation frontier for R is known to have
a two-fund characterization, the preceding results show that the
mean—standard deviation frontier for m can be represented using
two distinct frontier payoffs in R. For the general class of asset pricing
models considered in this paper, there is no prediction that particular
payoffs in R, say the returns on the wealth portfolios of consumers,
are mean-variance efficient. Thus without additional restrictions,
there is no guidance on how to reduce, a priori, a potentially large
collection of portfolio payoffs into a small collection used in a time-
series analysis.

One ad hoc approach that is often used to reduce the dimensional-
ity of the collection of payoffs is factor analysis as employed in empiri-
cal arbitrage pricing models (see, e.g., Connor and Korajczyk 1988;
Lehmann and Modest 1988). Suppose that P is generated by a se-

% Using conditioning information in clever ways can sharpen the volatility bounds
on m by increasing the maximum Sharpe ratio of the payoffs in R,. For example,
Breen, Glosten, and Jagannathan (1989) show that information in Treasury bill returns
can be used to construct a portfolio that has the same average return as the value-
weighted index of New York Stock Exchange securities but is only half as variable.
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quence {p,}, where

pJ:'y]-wae] (18)

and f is a vector of common factors for all the payoffs.® Often, the
factors f are in an appropriately defined span of {p,}. Hence, it follows
from the law of one price that there exists a unique vector m(f) of
hypothetical expected prices for the factor payoffs. One possible
strategy for deducing volatility bounds on m is to use the extensive
collection of payoffs {p,} (or possibly a subset of it) to identify the first
two moments of f and the expected price vector w(f). A region S then
could be constructed from these factor moments and prices using
formula (12).

In general, information is lost in going from the larger space P to
the smaller space F of linear combinations of factors. Tests of factor
models of asset pricing examine whether the pricing relation

w(p) = v, w(f) (19)

holds at least approximately. When (19) holds exactly, the regions S
generated by P and F coincide. Therefore, if asset payoffs can be
priced in terms of a small number of factors f, there is no loss to
constructing the region S from F instead of the larger space P.’

As argued in Hansen and Richard (1987), an unconditional factor
decomposition as in (18) may not be very appealing when economic
agents can use conditioning information in / to make investments. If
the factor decomposition (18) is conditioned on an information set /
and Y, is a vector of random variables in /, a reduction in payoffs is
more complicated but still feasible.

IV. Implications of Restriction 2

In Section III, we showed how to construct minimum variance ran-
dom variables that satisfy restriction 1. These random variables may
be negative with positive probability and hence may fail to satisfy

6 Although our derivation of the volatility bounds for m assumed that the payoff
space P is finite-dimensional, this restriction was made for pedagogical convenience.
In fact the duality relation between the mean—standard deviation frontiers for m’s that
satisfy restriction 1 and for payoffs in R extends to environments in which P is gener-
ated by an infinite number of payoffs, say by {p}.

"In contrast to factor analytic approaches, Huberman and Kandel (1987) test
whether the dimensionality of P can be reduced to a prespecified observed subset of
security returns, namely three size-based portfolios of New York Stock Exchange secu-
rities. In this case, F can be constructed using these three returns. Huberman and
Kandel find, however, that this construction of F is not adequate to span the mean—
standard deviation frontier for the original P constructed using 33 size-sorted portfo-
lios. Hence in this case the dimensionality reduction from P to F will result in weaker
implications for m.
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restriction 2.® As long as we limit ourselves to candidate IMRSs that
are translations of payoffs in P, it may not be possible to ensure that
frontier random variables are strictly positive or, for that matter,
nonnegative.

In this section we initially replace restriction 2 by a weaker require-
ment that m be nonnegative. We then construct minimum variance
candidates for m among the class of nonnegative random variables
satisfying restriction 1. It turns out that these minimum variance ran-
dom variables can be interpreted as either European call or put
options on payoffs in P. Recall that when the payoff on the under-
lying portfolio is p and the strike price is k£, a European call option
entitles an investor to the payoff max{p — %, 0} and a put option to
max{k — p, 0}. These payoffs are clearly nonnegative, but they may
be nonlinear functions of x. The resulting volatility bounds for non-
negative random variables satisfying restriction 1 also apply when the
random variables are restricted to be strictly positive (satisfy restric-
tion 2). However, in this case the lower bounds may only be approx-
imated rather than attained.

This section is divided into three subsections. In subsection A we
suppose that there is a unit payoff in P, while in subsection B we
consider the more common case in which such a payoff is not in-
cluded in P. Finally, in subsection C we discuss the close connection
between our analysis and work by Harrison and Kreps (1979) and
Kreps (1981) on the viability of equilibrium pricing functions consis-
tent with the absence of arbitrage opportunities.

A. Ruskless Payoff

First consider the case in which there is a unit payoff in P. For each
p in P, let p* denote max{p, 0}. Note that for any p' in P and any
nonnegative strike price k that is proportional to the unit payoff, the
payoffs p’ — kand k — p’ are also in P. Therefore, the collection of
all random variables p* for some p in P includes the payoffs on
European call and put options with constant strike prices.

Suppose that we weaken restriction 2 to the requirement that m be
nonnegative. By construction, all derivative claims of the form p* for
payoffs p in P are nonnegative. It turns out that the minimum vari-
ance nonnegative random variable # satisfying restriction 1 is given
by such a derivative claim. Hence we are led to the problem of finding

8 As Dybvig and Ingersoll (1982) have pointed out, naive use of m* to compute
(expected) prices of contingent claims may lead to assignment of negative (expected)
prices to some positive payoffs and hence to the appearance of an arbitrage oppor-
tunity.
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a vector a, in R" such that
E[x(x'a,)"] = Eq, (20)

where m = (x'e,)". In what follows we shall first show that 7, when
it exists, has the smallest variance among all nonnegative random
variables m satisfying restriction 1. We then discuss the existence and
computation of a solution to (20).

To show that 7 has the smallest variance, consider any other non-
negative random variable m satisfying restriction 1. Clearly, Exm =
Exm. Exploiting the nonnegativity of m, we have that

Emm = o)Exm = «,Exm = E[(m)?]. 21

It follows from the Cauchy-Schwarz inequality that ||m| = ||7||. Since
P contains a unit payoff, both m and 7 must have the same mean.
Therefore, we have the following relations:®

o(m) =o(m), Em = En. (22)

Next we ask whether the volatility bound in (22) can be sharpened
by requiring m to be strictly positive instead of nonnegative. If 7 is
strictly positive (with probability one), then clearly the answer is no.
This can occur only when # coincides with m* computed in Section
IIIA. Consider the case in which m* is not strictly positive with proba-
bility one, and let m be any random variable satisfying restrictions 1
and 2. Then 7 is zero with positive probability, and it follows from
(21) that

0<|m = ml® = |Im|* = 2Emm + |lm|* < ||m|* — ||m]?.

Therefore, at the very least the weak inequality (=) in (22) is replaced
by the strong inequality (>). In fact, no further improvements are
possible. To see this form,

m, = (l - %)m + (-})m (23)

Then m, is strictly positive and {o(m,)} converges to o(m). Therefore,
o(m) is in fact the greatest lower bound for o (m) when m is restricted
to satisfy restrictions 1 and 2.

? An alternative way to deduce these bounds is to exploit the fact that when payoffs
on calls and puts are included in the analysis, the space of admissible payoffs is essen-
tially complete (see Ross 1976b;, Breeden and Litzenberger 1978; Arditti and John
1980; Green and Jarrow 1987). If the prices of all such payoffs were available, the
counterpart to the random variable m* in Sec. III would be strictly positive. Although
this extensive collection of option price data is typically not available, we can follow
Merton (1973) and use lower bounds on option prices to obtain a lower bound on the
volatility of m.
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Equation system (20) is nonlinear in the parameter vector «,, and
its solution cannot necessarily be represented in terms of matrix ma-
nipulations. There is a closely related optimization problem whose
solution may be easier to compute. This problem entails finding a
payoff in R whose truncation has the smallest second moment:

min || [|%. (24)
rinR
In Appendix A we show that (24) has a solution, although this solu-
tion may not be unique. Furthermore, a necessary and sufficient con-
dition for 7 to be a solution to (24) is

E(#*z) =0 forallzin P suchthatw(z) = 0. (25)

We can think of (25) as being the first-order condition for optimiza-
tion problem (24).

It turns out that we can construct a solution to (20) by scaling 7*
appropriately. Let

Pt

m = . 26
7112 20
This scaling is permissible because ||7*| must be strictly positive as
long as there exists at least one random variable m satisfying restric-
tions 1 and 2. To see this, suppose to the contrary that ||7*| is zero.
Then —7 is a nonnegative payoff with a strictly negative expected
price. Such a payoff is inconsistent with restriction 2 because it implies
that there exists an arbitrage opportunity.

Clearly m as given by (26) can be represented as (a,x)* for some
a, in R". To verify that a, solves (20), we must show that 7 as given
by (26) satisfies restriction 1. Let p be any payoff in P and form the
payoff z = p — w(p)7. Note that w(z) = 0 because w(7) = 1. It follows
from first-order condition (25) that

0 = Emz = Emp — w(p)Em

_ E[7*7]
= Emp — m(py 2T
T

= Emp — w(p).

Thus 7 satisfies restriction 1 as required.

This construction of m parallels a similar construction reported in
Hansen and Richard (1987) and in Section III. If one ignores restric-
tion 2, one way to construct the random varible m*, which has mini-
mum variance among the class of random variables satisfying restric-
tion 1, is to compute the minimum second-moment payoff, r*, in R
and divide it by its second moment, ||r*||>. We have just demonstrated
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that a similar strategy works for constructing a random variable 7 that
attains the volatility bound among the class of nonnegative random
variables satisfying restriction 1. Instead of computing the minimum
second-moment payoff in R, we calculate the minimum truncated
second-moment payoff, 7, in R. To form @, the truncation of this
payoff, 7*, is divided by the second moment of its truncation, ||7* %
Whereas ||m*| is given by 1/|r*||, ||| is given by 1/[#"|. Since trun-
cating a random variable reduces its norm, as required, 7 has a larger
second moment than m*. The difference in the two norms reflects
the incremental contribution of restriction 2 for the volatility bound
on m.

One advantage to solving optimization problem (24) instead of solv-
ing directly the nonlinear equation system (20) is that optimization
problem (24) has a convex objective function ||r*||> and a convex
constraint set R so that numerical solutions are quite feasible to ob-
tain. Although 7 is not necessarily unique, its truncation 7t is (see
App. A). A sufficient condition for 7 to be unique, which is often
satisfied in practice, is that no two payoffs in R have the same trun-
cation.

B. No Ruskless Payoff

Consider the more common case in which P does not contain a unit
payoff. As in Section I11B, augment x with a unit payoff and form
an augmented payoff space P°. Similarly, assign alternative strictly
positive numbers v for w(1) and extend & from P to P*. Let R, be the
augmented set of payoffs with expected prices equal to one when
7(1) is assigned v. The counterpart to equation (20) is not guaranteed
to have a solution, however. It turns out that there are additional
limits on the admissible choices of v consistent with restriction 2.

To investigate these limits, we study the counterparts to optimiza-
tion problem (24) using the augmented space of payoffs R, in place
of R. Define
8, = inf |2 (27)

rin Ry

When 8, is positive, the bound on [[m||? among the class of nonnega-
tive random variables satisfying restrictions 1 and 2 with mean v is
1/3,. However, particular choices of v may result in 8, being zero and
hence 1/3, being infinite. For instance, when there is a portfolio pay-
off p in P such that p is less than or equal to one with probability one
and v is strictly less than w(p), 8, is zero. This is true because the
random variable (1 — p)/[v — w(p)] is in R, and is less than or equal
to zero with probability one. Consequently, the norm of its truncation
is zero.
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As noted by Merton (1973), Cox, Ross, and Rubinstein (1979), Har-
rison and Kreps (1979), and Kreps (1981), it is possible to obtain
arbitrage bounds on the admissible (expected) prices that can be as-
signed to payoffs not in P. In the case of a unit payoff, the upper
and lower bounds are given by

inf{m(p):p=1} if{pinP:p = 1}is notempty
+ otherwise,

ﬁ(l)s{

w(l)= sup{m(p):p=1}

respectively.'® Since the zero payoff is in P, m(1) is always nonnega-
tive. The arbitrage bounds m(1) and 7 (1) determine the range of
admissible values of Em that are compatible with m being a nonnega-
tive random variable. Clearly, {v: 8, > 0} must be a subset of the
interval [m(1), 7(1)]. In fact, the interiors of these sets coincide (see
App. A).

When 3, is strictly positive, there exists a minimum variance, non-
negative random variable with mean v that satisfies restriction 1 (see
lemma A4 in App. A). Let this random variable be denoted 7,. The
corresponding volatility bound is

o (m) = o (m,), (28)

and the family of random variables, {m,. 8, > 0}, comprises the
mean—standard deviation frontier for nonnegative random variables
satisfying restriction 1. Thus the counterpart to the region S given in
9) is

St ={(v,w):8,>0and w = o (m,)}. (29)

The set S* is convex. To see this consider two values of v for which
8, is strictly positive, say v(/) = v(u). Form convex combinations of
the random variables 1, and 7. These convex combinations are
nonnegative random variables that also satisfy restriction 1. Recall
that the mean of a convex combination of random variables is equal
to the convex combination of the means, and by the triangle inequal-
ity, the standard deviation of a convex combination is less than or
equal to the convex combination of the standard deviations. While
convex combinations of i, and 7, are not necessarily on the
mean—standard deviation frontier, the ordered pairs of their means
and standard deviations must be in $*. This is sufficient for §* to be
convex.

10 The characterization reported in Harrison and Kreps (1979) and Kreps (1981) is
somewhat more complicated because they allow the counterpart to the space P to be
infinite-dimensional.
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Next we consider the incremental contribution of requiring m to
be strictly positive as in restriction 2. It is shown in Appendix A that
Em must be in the open interval (m(1), 7(1)) (see lemma A6). Hence
one effect of the imposition of strict positivity is that endpoints of the
interval {v: 8, > 0} are eliminated.

For v’s in (m(1), (1)), m, can be interpreted as either a call or put
option on a payoff in P. More precisely, we obtain the counterpart
to the result in Section IVA that %, = (p, — k)™, where p, is a portfolio
payoff in P and £ is in R. When £ is nonnegative, 1, is a call option
on a portfolio with payoff p, and strike price k; when % is negative,
1, is a put option on a portfolio with payoff —p, and strike price —k.
Therefore, for any v in (m(1), @(1)), the counterpart to equation (20)
has a solution.

As in subsection A, this gives us a simple check of the incremental
impact of positivity on the volatility bounds given in (28). For any v
in (m(1), (1)) such that m, is strictly positive, the bound in (28) cannot
be improved by restricting m to be strictly positive. This can occur
only when 7, coincides with m, calculated in Section IIIB. On the
other hand, for any v for which m, is not strictly positive, the weak
inequality (=) in (28) is replaced by a strong inequality (>).

Even though S* may be a proper subset of S, the region § is still
of interest for a variety of reasons. First, S is easier to use in practice
because a characterization of S* may require that a nonquadratic
optimization problem be solved for each value of v. Second, the lower
boundaries of ™ and S coincide for values of v for which m, is non-
negative. Consequently, it is advantageous to characterize S as a first
step in characterizing S* and then check for nonnegativity of m,.
Finally, even for values of v for which m, is negative with positive
probability, the coefficients on x* given in representation (11), when
scaled appropriately, can be used as starting values for a numerical
search routine used in computing 3,.

In figure 4 we report plots of the regions S and S* for the same
financial data set that was used to generate figure 1. The region S
is shaded, and the lower boundary of the region S is given by the
dashed line below S*. While the lower boundaries of these regions
coincide for points closest to the horizontal axis, they diverge for
other points. The divergence between the boundaries is greater when
the volatility bounds are more restrictive. Recall that in generating
the lower boundary of §, we constructed random variables m, with
mean v that satisfy restriction 1 and are linear combinations of x“.
When these random variables have large standard deviations relative
to their means, it is not surprising that they are negative with high
probability. As a result, the positivity restriction 2 often has more bite
when o(m,)/v is larger.
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F16. 4.—IMRS frontier with and without positivity imposed

As is true for S, the dimensionality of P can sometimes be reduced
prior to the construction of S$*. Suppose that members of P have
factor decompositions of the form p = vy - f + ¢, where f is a vector
of common factors. Suppose further that the idiosyncratic compo-
nents of the payoffs satisfy E(¢|f) = 0 and m(¢) = 0. Hence we have
exact factor pricing and each payoff p in P is a mean-preserving
spread of a payoff y - f with the same price. Consequently, [lp* 12 =
(y - £)*||? because the function [(p)*]? of p is convex. Hence when
one solves (24) or (27), it suffices to restrict attention to linear combi-
nations of the factors with expected prices equal to one. While it is
evident how to use this reduction when the factors are observed,
unobserved factors are problematic because it may be difficult to com-
pute or estimate |(y - f)* |? for arbitrary vectors y. Because of the
truncation of (y - f), calculating ||(y - f)*|| requires knowledge of
the entire probability distribution of f, whereas typical factor analytic
procedures identify only the first two moments of f.

C. Viability of Equilibrium Pricing Functions
and Arbitrage Pricing

The analysis in this section is intimately connected to general treat-
ments of pricing derivative claims (see, e.g., Ross 1978; Harrison and
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Kreps 1979; Kreps 1981). Among other things, Harrison and Kreps
and Kreps consider the following question. Given a set of payoffs on
primitive securities and the prices of those securities, when is it possi-
ble to extend the pricing function to a larger collection of payoffs in
such a way as to preserve no arbitrage? As emphasized by Kreps, this
experiment should not be construed as introducing new markets in
an economy that might alter the resulting competitive equilibrium
allocations. It is merely a hypothetical extension leaving intact the
(expected) prices of the payoffs in P. When such an extension is
possible, Harrison and Kreps and Kreps refer to the pricing function
as being viable.

Throughout the analysis in this section, we have presumed that the
family of m’s that satisfy restrictions 1 and 2 is not empty. Clearly this
is sufficient to eliminate arbitrage opportunities on P. Rather than
assume that this family is not empty, an alternative starting point is
to verify that no arbitrage opportunities exist on P and then to appeal
to theorem 3 in Kreps (1981) to show that m can be extended from
P to the collection L? of all random variables that are (Borel measur-
able) functions of x and have finite second moments.!! The existence
of an m satisfying restrictions 1 and 2 then follows from the Riesz
representation theorem applied to L? (see also lemma 2.3 in Hansen
and Richard [1987]).

V. Illustrations and Discussion

We now illustrate our analysis with alternative parametric models of
m and alternative data sets on asset payoffs and prices. The model of
m described in the Introduction and used to generate figure 1 as-
sumed that consumers’ preferences are separable over time and states
of the world. In subsection A we investigate the impact on m of re-
laxing time separability. In subsection B we focus on logarithmic risk
preferences but do not require these preferences to be state separa-
ble. Finally, in subsection C we describe the implications of price data
on short-term Treasury bills for IMRSs and comment briefly on the
implications for monetary models.

A. Preferences That Are Not Time Separable

Consider the following stylized version of a model with time nonsepa-
rabilities in preferences. As in the Introduction, we use a time- and

1'In addition to a no-arbitrage restriction, Kreps also imposed a no-free-lunch restric-
tion on (P, m). As demonstrated by Clark (1990), this extra restriction is not needed
when P is a closed subspace of an L? space, as is true in our analysis.
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state-separable specification of preferences for consumption services
with a power utility function

o y+1 _ 1
E> NTE—— (30)

except now s, depends on measured consumption in the current pe-
riod and one previous period:

s, =¢ + 0c,_;. 31)

More general versions of this model have been investigated by Dunn
and Singleton (1986), Eichenbaum, Hansen, and Singleton (1988),
Gallant and Tauchen (1989), and Eichenbaum and Hansen (1990).
We shall proceed as if there is a single representative consumer. As
noted by Wilson (1968) and Rubinstein (1974), this assumption can
be relaxed when 6 is zero, the consumption allocations are consistent
with the existence of complete contingent-claims markets, and all con-
sumers have the same preferences. This aggregation result also ap-
plies more generally, say when 6 is different from zero, as long as
there are, in effect, complete markets in consumption services (see
Eichenbaum, Hansen, and Richard 1987). When 6 is positive, con-
sumption generates positive services in the current as well as in one
subsequent time period. In this case there is intertemporal substitution
in generating consumption services from consumption goods. More
precisely, there is a durable component to consumption that depreci-
ates fully after one time period. Alternatively, when 6 is negative,
there is intertemporal complementarity in generating consumption ser-
vices from consumption goods. Put somewhat differently, the term
—#0c,_, is a component of current-period consumption that reflects
either committed consumption from the previous time period or habit
persistence. Sundaresan (1989), Constantinides (1990), and Novales
(1990) have argued that habit persistence may be important in ex-
plaining the relation between asset market data and economic aggre-
gates.

For these forms of time nonseparabilities, the marginal utility of
consumption is

mu, = (S'r)‘y + )\BE[(ST+1).Y|IT]'

The IMRS between time 0 and time 7 is the corresponding ratio of
marginal utilities scaled by A". Constructing m requires computation
of the conditional expectation E[(s,,,)"|I,] except in the special case
in which 6 is zero.

To illustrate what impact positive and negative values of 6 have for
the volatility of m, we report calculations from Gallant et al. (1990).



DYNAMIC ECONOMIES 249

04 T T T T

03 |- B
z
Qo
=
<
@
a a
o 02| R 4
[0o4
< a
a
P4 A
= a
* a

01} ° ]

a
a
- a
" n
o - a
° ° ° o o - u -
] ) 0. & 5 N
00 I 1 ! al ® L]
0975 0.980 0.985 .0990 0.995 1.000
MEAN

F16. 5.—IMRS frontier computed using monthly data

For these calculations the ratio ¢/¢,_; is a component of a Markov
process with a stochastic law of motion estimated by Gallant and
Tauchen (1989) for monthly data on the consumption of nondurables
and services (for more details, see Gallant and Tauchen [1989] and
Gallant et al. [1990]). The estimated law of motion was then used to
compute E[(s,, ;)"|1,] required in forming a time series for m. Sample
means and standard deviations were calculated for m’s implied by
alternative values of y and 6.2

For this illustration we let® = —.5,8 = 0, and 6 = .5. The results
are reported in figure 5. The boxes are used to denote mean—stan-
dard deviation pairs for 8 = 0, the circles for 6 = .5, and the triangles
for 8 = —.5. For each choice of 6, we let y range from zero to — 14
with decrements of minus one. In all cases the subjective discount
factor \ is set to one. Smaller values of N decrease proportionately
the mean and standard deviation of m. When y = 0, m is one for all
choices of 0. In this case, [E(m), o(m)] = (1, 0).

Consider first the case in which 8 = 0. Increasing |y| magnifies the
volatility of m but initially reduces its mean. Extrapolated much fur-

12 Note that the calculations of mean—standard deviation pairs for m when 6 = 0 do
not exploit the Markov specification estimated by Gallant and Tauchen (1989) and are
consequently more robust.
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ther, the curve (indexed by ) does not turn around until |y| is in the
vicinity of 100; afterward, increasing |y| enlarges the mean of m. The
initial decline in the mean of m reflects the dominant role of positive
growth rates in consumption. For extremely large values of |y|, obser-
vations with negative growth rates in consumption come to dominate
the sample mean, eventually resulting in a change of slope of the
curve. In comparing the curves denoted by boxes in figures 1 and 5,
recall that the long annual time series used to generate figure 1 con-
tains negative growth rate observations on consumption during the
depression. The absence of bad events in the monthly data set is
responsible for the fact that the curve (indexed by vy) does not turn
until the magnitude of v is substantial.'®

Consider next the case in which 8 = .5. Not surprisingly, introduc-
ing this local durability into preferences reduces the volatility of m.
The quantitative effect of this smoothing does not appear to be very
substantial, however. The curves for 8 = .5 and 6 = 0 are simi-
lar for the range of y’s that are plotted. Hence there is little ad-
verse effect on the volatility of m to introducing durability by setting
6 = .5.

Finally, consider the case in which 8 = —.5. This intertemporal
complementarity has the anticipated impact of increasing the volatil-
ity of m for a given value of . This effect is quite dramatic as indi-
cated in figure 5. Furthermore, the value of |y| at which the curve
turns is reduced dramatically. For 8 = —.5 the turning point for vy
is in the vicinity of —7, and the initial decline in the mean of m is
much less dramatic. _

We now compare the three curves, which describe alternative
mean—standard deviation pairs for parametric models of m, to a re-
gion S* generated using monthly data on asset payoffs and prices.
The asset market data are the same as those used by Hansen and
Singleton (1982) except that data revisions were incorporated and
more recent data points were included. The resulting time period is
1959:3—-1986:12. The first two asset payoffs are the 1-month real
return on Treasury bills and the 1-month real value-weighted return
on the New York Stock Exchange. Six additional time series of asset
payoffs were constructed using these data by scaling the original two
payoffs and prices by the one-period lagged returns and the one-
period lag in the consumption ratio. For the range of hypothetical
means considered, the region § described in Section III was essen-
tially the same as the region S* described in Section IV.

'* The sample volatility of m may be substantially lower than the population volatility
if consumers anticipate that extremely bad events can occur with small probability
when such events do not occur in the sample. Reitz (1988) argued that this phenome-
non could explain the equity premium puzzle.
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For the specification of preferences with 8 = 0, larger values of | y|
initially make the mean—standard deviation pair for m further from
the S* region because of the adverse effect on the mean of m. This
is consistent with the fact that Hansen and Singleton (1982) found
point estimates for -y that were close to zero but substantial evidence
against the overidentifying restrictions. As emphasized by Singleton
(1990), estimates of the discount factor A are often greater than one
when bond returns are included in the analysis. For a fixed v, enlarg-
ing A\ has the desired effect of increasing proportionately the mean
and standard deviation of m.

From the vantage point of figure 5, the case for intertemporal
complementarities in preferences is appealing. For a given value of
¥, a negative value of 6 increases both the mean and the standard
deviation of m. However, it is quite possible for m to have a mean and
standard deviation in S* and not satisfy restriction 1. In other words,
for a given parametric specification of m, requiring [E (m), o(m)] to be
in $* does not exhaust the testable implication of restriction 1. As
emphasized by Gallant et al. (1990), there is substantial statistical evi-
dence that the resulting m’s violate restriction 1. In fact, empirical
studies that use similar data and preference specifications, such as
Dunn and Singleton (1986), Eichenbaum, Hansen, and Singleton
(1988), and Eichenbaum and Hansen (1990), typically find parameter
estimates that reflect intertemporal substitution (6 > 0), although they
find statistical evidence against the resulting parametric model of m.

B. Logarithmic Risk Preferences

In (30) and (31), suppose that 8 is zero and v is minus one. In this
case, preferences are logarithmic. As noted by Rubinstein (1976), m
is equal to the reciprocal of the return on the wealth portfolio of the
representative consumer between time 0 and time 7 (see also Brown
and Gibbons 1985). Epstein and Zin (this issue) showed that this same
conclusion applies to a parametric class of recursive preferences that
are not state separable so long as the risk preferences remain logarith-
mic. Whereas in the state-separable case the return on the wealth
portfolio is equal to the discounted consumption ratio, this exact rela-
tion no longer applies when state separability is relaxed. Nevertheless,
the return on the wealth portfolio can still be used as a valid measure
of m.

For this reason we have included a “cross” in figures 1 and 5. In
figure 1, this cross denotes the sample mean—standard deviation pair
for the reciprocal of the measured annual return on the Standard
and Poor’s 500 stock price index, and in figure 5 it represents the
sample mean—standard deviation pair for the reciprocal of the mea-
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sured monthly value-weighted return on the New York Stock Ex-
change. In both cases the means are near the points in S* that are
closest to the horizontal axis, but the mean—standard deviation pair
is outside of S*. However, after a sampling error is taken, there is
very little evidence against the null hypothesis that this model of m
satisfies restriction 1.'*

C. Treasury Bill Data and Monetary Models

We also calculated the regions S and S* using monthly data on
3-month holding period returns on Treasury bills. The holding pe-
riod returns were constructed using bond prices on 3-, 6-, 9-, and
12-month discount bonds for 1964:7—1986:12. Nominal returns were
converted to real returns using the implicit price deflator on nondu-
rables and services. These bond price data (with the most recent peri-
ods excluded) have been used by Fama (1984), Dunn and Singleton
(1986), and Stambaugh (1988), among others, to investigate time vari-
ation in risk premia and particular models of bond prices. In figure
6 we report the resulting regions S and S*. The region S* is shaded,
and the lower boundary of the region S is given by the dashed line
below §*. The resulting standard deviation bounds for m are quite
striking. For means of m in the vicinity of one, the bound on the
standard deviation is near one. Given the magnitude of these bounds,
it is not surprising that restriction 2 has an important incremental
contribution vis-a-vis restriction 1.

The bounds reported in figure 6 appear to us to pose quite a chal-
lenge to a large class of asset valuation models. For instance, the
quarterly counterpart to the 8 = 0 curve in figure 5 ranges from (1,
0) to (.90, .08) as y ranges from zero to — 14. Volatility bounds of a
similar magnitude were also obtained using monthly data on 1-month
holding period returns for Treasury bills with maturities from 1 to 6
months. These bounds are directly comparable to the three curves
plotted in figure 5. Since these latter bounds apply to IMRSs mea-
sured over a shorter time period (1 month instead of 3 months), they
are even more startling. However, short-term Treasury bills are often
held to maturity, and trading of these Treasury bills takes place in
secondary markets except for the 3-, 6-, and 12-month bills. The
bid-ask spreads for the short-term bills can be quite substantial (see
Stambaugh 1988; Knez, Litterman, and Scheinkman 1989), so the

"In fig. 1, one of the two moment conditions, E(mx — q) = 0, is satisfied by
construction. The other condition was tested using the method suggested in Hansen
and Singleton (1982): the x?(1) statistic is 1.40 with probability value .24. Similarly, for
fig. 5, four of the eight moment conditions are satisfied by construction. The x3(4)
statistic for the four remaining conditions is 4.88 with a probability value of .30.
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prices used in our calculations may be less reliable. These concerns
should be less problematic for the results in figure 6 since they were
computed using price data from the more richly traded 3-, 6-, 9-, and
12-month Treasury bills.

As emphasized by Knez et al., short-term Treasury bills often may
be held to maturity as cash substitutes for particular transactions. As
such, these bills may generate important liquidity services that are
not measured appropriately by the implied ex post real returns.
Hence the measured real returns may understate the value of the
assets to the holders of the securities. Recall from Section ITIC that
large standard deviation bounds for m occur when the slope of the
mean—standard deviation frontier for R is steep. For the Treasury
bill data, this means that the reason that the volatility bounds on m
are large (as reflected in the region §) is that the expected short-term
gain associated with holding longer-term bills is large relative to the
increase in the standard deviation. Abstracting from the liquidity ser-
vices of the short-term bills may distort the magnitude of the resulting
volatility bounds on m.

Refinements of real asset pricing models to incorporate money,
such as the cash-in-advance models of Svensson (1985), Lucas and
Stokey (1987), and Townsend (1987), are designed to accommodate
the rate of return dominance between one-period bonds and money.
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However, in their current form they are not well suited to differenti-
ate among short-term Treasury bills with different maturity dates.
Although the link between measured real IMRSs and security market
data may be confounded in these models, there is an alternative no-
tion of the indirect IMRS for money that reflects the fact that the
cash-in-advance constraint may not always be binding. Hence for an
appropriate interpretation of m, these monetary models are compati-
ble with restrictions 1 and 2 as long as money is not included among
the vector of assets used to generate S™.

VI. Conclusions and Extensions

In this paper we have characterized the implications of security mar-
ket data for means and standard deviations of IMRSs. This exercise
is important in evaluating alternative models of dynamic economies
because IMRSs are the channels by which the attributes of these mod-
els impinge on asset prices. Abstracting from the restriction that
IMRSs are positive, we established the connection between volatility
bounds on IMRSs and mean—standard deviation frontiers for asset
payoffs. Thus we showed how diagnostics commonly used in empiri-
cal finance can be translated into information about IMRSs. We also
showed how to extract sharper volatility bounds by taking account of
the fact that IMRSs should be positive. These sharper bounds exploit
more fully the absence of arbitrage opportunities in the underlying
economic environment than, say, linear factor representations of as-
set prices.

There are three important directions in which the ideas in this
paper can be developed further. An earlier version of this paper has
already provoked some work along these three lines.

i) In this paper we focused exclusively on deriving implications for
IMRSs expressed in terms of population moments of asset payoffs
and prices. In practice, these attributes of asset market data will not
be known a priori, but can be approximated only by using time-series
averages in place of population moments. This introduces sampling
error into the analysis. A major drawback of the discussion in Section
V is that it abstracted from the presence of approximation error
introduced by using sample averages from historical time series in
place of population moments. Hansen and Jagannathan (1990) show
how to use large sample theory both to assess whether there is suffi-
cient statistical evidence to reject that the bounds are degenerate
(equal to zero) and to assess the magnitude of the approximation
€rrors.

ii) The restrictions on IMRSs derived in this paper all pertain to
first and second moments. More generally, it would be desirable to
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characterize the admissible family of distributions for IMRSs given
asset market data. An additional step toward such a characterization
is taken by Snow (1990), who shows how to extend the analysis in this
paper to obtain bounds on other moments of the IMRSs.

ili) The diagnostics derived in this paper can be applied to any
intertemporal asset pricing model for which moments of m can be
computed. While the calculations in Section V were performed by
first constructing hypothetical time series on m, such a construction
is not necessary. All that is really essential is the ability to compute
the moments of m implied by the model. As an alternative to con-
structing a time series on m, these moments can be deduced from the
equilibrium stochastic law of motion for the model (see, e.g., Heaton
1990). Therefore, calculations like those illustrated in Section V can
be performed for an extensive array of intertemporal asset pricing
models including models that take account of measurement errors in
consumption, seasonality, and aggregation-over-time biases.

Appendix A

Let L? be the Hilbert space of all random variables with finite second
moments that are Borel measurable functions of x. Let P be a closed linear
subspace of L? and m be a continuous linear functional on P. In contrast to
the analysis in the text, we allow the space P to be infinite-dimensional. Define
R={€P.nw(r) =1}, RV ={*:r€R},and Z = {z € P: w(z) = 0O}
Throughout our analysis we assume that R is not empty. Let C denote the
closure (in L2) of R*. In this Appendix we establish several results that sup-
port conclusions in Section IV.
Consider the following two minimum norm problems. The first problem
is
d=inf ||r*|> (P1)

r€R
A closely related minimum norm problem is

M Eyigg lIyll2. (P2)
This second problem has the advantage that the inf is attained.

There are two additional problems that are closely related to (P1) and (P2).
The first one is an orthogonality problem:

Find § € C such that E(§z) = O forallz € Z. (P3)

As in standard minimum norm problems on Hilbert spaces, it is often the
case that (P3) has the same solution as (P1) and (P2). The focal point of our
analysis is the following problem:

Find y* € L2 such that y* = 0 and ||y*|2 = -;-and w(p) = E(y*p) forallp € P.

(P4)
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We now investigate the relation among these four problems. First we estab-
lish the connection between (P1) and (P2).

LemMa Al. There is a unique j in C such that 512 = 8 = m.

Proof. Let {r;} be a sequence in R such that {lierpy* (1} converges to 8. Then
for any positive integers j and k,

lo)* = @I = =l * + e I+ 200 12 + 2000 " 112
= —llo; + r)IZ + 200) 1P + 2 I1?

because [|(r;)* + ()" 12 =0y + m)* ||2. Since r; and 7, are both in R, (1,/2) +
(r/2) is also in R. Consequently, [|[(r;/2) + (r,,/é)]’r |I> =8, and

2
Hon (12 )12
Sen) |+ 2+ 2l AD
= — 45 + 2|(r) 112 + 2/lr) I

If we take limits as j, k — o, it follows that {(r;)*} is Cauchy and hence
converges to some j in C. Therefore, {|(r;)*[|*} converges to 512 = 8.

Since C is the closure of R*, for any y in C there is a sequence {|(r;)* 12}
that converges to ||y||2. Therefore, n = 8.

Finally, let § be any member of R* for which 1912 = 3, and let {fj} be a
sequence in R such that {(@)*} converges to j. Analogous to (Al),

)t = @) F 12 = —48 + 2)) 12 + 20(7) * II*.
Since {ll(;)* ?} and {|(#)* |} both converge to 8, {(;)* } and {(7)* } have the
same limit points. Therefore, § and j are equal (with probability one). Q.E.D.
Next we establish the connection between (P2) and (P3).

LemMa A2. A solution j to (P2) is also a solution to (P3).
Proof. To prove this result we use the following inequality:

[(r +e)* P =" + c2)? (A2)

To see that it holds, first suppose that r + ¢z = 0. In this case the left side
of (A2) is zero while the right is greater than or equal to zero. Second,
suppose that 7 + ¢z= 0. Then 0 =r + cz<r* + ¢z, which also implies (A2).

Let {r;} be a sequence in R such that {(rj)*} converges to §, and let z be any
member of Z distinct from zero. Then

lim inf(|(r; + )t I2=|j + cz|? (A3)
jooe

+

)t — )t 2= —4’

The right side of (A3) is minimized by ¢ = —E(§2)/E(z%). In order for j to
be the solution to (P2), it must be that ¢ = 0 or, equivalently, that Ejz = 0.
Q.E.D.

Lemma A2 has the following partial converse.

LEmMMA A3. If #* € R* is the solution to (P3) and the solution to (P2) is in
R*, then #* is the solution to (P2).

Proof. Let #* denote the solution to problem (P2). It follows from lemma
A2 that E[(7* — #*)(F — #)] = 0. Also, ()*# =< (A*(A* and 7#(7)* = ()*(H)*.
Hence

0 = E[(* - #*)(F — M) = E[¢* = 7?1 =0,

Therefore, #* = #* (with probability one). Q.E.D.
We now use the Hahn-Banach theorem and the Riesz representation theo-
rem to establish the existence of a solution to (P4).
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LeEMMA A4. If & > 0, (P4) has a solution.
Proof. The first half of this proof follows closely the proof of lemma 1 in
Kreps (1981). Since 8 > 0,

1/2
w(p) < (%) Ip*ll forallp€ P. (A4)

Among other things, inequality (A4) implies that w(p) = 0 whenever p = 0
because 1 is linear and (—p)* is zero. The right side of (A4), (1/d)|I(-)*l, is a
particular version of the sublinear function used by Kreps in applying the
Hahn-Banach theorem to extend P to a larger space, say L% (The analogues
to the spaces P and L? are much more general in Kreps’s analysis.) Let I1
denote such an extension. Then II satisfies the counterpart to (A4):

1/2
H(y)s(%) ly*Il forallye L2 (A5)

Clearly II is continuous and II(y) = 0 whenever y = 0. It follows from the
Riesz representation that there exists a y* € L? such that

II(y) = E(y*y) forally € L2 (A6)

It remains to show that y* = 0 and |y*|| = (1/8)"2. Consider any r € R
and note that II(r*) = II(r) = 1. Since (A6) is satisfied, it follows from the
Cauchy-Schwarz inequality that [|[y*[||r* || = E(y*r*) = 1. Consequently,

ly*(I8"2 = lly*|l inf [lr*|? = 1,
rER

or, equivalently, ||y*|| = (1/8)""2. Relations (A5) and (A6) imply
112 112

e = o = (5) 10 1=(2) e

Therefore, |ly*| = (") ¥ = (1/8)"2. Q.E.D.
For our next set of results we find it convenient to restrict (P, ) to satisfy
the no-arbitrage condition:

For any p € P such that p = 0 and ||p|| > 0, w(p) > 0.

LemMma A5. If (P, ) satisfies the no-arbitrage condition, then 8 > 0 and
the solution to (P2) is in R*.

Proof. Let {r,} be a sequence in R such that {(r,)*} converges to j, where j
is a solution to (P2). Our goal is to show that there exists a convergent subse-
quence of {r;} with limit payoff 7. Given this convergence, we then argue that
H* =7

First we show that {||r,||?} is bounded. Suppose to the contrary that {||r]||2}
is unbounded. Without loss of generality, we may assume that this sequence
is increasing (otherwise we could extract a subsequence that is increasing and
unbounded). Form p, = r/||r,||. Since the closed unit ball of L? is weakly
compact, {p} has a subsequence that converges weakly to a random variable p
in L2. The weak limit of a sequence in P must be orthogonal to the orthogonal
complement of P. In other words, § must be in P. Furthermore, w(p) = 0
because m(p,) = 1/||r|| and {||r;|} is increasing and unbounded. The sequence
{(pj)"} converges strongly to zero because [[(p) *|| = ||(rl)+||/||rj|| and {(rj)+} con-
verges strongly to . Form the orthogonal decomposition b= (‘bj)+ - (- p])+.
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Then {||(—p])+||} converges to one and a subsequence of {(—p])+} converges
weakly to —p. It follows from Clark (1990, lemma 2) that —p = 0 and || -7l
> 0. This finding violates the no-arbitrage condition because w(—p) = 0.
Therefore, {||7]} must be bounded.

Since {7} is bounded, {r} has a subsequence that converges weakly to a
limit point 7 in R. Consequently, {(—7)*} has a subsequence that converges
weakly to 5 — 7 = 0. Note that

0 = E[(r)* (=7)*) = E{(—=1)*[(r)* — 3]} + E[(=7)"7]. (A7)
It follows from the Cauchy-Schwarz inequality that

[E{(=7)" ()" — s =(=7)"llitr)* = 3l (A8)
=lnllcr)* = 3l

The right side of (A8) converges to zero because {||r1||} is bounded and {(r,) "}
converges strongly to j. If we take limits of the right side of (A7) along
the weakly convergent subsequence, it follows that j — 7 is orthogonal to j.
Since both of these random variables are nonnegative and # = § + (F — j),
®* =3

To verify that 8 > 0, suppose to the contrary that 8 = 0. In this case,
—# = 0, implying a violation of the no-arbitrage condition because w(—7) =
—1 and m is linear. Q.E.D.

In light of lemmas Al, A2, A3, and A5, when (P, ) satisfies the no-arbi-
trage condition, the solutions to (P1)—(P3) coincide and are in R*. As is
shown in Section 1V, in this case a solution to (P4) is given by y* = §/5ll%
where 7 is the solution to (P1)—(P3).

Consider now the special case in which 1 is not in P. As in Section 1V, let
P?= P + {1} and define the arbitrage bounds

w(l) =inf{w(p): p = 1},
w(l) = sup{m(p):p = 1}.

Extend w from P to P® by assigning v to 1, and let 7, denote the resulting
extension.

LEmMMa A6. Suppose that (P, ) satisfies the no-arbitrage condition. Then
(P?, m,) satisfies the no-arbitrage condition if and only if v € (m(1), w(l)).

Proof. Part of this result is an implication of theorem 4 in Kreps (1981).
For completeness we include a simple proof.

Suppose that v € (m(1), w(1)). Letp + w =0 for some p € P and some
w # 0. If w > 0, then p/(—w) = 1 and w[p/(—w)] = m(l) < v. Hence
m(p) + vw > 0. A similar argument applies to the case in which w < 0.

Next suppose that (P% m,) satisfies the no-arbitrage condition. Then clearly
v € [m(1), w(1)]. Suppose that v = m(1). Consider a sequence {p,} such that
p, =1, 7p) =v and {ﬂn'(p])} converges to v. Since 1 is not in P and P is
ciosed, the lim inf of the sequence {|(1 — p)|} is strictly positive. Form the
sequence {(1 — p)/(1 — p)l}. Following the logic of the proof of lemma
A5, this sequence has a weakly convergent subsequence with a nonnegative
limit point of the form 1 — p, for some p, € P, where v — m(p,) = 0 and
I1 = pJll > 0. However, this violates the no-arbitrage condition. A simi-
lar argument applies when v = m(1). Therefore, v must be in the open
interval (m(1), 7(1)). Q.E.D.
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Appendix B

In this Appendix we describe in more detail the series used to perform the
calculations underlying each of the figures.

Figures 1 and 4.—For a description of the stock, bond, and consumption
data, see table 1 of Campbell and Shiller (1988) under the heading Cowles/
S&P 500, 1871-1986.

Figures 2 and 3.—Monthly observations for 1959:4-1986:12 on 1-month
holding period returns on 1-, 2-, 3-, 4-, 5-, and 6-month Treasury bills were
constructed using bond prices from the Fama term structure yield file of data
tapes from the Center for Research in Security Prices (CRSP) at the Univer-
sity of Chicago. Nominal returns were converted to real returns using the
implicit price deflator for consumption of nondurables and services from the
Personal Consumption Expenditure data tape of the National Income and
Product Accounts.

Figure 5.—Monthly observations on the 1-month return on Treasury bills
and on the 1-month value-weighted return on the New York Stock Exchange
were taken from the CRSP data tapes. Nominal returns were converted to
real returns using the implicit price deflator for the consumption of nondura-
bles and services. Monthly observations on eight series of asset payoffs were
constructed using these two returns. The first two payoffs are the two original
returns. The prices of these payoffs are one by construction. The second two
payoffs were formed by multiplying the two returns by the one-period lagged
value of the real Treasury bill return. The prices of these two payoffs are
equal to the one-period lag of the real Treasury bill return. The third two
payoffs were formed by multiplying the original two returns by the one-
period lagged value of the real value-weighted return. The prices of these
two payoffs are equal to the one-period lag of the real value-weighted return.
Finally, the last two payoffs are the original two payoffs multiplied by the
ratio of per capita real consumption in the two previous time periods. The
prices of the last two payoffs are both equal to the lagged consumption ratio.
The time period is 1959:3—-1986:12.

The consumption series was taken from the Personal Consumption Expen-
diture data tape of the National Income and Product Accounts, and the total
population series from the Citibase data tape.

Figure 6.—The bond prices were taken from the Fama term structure yield
file of the CRSP data tapes. Four monthly time series of 3-month holding
period returns were constructed from the monthly price data on 3-, 6-, 9-,
and 12-month discount bonds. Nominal returns were converted to real re-
turns using the monthly implicit deflator for consumption of nondurables
and services described previously. The time period is 1964:7—1986:12.
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