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An Altemative Approach to Search Frictions

Ricardo Lagos

London School of Economics and New York University

This paper illustrates an alternative approach to modeling search fric-
tions. Frictions are not assumed to exist, but are shown to arise en-
dogenously as a distinctive feature of the set of equilibria that cor-
respond to a particular range of parameter values. The model’s spatial
structure and the agents’ moving decisions are explicitly spelled out,
allowing the number of contacts that occur to depend on the way
agents choose to locate themselves. An aggregate matching function
is shown to exist, and its behavior with respect to changes in param-
eters such as distances between locations, the agents’ payoffs, and the
sizes of the populations of searchers on each side of the market is
completely characterized.

I. Introduction

A distinctive feature of the search approach is that trades occur bilat-
erally between agents rather than between an agent and “the market”
as in the Walrasian model. This feature makes the process that deter-
mines how agents meet a key building block of any equilibrium model
of search. The literature typically proceeds by assuming that agents
possess limited information, so time and resources have to be spent
seeking trading partners. The information structure adopted prevents
some potential traders on one side of the market (say buyers) from
contacting potential traders on the other side (say sellers), not allowing
the market to clear, in the sense that there are both buyers who want

I thank Ken Burdett, Boyan Jovanovic, and Randy Wright for useful comments and
discussions. All errors are mine.
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to buy and sellers who want to sell who are unable to meet. In other
words, “frictions” are built in as a feature of the environment.’

The “matching function approach” is a way of introducing frictions
that has been widely used in labor market applications.” This approach
proceeds by directly assuming the existence of an aggregate object—the
matching function—that gives the number of contacts that occur at any
moment in time as a function of the numbers of searchers on both
sides of the market. The information imperfections or other features
of the environment that must underlie such a function are not made
explicit; rather, it is assumed that “their interaction gives rise to a well-
behaved function of a small number of variables” (Pissarides 1990, pp.
3-4). “Well-behaved” typically means continuous, differentiable, strictly
component-wise increasing, less than the number of searchers on each
side of the market, and often also homogeneous of degree one. The
thing to note is that the bulk of the search and matching literature
adopts a matching function, and in doing so it assumes that meetings
are ruled by some exogenous process.

In fact, since adopting a matching function amounts to assuming an
exogenous aggregale meeting process, it is often unclear what kinds of
individual search behavior are consistent with the aggregate structure
assumed. All that is known is that matching functions can arise in some
environments provided that agents engage in random search.” This
means that a model in which aggregate meetings are assumed to be
ruled by a matching function may be regarded as the reduced form of
amodel in which individuals are searching randomly. However, for many
applications it may be more natural to think that agents possess at least
some information that allows them to direct their search in ways that
may not be consistent with the random search assumption. Thus the
question that arises is whether matching functions necessarily represent
a world in which searchers are randomly colliding as particles in space,
or whether they can be thought of as reduced forms of environments

! At least since Beveridge (1945, p. 409), labor unemployment has been called “fric-
tional” when it coexists with “an unsatisfied demand for labor somewhere.”

2 Bowden (1980), Diamond (1982), Blanchard and Diamond (1989), Pissarides (1990),
Aghion and Howitt (1994), Bertola and Caballero (1994), and Mortensen and Pissarides
(1994) are some examples. For an early application of a job-matching function, see Phelps
(1968).

*In the labor literature, for instance, a common story is that workers know where
vacancies are but do not know which particular vacancies other workers will visit, allowing
for the possibility that some workers are unable to fill vacancies because they were “second
in line.” This structure often reduces the aggregate meeting process to an “urn-ball”
process. Hall (1979), Pissarides (1979), Peters (1991), and Blanchard and Diamond (1994)
all derive the number of contacts that will take place in some time interval as a function
of the numbers of vacancies and searching workers that is immediately implied by this
process. For more on the urn-ball type of structure of these models, see Acemoglu and
Shimer (1999).
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in which the search is conducted in a more sophisticated way. Here 1
address this question by investigating the microeconomic foundations
of the matching function approach in the absence of the random search
assumption.

The treatment of frictions adopted here is in many ways different
from the one traditionally followed by the equilibrium search literature.
The main difference is perhaps that meeting frictions are not assumed
to exist but are shown to arise endogenously as a distinctive feature of
the set of equilibria that correspond to a particular range of parameter
values. To let agents direct their search and avoid building frictions into
the environment, no information imperfections are assumed. In par-
ticular, the usual assumption of “nobody knows where anything is” that
forces agents to search randomly and guarantees that some potential
traders will be unable to meet is suppressed from the analysis. In ad-
dition, the model’s spatial structure and the agents’ moving decisions
are spelled out, allowing the number of contacts that occur to depend
on the way agents choose to locate themselves.

Being explicit about the meeting process requires making some very
specific modeling choices. Here these choices were made so that the
model resembles a dynamic market for taxicab rides in which taxicabs
seek potential passengers on a grid. At least three features of this market
make it an appealing starting point to think about meeting frictions
explicitly. First, it is possibly the simplest search environment one can
think of: all taxicabs do is try to position themselves in a location in
which they can contact a passenger. Second, it is a market in which
meeting frictions are present and quite visible: vacant taxicabs normally
spend long periods of time waiting for passengers in some parts of the
city (notably the airport);* at the same time, passengers often wait for
taxicabs in others (usually “downtown”). And finally, the price in this
industry is typically regulated, which allows the analysis to focus on the
role of meeting probabilities and market tightness, namely the key equil-
ibrating variables of any search model.’

In this context, some heterogeneity among locations is shown to be
necessary—although not sufficient—for an equilibrium to exhibit fric-
tions. In fact, the conditions under which frictions arise depend crucially

*La Croix, Mak, and Miklius (1992, p- 151, table 1) report the “typical” waiting times
of taxicab drivers in five major U.S. airports to be between two and five hours.

® A comparison with standard equilibrium search models (such as that in, e.g., Pissarides
[1990]) is in order here. In most search models, prices are determined ex post (i.e., after
agents meet) by some sort of sharing rule. Although the price is typically endogenous as
it reacts to changes in the environment (such as variations in the relative numbers of
buyers and sellers), it plays no allocational role in the sense that the assumed imperfection
in the information structure prevents agents from being able to condition their search
on any given price. In a taxicab market, on the other hand, prices are typically fixed, but
they play a key allocational role.
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on the total numbers of searchers on each side of the market as well
as on the heterogeneity among locations. From an aggregate perspec-
tive, the equilibria with frictions (in the sense that not all possible bi-
lateral meetings occur) look just like the outcomes obtained from stan-
dard equilibrium search models in which meeting frictions result from
the fact that agents are assumed uninformed.

A function that expresses the total number of meetings in terms of
the aggregate stocks of searchers on both sides of the market is shown
to exist. This endogenous matching function is derived, and its behavior
with respect to changes in parameters such as distances between loca-
tions, the agents’ payoffs, and the sizes of the populations of searchers
is completely characterized. Since agents can direct their search,
changes in parameters affect their search strategies, altering the shape
of the matching function. This suggests that the results of policy ex-
periments based on models that assume an exogenous meeting process
are likely to be misleading if the random search assumption is not a
good characterization of the agents’ underlying search behavior. If
agents are able to direct their search, then the matching function is an
equilibrium object and is sensitive to policy.

The rest of the paper is organized as follows. Section II describes the
environment. Section III introduces the notion of equilibrium. Section
IV characterizes the full set of equilibria for all possible parameter con-
figurations. The endogenous aggregate matching function is derived in
Section V, and its properties are discussed in Section VI. Section VII
shows how the matching function reacts to policy experiments and il-
lustrates the potential inconsistencies involved in making predictions
based on models built around an exogenous meeting technology. Sec-
tion VIII concludes with a summary of the main results. The Appendix
contains proofs of propositions 1 and 2.

II. Environment

Time is discrete and continues forever. A city consists of n > 2 locations
across which the populations of people and taxicabs may position them-
selves. There is a continuum of people with size normalized to unity
and a continuum of cabs with measure v. The numbers of people and
cabs in location i are denoted /; and v, respectively.

People’s wishes to move between locations are taken to be exoge-
nously given by a Markov chain. Specifically, it is assumed that in each
period an agent will wish to remain at the current location with prob-
ability 1 — u € (0, 1). For simplicity, I use a large-numbers approxi-
mation and let the number of agents wishing to remain in a location
be nonstochastic. This means that there are u “movers” in the whole
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city.® The probability that a passenger in : wishes to move to j is given
by ua;, with ¥7..a; = 1 and a; € (0, 1). Therefore, there are u, = ul;
movers in location i, aju, of whom wish to go to location j.

People cannot walk to their desired destination: they must take a cab
to get there. Cabs cannot drive more than one passenger per trip and,
when vacant, are free to choose the location in which they will try to
find a passenger. Cabs are unable to meet passengers in distant locations:
contacts occur only among cabs and passengers in the same location.
Within each location, a cab (passenger) may not find a passenger (cab)
only if there are not enough passengers (cabs) in that location. In other
words, letting m; be the number of cab-passenger meetings that occur
in location i, we have’

m; = min {u, v}. (1)

i

When the m; contacts are random and 6, is defined as v,/u, a cab in
location ¢ will find a passenger with probability p, = min{1/6, 1},
whereas a mover in i will find a cab with probability p#8.

A cab that was unable to contact a passenger in a given period can
choose to go to a new location in which, in the following period, it may
again try to find a passenger. Hence the value of being unmatched in
location i at the end of a period is just the discounted value of being
at the best location at the beginning of the next period. With modulo
n arithmetic, this value can be written as

U =Bmax{V, Vo, ..., Vo,u}, fori=1, ..., n (2)

where 8 € (0, 1) is the discount factor and V, the value of being in i
before contacts take place.®* When driving a passenger from i to j, cabs
charge a “flag drop” rate 42> 0 and a rate m > 0 per unit distance, and
hence a cab’s profit from driving somebody from i to jis m; = b+
wd;;, with §, being the distance between locations i and j. Without loss
of generality, §,; = §;. Since all trips last a period, the value of giving a

¢ In equilibrium some agents wishing to move may be unable to do so. The term “mover”
refers to a person who wants to move, regardless of the ability to do so. The assumption
that the probability of wishing to stay at the present location is the same across locations
is made only so that the citywide number of movers remains independent of the distri-
bution of agents across locations.

7 Notice that it is implicitly assumed that contacts occur only between cabs and movers.
This amounts to assuming that cabs have the ability to identify movers.

®It may be convenient to think of the timing of events as follows. At some point in
every period there is a “meeting session” in which all the period’s meetings take place
A cab that was unable to contact a passenger in location i must wait until the next meeting
session (in the following period) for anothér chance to find a passenger. However, such
a cab can choose to relocate before the next meeting session. That is, by driving empty,
the cab is able to participate in next period’s meeting session at location j. The expression
“beginning (end) of a period” means “before (after) the period’s contacts have occurred.”
This formulation assumes no moving costs.
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ride from i to jis given by the profit from the trip between i and j plus
the value of being located at j at the beginning of the next period:

V, = m,;+ BV. (3)

Finally, the value of being located in i before a period’s meetings occur
is

V.= p2 a;max{Vy, Uj+ (1 - p)U, (4)

Jj#i

III. Steady-State Equilibrium

Since a mover can leave a location only if able to get a cab ride, the
number of people who move to their desired destination depends on
the number of cabs available at their original location. If %, persons
want to move out of i, (only) pfu; of them will be able to find a cab
to do so. When 6,> 1, there are at least as many cabs as movers in i,
and all those passengers who want to leave location ¢ are able to do so.
Conversely, when 6, < 1, there are fewer cabs than movers and some of
the movers end up rationed. In this case, only a (randomly chosen)
fraction pf, of the a,u; people wanting to go from i to jare able to find
a cab to get there. When m; = a;m; denotes the flow of matches from
i to j, stationarity of the distribution of people and cabs across locations
obtains if

Em,-j=2mﬁ, for:z=1, ..., n—1.

In addition, we require that a cab’s expected discounted payoff at
the beginning of each period is equal across locations:

=V,=—-=1V (5)

This no-arbitrage condition ensures that cabs will have no profitable
relocation in equilibrium.? Condition (5) can be combined with equa-
tions (2), (3), and (4) to show that the flow value of being in ¢ at the
beginning of a period is given by (1 — B)V, = px, where m, = 27, a;m,
is a cab’s expected profit conditional on having contacted a passenger
in location i.

A steady-state equilibrium is a time-invariant distribution of cabs and
movers across locations such that, given this distribution, cabs maximize

° Note that in equilibrium a cab will never find it optimal to turn a passenger down.
To see this, let V=V, for all i, and notice that V; = 7, + 8V> U, = BV for all i.
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profits by optimally choosing where to locate themselves. Formally, a
steady-state equilibrium is an allocation {(u, v)}i., such that

pm.=px, i=1, ..., n—1, (E1)
Emg=zmﬁ, i=1, ..., n—1, (E2)
j#i j*i

and

Du=u Duv.=u (E3)
i=1 i=1

By ensuring that they have no profitable way to relocate at the be-
ginning of each period, condition (E1) guarantees that cabs are max-
imizing expected discounted profits. The distribution of cabs and people
across locations remains constant through time when condition (E2)
holds. Condition (E3) requires that the equilibrium distribution be con-
sistent with the total numbers of people and cabs in the city.

IV.  Characterization of Equilibria

In the search literature, “frictions” are certain features of the environ-
ment that prevent some bilateral meetings from taking place. Within
the present framework, no feature of the environment rules out the
possibility that all bilateral meetings occur. In particular, equation (1)
guarantees that the failure of some cabs and passengers to contact each
other can occur only as a result of the way in which cabs choose to
locate. So in this sense “frictions” are a property of the equilibrium
allocaticn and are not necessarily implied by the type of environment
assumed.”” An equilibrium will be said to exhibit frictions if the cor-
responding allocation simultaneously exhibits vacant cabs and unserved
passengers. So with m denoting the aggregate (i.e., citywide) number
of meetings, an equilibrium exhibits frictions if m < min{u, ¥} and is
frictionless if m = min {u, v}, that s, if all possible bilateral contacts take
place. This is the operational definition of frictions that will be adopted
hereafter. In order to find the conditions under which frictions arise,
it is convenient to consider two cases. In the first case, all locations look

*In fact, notice that the notion of equilibrium adopted in Sec. III rules out the two
sources of frictions most commonly used in the search literature. When choosing locations,
cabs know the distribution of passengers across locations, so no meetings fail to occur
because “nobody knows where anything is.” And since in equilibrium cabs must have no
profitable relocation, there are no frictions due to “coordination problems” as in Hall
(1979), Pissarides (1979), Montgomery (1991), Peters (1991), Blanchard and Diamond
(1994), and Acemoglu and Shimer (1999).
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identical from a cab’s perspective, whereas in the second, some locations
are “better” than others.

Let I = max{m, ..., m,} —minf{r,, ..., 7}, and suppose that peo-
ple’s wishes to move and distances between locations are such that
IT = 0. That is, a cab’s expected profit conditional on having contacted
a passenger is the same in any location. Cabs in this type of city maximize
expected profits by maximizing the probability of picking up a passen-
ger, so in equilibrium contact rates must be equalized across locations.
Indeed, if II = 0, condition (E1) becomes

1

1
i " b 1 = i " b 1
min ] min |

n

0 , 1=1, ..., n— 1L (6)

i

Hence in equilibrium, either all locations exhibit an excess supply of
cabs or none of them does." Depending on the value of the aggregate
market tightness v/u, which we denote 6, there are potentially three
types of equilibria when I = 0: one with excess supply in all locations,
another with market clearing in all locations, and a third in which there
is excess demand in at least one location but none of the others exhibit
excess supply. These results are summarized in the following
proposition.

PROPOSITION 1. Assume II = 0. (a) If 6 > 1, then there exists a unique
equilibrium: all locations exhibit an excess supply of cabs. (b) If § =
1, then there exists a unique equilibrium: there is market clearing in
all locations. (¢) If § <1, then there is a continuum of equilibria in
which at least one location exhibits excess demand and none of the
others exhibit excess supply.

Proof. See the Appendix.

In any equilibrium in which no location exhibits excess demand (parts
a and b of proposition 1), all movers reach their desired destinations
every period. Hence the steady-state distribution of movers across lo-
cations is given by the unique invariant distribution of the Markov matrix
that rules passengers’ wishes to move, which I denote p. Therefore, pu
is the (unconstrained) steady-state number of movers in location i. Given
this distribution, there is a unique way for cabs to position themselves
so that (6) holds. The equilibrium allocations for this case are reported
in column 1 of table 1.

Given thatII = 0, a cab is indifferent between looking for a passenger
in any location in an equilibrium with excess demand in at least one
location and no excess supply anywhere (part ¢ of proposition 1). The
equilibrium distribution of cabs is uniquely determined by condition
(E2) and given by pv. The distribution of movers, on the other hand,
is indeterminate, as can be seen from the first entry in column 2 of

' Hereafter, “excess supply (demand)” is used to mean “excess supply (demand) of cabs.”
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TABLE 1
EQUILIBRIUM ALLOCATIONS WHEN IT = 0
0>1 <1
(1) (2)
U; pu pv+ e(u—v)
Y, nv 4
m; pu [
table 1, where € = (¢, ..., €,) denotes a vector in the nth-dimensional

unit simplex.'?

Notice that when 6> 1, each market i has an excess supply of cabs
equal to p(v— u). As 0 falls, the excess supply shrinks in all markets,
and they all clear when 6§ = 1. As the aggregate number of movers comes
to exceed the aggregate number of cabs, we enter a parameter range
with multiple equilibria all with the property that no market is in excess
supply whereas at least one exhibits excess demand. Finally, note how
the number of meetings varies continuously from « to v as the aggregate
degree of market tightness @ crosses one from above.

Now suppose the parameters are such that II > 0 and label locations
so that larger subindexes correspond to locations with smaller condi-
tional expected profit:

7‘-l 2 ces Zwk—l>1rk —_ eer — 1rn'

Since there could be more than one location with the smallest level of
conditional expected profit in the city, the notation allows for n —
k+ 1 such locations, with 2 < k < n. This “ranking” together with con-
dition (E1) implies

min

1| gmin o1
—,1} < <min {—,
0, 01—y

! 1
0,

< min

G_,.’II = ' = min

So in equilibrium there must be excess supply in locations 1, ..., k—
1, whereas either all locations %, ..., » have excess supply or none of
them does. Hence, once again, there can potentially be three types of
equilibria: locations %, ..., mare in excess supply in the first and exhibit

" That is, 37_;¢; = 1 and €20, for i = 1, ..., n. The indeterminacy arises from the
fact that when there is more than one location with excess demand, the equilibrium
conditions do not pin down the length of the queue of unserved passengers in these
locations. Condition (E1) is not affected by the actual number of unserved passengers in
any location with excess demand since cabs already meet passengers with certainty in those
locations. Condition (E2) is not affected either since flows are always ruled by the short
side of the market.
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TABLE 2
EQUuILIBRIUM ALLOCATIONS WHEN II > 0
621/6: b<1/¢
i=1 ..., n i=1, ..., k—1 i=k ...,n

1) (2) (3)
“ e nbv udv+ ¢, (u=¢v)
Y; o o ndv
m pu rdv v

market clearing in the second and excess demand in the third. Locations
1, ..., k— 1 are in excess supply in all three types. The following prop-
osition summarizes the full set of equilibria corresponding to different
values of the aggregate market tightness § when parameters are such
that I > 0.

ProrosITION 2. Let

;
? DRS¢
¢ = min{¢,, ..., ¢,}, and assume II1 > 0. (a) If § > 1/¢, then there is a
unique equilibrium: all locations exhibit excess supply. (b) If 6§ = 1/¢,
then there is a unique equilibrium: locations 1, ..., k£ — 1 exhibit excess
supply whereas the market clears in locations %, ..., n. (¢) If 6<1/¢
and k< n, then there is a continuum of equilibria with excess supply
only in locations 1, ..., k— 1 and excess demand in at least one of the
remaining » — k + 1 locations. If k¢ = n, then the equilibrium is unique:
location 7 exhibits excess demand but all others are in excess supply.

Proof. See the Appendix.

With heterogeneous locations, the equilibrium distribution of cabs
reflects the relative attractiveness of each location. When table 1 and
table 2 are compared, it is clear that the distribution of cabs in table 2
may be obtained from table 1 by multiplying the number of cabs in
each location i by ¢, which measures the relative attractiveness of a
location in terms of its conditional expected profit. Since in the equi-
libria described in parts a and b of proposition 2 no location exhibits
excess demand, the equilibrium distribution of movers is the uncon-
strained steady-state distribution pu. The equilibrium allocations cor-
responding to parts a and & of proposition 2 are reported in column 1
of table 2.

The equilibrium allocations for locations 1, ..., k—1and %, ..., n
corresponding to part ¢ of proposition 2 are reported in columns 2 and
3, respectively, of table 2. The fraction of cabs in each location is equal
to the unconstrained steady-state fraction of movers in that location, u,,
adjusted by the relative attractiveness of the location, as measured by
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¢.. Since locations k, ..., » are now in excess demand, each period
some of the movers in those locations are unable to find a cab to reach
their desired destinations. Consequently, the number of passengers flow-
ing out of locations k, ..., nis smaller than in the unconstrained steady
state, implying a steady-state equilibrium distribution with more movers
in locations k, ..., n and fewer in the first £k — 1 locations relative to
the unconstrained invariant distribution pu.

Finally, notice how, starting with an aggregate degree of market tight-
ness @ that lies above 1/¢, the pattern of excess supply in all locations
changes as we vary 6. As the aggregate market tightness decreases, the
excess supply in all locations falls. Locations &, ..., n, for instance, al-
ways exhibit the smallest extent of excess supply as measured by 6. In
fact, they exhibit excess supply when 6 > 1/¢ and move toward market
clearing as 6 = 1/¢, and the markets in those locations clear precisely
when 0 = 1/¢. As 0 falls below 1/¢, at least one of the last n — k+ 1
locations moves into excess demand whereas only locations 1, ..., k —
1 remain with excess supply. The last row of table 2 reveals that as
crosses 1/¢ from above, the number of meetings varies continuously
from u to ¢v.

Propositions 1 and 2 give a set of conditions that are necessary and
sufficient for frictions to arise in equilibrium. Proposition 1 asserts that
if all locations are identical in the conditional expected profit sense,
then all possible bilateral trades occur in equilibrium regardless of how
tight the aggregate market is. Proposition 2 states that although having
identical locations is sufficient to guarantee no frictions, it is not nec-
essary: for any given degree of heterogeneity among locations (as mea-
sured by ¢, the relative attractiveness of the worst location), there is a
level of market tightness 1/¢ > 1 such that frictions arise if and only if
0 < 1/¢. In particular, notice that if § = 1 (i.e., when everyone could
potentially find a match), unserved passengers and vacant cabs coexist
in equilibrium.

V. The Aggregate Matching Function

This section explores whether—as is often assumed in the equilibrium
search literature—the aggregate number of meetings can be expressed
as a “well-behaved” function of the aggregate stocks of searchers on
both sides of the market.

The equilibrium distributions of cabs and movers corresponding to
any geographical configuration (represented by the §,’s), any set of
moving preferences (represented by the 4;s), and any aggregate market
tightness § were characterized in Section IV. Given these distributions,
the equilibrium number of meetings that take place in each location is
reported in the last row of tables 1 and 2. I now show that an aggregate
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matching function can be generated by aggregating the equilibrium
number of meetings across locations."

ProposITION 3. There always exists a unique aggregate matching func-
tion M(u, v). Moreover, M(u, v) = min{u, ¢u}.

Proof. Assume II = 0. Then the aggregate number of meetings is
2rau; = uif0>1and X7, v; = vif § < 1. Thus the aggregate matching
function is min {«, v} when parameters are such that II = 0. Now sup-
pose II> 0. Then the aggregate number of meetings is 2_, u, = u if
02>1/¢ and

k—1 n
u+ v = ¢v
i=1 i=k

if § < 1/¢. Hence the aggregate number of meetings can be expressed
as a function M(u, v) = min{u, ¢v} when parameters are such that
IT > 0. Notice that ¢ = 1ifII = 0, so min {u, ¢} is the aggregate match-
ing function for any II. Q.E.D.

In line with the operational definition of frictions introduced in Sec-
tion IV, we can verify that there are no frictions if II = 0 since
M(u, v) = min{u, v} in this case. Alternatively, if II > 0, then the equi-
librium exhibits frictions whenever M(u, v) < min {«, v}, namely when-
ever 0 < 1/¢.

VI. Properties of the Aggregate Matching Function

As mentioned earlier, most equilibrium search models are built around
an exogenous aggregate matching function with some convenient prop-
erties. Since model predictions critically hinge on these properties, a
significant amount of effort has been devoted to establishing their em-
pirical validity." From a theoretical standpoint, studying the foundations

'3 Using aggregation to obtain an expression for the total number of trades as a function
of the numbers of traders on each side of the market is not a novel idea. There is a
literature that constructs an “aggregate transaction curve” formally equivalent to a match-
ing function by aggregating across a large number of micro markets. This approach goes
back at least to Hansen (1970) and has been used more recently by a number of economists
working on disequilibrium macroeconomic models (see Lambert [1988] and the refer-
ences therein). Although similar in spirit, that approach differs from the one in this paper
in that the distribution of traders across markets is exogenous in disequilibrium models
but endogenously determined here.

' For the theoretical implications of different assumptions on returns to matching, e.g.,
see Diamond (1982), who shows that a matching technology with increasing returns to
scale makes multiple Pareto-rankable equilibria possible, or Pissarides (1990, pp. 76-80).
Using U.S. manufacturing labor market data, Blanchard and Diamond (1989, pp. 29-30)
conclude that “the evidence suggests constant or mildly increasing returns to scale in
matching” but that “some downward bias may remain [in their estimates] so that the
proponents of strongly increasing returns may still have hope.” For more on the empirics
of matching functions, see Coles and Smith (1996) and the references therein.
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of the relevant meeting technology seems a good way of understanding
how fundamentals interact in determining the shape and other key
properties of matching functions.

First of all, notice that the matching function derived in the previous
section exhibits constant returns to scale. The number of meetings in
location i is pu if 0 2 1/¢ and p,dv if 6 < 1/¢. Hence for any parame-
terization, scaling « and v by the same factor just scales the number of
meetings in each location and hence the aggregate number of meetings
by the same factor.

Perhaps a more striking feature of the meeting technology derived
in Section V is the fact that it allows for no substitutability between u
and v. When 6 > 1/¢, the aggregate number of meetings responds only
to changes in the stock of movers. Additional cabs just increase the
excess supply of cabs in each location and hence have no effect on the
aggregate number of meetings. On the other hand, an extra mover
generates an extra meeting because in this region of the parameter
space an equilibrium necessarily exhibits an excess supply of cabs in all
locations. Hence, wherever they may end up located in the steady-state
equilibrium, any additional number of movers generates that same num-
ber of additional meetings.

Alternatively, when 6 < 1/¢, increasing the citywide number of movers
just increases the steady-state number of movers in the location(s) with
an excess demand for cabs and hence has no effect on the steady-state
number of contacts.”® On the other hand, additional cabs generate ad-
ditional meetings, but at rate ¢. If all the additional cabs placed them-
selves in the locations with excess demand, then each additional cab
would generate an additional meeting. But in equilibrium the additional
cabs spread themselves across all three locations (the extra number of
cabs that go to each location is always proportional to the location’s
relative attractiveness indexed by p,,), and since some end up in lo-
cations with excess supply, the increase in the number of contacts is
smaller than the increase in the number of cabs. With more cabs in the
locations with excess demand, some of the movers who in each period
were previously unable to reach the locations with excess supply will
now be able to do so. Thus even if the aggregate number of movers
has not changed, their steady-state distribution across locations is af-
fected by the increase in the number of cabs. The new steady-state
equilibrium exhibits more movers in the locations with excess supply
and fewer in (some of) the locations with excess demand.

The empirical evidence available on the matching functions gener-
ated by aggregate labor markets suggests isomatching curves that exhibit
some degree of substitutability between unemployment and vacancies.

'* Notice that u enters the expressions for u; only in locations %, ..., 7 in table 2.
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As Blanchard and Diamond (1989, p. 4) put it, “somewhat to our sur-
prise, even when the unemployment becomes very large, its marginal
effect on new hires does not disappear.” This stands in contrast with
the fact that the isomatching curves implied by the model presented
here look like right angles. There are two reasons why increases in the
number of movers u have no effect on meetings once it has become
“too large” in the steady-state equilibrium of the market modeled here.

The first reason is our focus on steady-state outcomes. The reason
why additional movers generate no meetings once the aggregate number
of movers exceeds ¢v is that in the steady state they all end up in the
locations with excess demand for cabs. Outside the steady state, however,
the number of meetings will in general depend on how the new movers
are distributed across locations. For example, suppose that «is increased
and some of the additional movers are placed in the locations with an
excess supply of cabs. Then each of these movers will generate an extra
meeting, even if § < 1/¢.

The second reason is the fact that prices are fixed. As discussed above,
if 6 <1/¢, an increase in u adds only to the number of movers waiting
for cabs in the locations with excess demand in the steady-state equi-
librium. Since cabs already met passengers with certainty in those lo-
cations and the ws are fixed, the no-arbitrage condition implies that
their equilibrium distribution remains unchanged by the increase in
the aggregate number of movers. However, if prices (the ,'s) were
allowed to respond to market conditions, then, in principle, the increase
in the number of unserved passengers in the location with excess de-
mand may cause the price of a ride out of that location to rise, inducing
a relocation of cabs from the locations with excess supply into the one
with excess demand, resulting in an increase in the aggregate number
of meetings.

VII. Policy Experiments and the Matching Function

Suppose that we try to study the effects of a fare increase on the number
of meetings using the standard search and matching model with an
exogenous meeting technology. To make the formulation as close as
possible to the environment described in Section II, let us assume that
time is discrete, that all rides last exactly one period, and that the pop-
ulations of cabs and movers are fixed and denoted by v and u, respec-
tively. Let m be the profit to a cab from selling a ride and let s be a
measure of search effort.'® Assume that the exogenous matching func-

'% Since the spatial structure is “black-boxed” inside the matching function in this for-
mulation, 7 replaces the ,’s.
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tion f(s, u, v) is “well behaved,”"” as well as that f; > 0 and f;, < 0. Letting
B € (0, 1) be the discount factor, letting J denote the cab’s value of
search, and assuming random matching, we can write

—c(s) + {/(s—:v) 7+ Bj],

where ¢(s) is the cost associated with exerting search effort s, with
¢'>0 and ¢"> 0. So the standard model predicts an increase in search
effort and hence an increase in the aggregate number of meetings in
response to the increase in the fare structure 7. Notice that within this
framework, search effort is the only variable that can make the number
of meetings react to changes in parameters.'®

In contrast, the endogenous aggregate matching function derived in
proposition 3 depends on the flag drop rate b, the per mileage charge
w, the full set of pairwise distances, and the matrix of wishes to move.
In short, it depends on all the parameters that determine a cab’s ex-
pected profit. When nis used to label the worst possible location, namely,
T, = min{m, ..., 7}, the expression for the aggregate matching func-
tion in proposition 3 can be written as an explicit function of parameters
just by noticing that

J = max
s

B (b/m) + 2w zj;tiaij&ij.

So anything that makes location » more attractive relative to other lo-
cations will shift the corner of the isomatching curve and will reduce
the extent of the meeting frictions provided that 6 < 1/¢. Consider the
effects that changes in the fare structure (i.e., changes in b or 7 or both)
have on the endogenous meeting process. It is clear from the expression
above for ¢ that the behavior of @ = /7 is all that matters to predict
the impact that changes in the fare structure have on aggregate meet-
ings. It is easy to show that d¢/dc >0 as long as II>0. Thus, in an
equilibrium with frictions (i.e., provided that 6 <1/¢), the aggregate
number of meetings increases with a. But if the increase in T is asso-
ciated with a fall in «, then ¢ and the aggregate number of meetings
fall. Intuitively, a decrease in the fixed component b relative to the per
mileage charge m makes shorter trips relatively less attractive, inducing
some cabs in locations with excess demand to look for passengers in
locations with excess supply.

In summary, if parameters are such that § < 1/¢ and the increase in

7 That is, fis differentiable, with >0, >0, and f{s, u, v) <min{u, v.

'8 The optimal choice of search effort is characterized by ¢(s) = [fi(s, w, v)/v]#. Ina
model without search effort (i.e., if ¢(s) = f{ = 0 for all s) and fixed populations, the
increase in * would have no effect on the number of meetings.
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 is associated with a fall in &, then the model built around an exogenous
matching function predicts an increase in the number of trades whereas
the endogenous meeting technology predicts a reduction. So in general,
policies change the equilibrium distribution of cabs across locations,
which in turn affects the shape of the matching function. In other words,
this example suggests that unless agents are completely unable to choose
how to conduct their search, the meeting process is endogenous and
black-boxing it in a fixed aggregate matching function could be
misleading.

VIII. Concluding Remarks

The model presented here illustrated an alternative way of modeling
search frictions. By letting searchers distribute themselves optimally
across spatially distinct meeting points (or locations), I have shown that
some equilibria may exhibit frictions provided that the meeting points
are not all identical from the searching agents’ perspective. When at
least one location is “better” than another, the possibility that cabs may
“overcrowd” that location arises, leaving another location with unserved
passengers. So although all possible contacts occur within each location,
cabs may distribute themselves in a way such that some of them are
unable to find passengers and some passengers are unable to find cabs.
From an aggregate perspective (i.e., when one looks at the total numbers
of movers and cabs, disregarding their distribution across locations),
this situation looks just like the environments with meeting frictions
typically assumed in search-theoretic models, although these frictions
are of a different nature.

The description of the technology for the coordination of trade is
the main feature of an equilibrium search model. Traditionally, search
models have relied on exogenous specifications of this meeting tech-
nology. The alternative way of thinking about search frictions proposed
here shows that it is possible to generate an endogenous matching
function through equilibrium aggregation. In general, this matching
function will depend on the agents’ incentives, and hence its shape will
be sensitive to policy. In the light of the widespread use of traditional
search and matching models in much of modern macroeconomics, this
observation raises a fundamental concern. Conducting policy experi-
ments in models built around exogenous meeting processes is a mean-
ingful exercise only if the random search assumption is a good char-
acterization of the underlying search behavior of the agents being
modeled. Sometimes—as in the taxicab application presented here—the
“nobody knows where anything is” assumption may not be appropriate,
and hence tacitly adopting it by studying the problem with an exogenous
matching function may turn out to be misleading.
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Appendix

Proof of Proposition 1

If IT = 0, the first n — 1 equations in condition (E1) become

min

1 1} in |2 1} fori=1 1
5 min rh ori=1, ..., n—1,
so in equilibrium, either all locations have an excess supply of cabs or no location
does. Potentially, there are three types of equilibria. In the first, all locations
exhibit an excess supply of cabs. I deal with this case in part a. In the second
type, which is analyzed in part b, there is market clearing in all locations. Finally,
part ¢ characterizes the set of equilibria for the case in which at least one location
exhibits excess demand and none of the others exhibit excess supply.

Part a—In an equilibrium with an excess supply of cabs in all locations,
conditions (E1)-(E3) become

6,=86, i=1,..,mn (Al)
v= U, (A2)

i=1
ui=2ajiuj’ 1= 1, ey n—l, (A3)

j*i
and

u=Du, (A4)

i=1

Since there is an excess supply of cabs in all locations, the flows of movers
between locations are driven by the Markov process that rules people’s wishes
to move. The vector u solves the n — 1 flow equations (A3) if and only if it solves

a-A=a, (A5)
where
l1-u wa, - wua,
A=| v 1T
uczl,,1 u(:z,,2 1 - u

is the Markov matrix of people’s wishes to move. Although there are » equations
in the system given by (A5) and only » — 1 in (A3), both systems are identical
since the first » — 1 equations are the same whereas the nth equation in (Ab)
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is just a linear combination of the previous n — 1." The matrix A is a strictly
positive Markov matrix, so it has a unique stationary distribution; namely, there
is a unique vector

n—1
= (”’1’ Moy oees 1_2”';')

i=1
such that
pA = p. (A6)

Furthermore, p >0 because A > 0.*° Hence u = pu is the unique solution to the
system of equations given by (A3) and (A4). Since the system (A5) isindependent
of u, p does not depend on u and hence u is linear in u. So we can write

d=pu i=1 ., m (A7)

where p,>0 is a function of the elements of the Markov matrix A only. When
u is solved for, the n equations given by (Al) and (A2) can be solved for the
equilibrium allocation of taxicabs (denoted v,):

v,=py, i=1, ..., n (A8)

Finally, verify that the conjecture v,> u, for i = 1, ..., n, is verified if and only
if 6>1. Thus the unique solution to (Al)-(A4) described in (A7) and (A8)
constitutes an equilibrium only if §> 1.
Part b—With market clearing in all locations, the equilibrium is characterized
by (A2)—(A4) and
0.=1, =1, ..., n (A9)
As in part a, (A3) and (A4) can be solved for (A7). The distribution of cabs is

then obtained from (A9), and it is seen to satisfy (A2) only if 6 = 1. Thus the
allocation u; = v; = up, for i = 1, ..., nis an equilibrium only if 6 = 1.

' To see this, rearrange the first n — 1 equations in (A5) to get
n—1
au, = u— 2 agu,
i*j
for j=1, ..., n— 1. Adding up these n — 1 conditions yields

a1 n-1 n1
Uy, £ lanj = 2(1 _Eaﬁ)up
iz

j=1 i#j

which is the same as the last equation in (A5), namely,

n—1

1

~
[

n—1 n—=1

since 3"} a,, = land 1 - 3% ¢; = a,

20If z is a vector, z >0 means that z,> 0 for all i, whereas z > 0 means that z,> 0 for all
iand z> 0 for some i (i.e., z # 0). Similarly, if Q is a matrix, Q >0 means that g,> 0 for
all i and j. The fact that A is a Markov matrix implies that 1 is an eigenvalue (hence we
know that a p satisfying [A6] exists). Additionally, A>0 implies that 1 is A’s largest ei-
genvalue. Since p is the eigenvector associated with the largest nonnegative eigenvalue of
a nonnegative matrix, by Frobenius’s theorem we know that g > 0 (see Nikaido 1970;
Takayama 1985). Finally, since A>0 and g >0, it is obvious that (A6) cannot hold if

u; = 0 for some i, so p> 0 must be the case.
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Part c—Suppose that there are k locations with excess demand and n — k that

clear, with 1 <k<n. If k< n—1, label locations so that i = 1, ..., n— k denote
those with market clearing. In this case, the equilibrium conditions are
0.=1, i=1, ..., n—k, (A10)
and
v,= Dap, i=1, .., n-1, (All)
jEi

together with (A2) and (A4). If k = n, then the equilibrium is characterized by
(A2), (A4), and (Al1) only. Notice that (Al1l) is just (A3) but with v;s replacing
the us. Therefore, the equilibrium distribution of cabsis 7 = pv, with p defined
by (A6). Given the distribution of cabs, the distribution of movers across the
locations with market clearing follows immediately from (A10). Since there are
2n— k+ 1 independent equilibrium conditions and 2n unknowns, the system
will be underdetermined if there is more than one market with excess demand
(i.e., if k> 2). In this case there is an infinite number of solutions to (A2), (A4),
(A10), and (A11) since the distribution of movers across the locations with excess
demand is indeterminate.”! Any distribution {%, v,);_, with 9, = vy, for i =

1, .., n =19 fori=1, ..., n—k, and {&}]_,_,., satisfying
>, (A12)
and
n n—k
2 d=u-u2p, (A13)
j=n—k+1 i=1

solves (A2), (A4), (A10), and (Al1). So equilibria of this kind exist if and only
if*? § < 1. If the equilibrium is not unique, then there is a continuum. Uniqueness
obtains if and only if k = 1. Q.E.D.

Proof of Proposition 2
If II > 0, label locations so that bigger subindexes correspond to locations with
a smaller conditional expected profit:

M2 2, > == T, (Al4)
Since there could be more than one location with the smallest level of condi-

tional expected profit in the city, (A14) allows for » — k + 1 such locations, with

' As shown in the body of the paper, this multiplicity is irrelevant for the purposes of
characterizing the aggregate matching function.
2 To show sufficiency, notice that (A12) and (A13) imply

n nk
2 <u— 2 D,
i=n—k+1 -1

so v< u is necessary for both conditions to hold. For necessity, assume that v< u and

construct equilibria as follows. Let o, = pv, for i=1, ..., n, and let @&, = v, for i =
1, ..,n—kForj=n—k+1, ..., nlet i, = 3+ ¢(u—v), with € = (€,_41, ..., €,) be-

ing a vector in the kdimensional unit simplex; i.e., ¢,20 and 27, i, ¢; = 1.
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2 < k< n. The ranking in (Al4) together with the first n — 1 equations in con-
dition (E1) imply

min

1 1< <mi 1 1
0, h ___mmo N

1 k—1

1 1]

6, )

So in equilibrium there must be excess supply in locations 1, ..., k— 1, whereas

either all locations %, ..., » have excess supply or none of them does. Hence,

there can potentially be three types of equilibria: locations %, ..., n are in excess

supply in the first and exhibit market clearing in the second and excess demand

in the third. Locations 1, ..., k— 1 are in excess supply in all three types.
Part a—With excess supply in all locations, the equilibrium is characterized

by 2n equations, namely,

O =V =1, ne
0.. = 0,, M, =1, ..., n s ( )

(A2), (A3), and (A4). As in part a of proposition 1, (A3) and (A4) can be solved
for the unique distribution of movers across locations in (A7). Given the dis-
tribution of movers, (A2) and (A15) can be solved for the distribution of taxicabs,
which is given by

1
<min‘0—k, 1} = ** = min

v, = ”,'.d)‘.v, = 1, PR (N (AIG)

with ¢, = 7,(37_, ux,)"". The distributions of movers and cabs in (A7) and (A16)
constitute an equilibrium with excess supply in all locations if and only if
wov>pu for all i namely, if 6>max{l/$,, ..., 1/¢,}. Since =, =
min{r,, ..., w,}, the equilibrium with excess supply in all locations exists if and
only if > ¢, where ¢ = 7, (S, pm)”".

Part b—The conditions that characterize an equilibrium with excess supply
in the first k— 1 locations and market clearing in the remaining n— k+ 1 are

1
(—)m=1rn, i=1, .., k=1, (A17)

and
0.=1, i=%k, ..., n (A18)

together with (A2), (A3), and (A4). As in proposition 1, (A3) and (A4) can be
solved for the unique distribution of movers across locations given in (A7). Then
(A17) and (Al8) can be solved for the unique distribution of cabs:

i

1
v, = (;)”’ﬂriuy i= 1’ veey k— ]" (Alg)

n’

and
v =pu, j=k ..., n (A20)

Finally, for the unique distributions of movers and cabs given in (A7), (A19),
and (A20) to be an equilibrium, condition (A2) must hold, so we must verify
that
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k—1 n
1
E(—) w2 g = . (a21)
i=1 \T,, i=k
Because w;, = =, for i = k, ..., n, the left-hand side of (A21) can be written as
( : ) )
u\— Miwi’
T,/ i=1

n

and therefore this equilibrium exists if and only if § = ¢

Part ¢—I now focus on an equilibrium with excess supply in locations
1, ..., k— 1 only, market clearing in the first 4 of the remaining n—k+1 lo-
cations (with 0 < A< n— k), and excess demand in the rest. In this case, the
equilibrium conditions are given by a set of #» + k+ k equations, namely,

=" i=1, .., k-1, (A22)
wﬂ
0,=1, i=k ..., k+h—1, (A23)
k-1 n
u, = 2 au;+ 2 ay, i=1, ..., k=1, (A24)
j=1j#i j=hkj#i
and
k-1 n
v = 2 au;+ 2 ay, i=k .,n—1, (A25)
j=lj#i j=kj#i

together with (A2) and (A4). Let

k=1 n
o= 2 ui + 2 vi’
i=1 i=k
and notice that the system of n — 1 equations labeled (A24) and (A25) can be
written as®
SA =35, (A26)
with
u u v, Su S,
§= (—‘, e A2 1= —').
g [ g i=10 i=k 0

Since (A26) is identical to (A6), it follows thats = u. Thus the distributions of

movers across the first k — 1 locations and of cabs across locations %, ..., n that
satisfy (A24) and (A25) are
u,=po, i=1 ..., k—1, (A27)
and
v, =p0o, i=k .., n (A28)

Equations (A27) and (A22) imply that

# The nth equation in (A26) is implied by the n — 1 equations in (A24) and (A25).
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1
v = (;)M,.a, i=1, o k-1 (A29)

7’

The distribution of cabs in (A28) and (A29) satisfies (A2) if and only if

SIS

i=1 \T,

or, equivalently (since m, = *** = ,), if and only if ¢ = ¢v. This allows us to
rewrite the distribution of movers in (A23) and (A27) and the distribution of
cabs in (A28) and (A29) as

ui'_—”,‘.(ﬁ‘u, l=1, ceey k+ h_l, (A30)
v, =pudv i=1, ..., k—1, (A31)

and
v, =udv, i=k ..., n (A32)

Since there are n+ k+ h equilibrium conditions (namely, n+ k+ & — 2 equa-
tions in [A22]-[A25] plus the two “adding-up” conditions) and 27 unknowns,
there are n — k— h undetermined variables. If » = n — k, then the allocation in
(A30)-(A32) together with u, = u— (1 — p,)¢v uniquely solves (A22)—(A25). If
h<n—k—1, then there are at least two locations with excess demand. In this
case, the distribution described in (A30), (A31), and (A32) together with any
distribution {%}_,., satisfying

w>v, j=k+th ..., m (A33)
and
n k+h—1
> d=u—¢v X g, (A34)
Jj=kth i=1

solves (A22)-(A25). Hence equilibria with excess supply only in locations
1, ..., k—1 and excess demand in at least one of the remaining n—k+1 lo-
cations exist if and only if** § <¢™'. If the equilibrium is not unique, then there
is a continuum. Uniqueness obtains if and only if & = n. Q.E.D.

** To show necessity, notice that (A33) and (A34) imply
k+h-1

2 y<u=—¢v >k,

j=k+h i=1

or, equivalently (from [A32]), ¢v < u. To show sufficiency, assume ¢v < u, and construct

equilibria as follows. Let v, fori = 1, ..., n, be given by (A31) and (A32), and let u, for
i=1, ..., k+ h—1, be given by (A30). Forj = k+ h, ..., n,let u; = v;+ ¢;(u — $v), with
€ = (€p ..., €,) being a vector in the (n — h — k + 1)—dimensional unit simplex, namely

20and 37, = 1.
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