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Abstract

We obtain a recursive formulation for a general class of contracting prob-
lems involving incentive constraints. Under these constraints, the corre-
sponding maximization (sup) problems fails to have a recursive solution.

Our approach consists of studying the Lagrangian. We show that, under
standard assumptions, the solution to the Lagrangian is characterized by a

recursive saddle point (infsup) functional equation, analogous to Bellman's
equation. Our approach applies to a large class of contractual problems. As

examples, we study the optimal policy in a model with intertemporal par-
ticipation constraints (which arise in models of default) and intertemporal

competitive constraints (which arise in Ramsey equilibria).



1 Introduction

The use of recursive analysis is one of the main resources available today to

economists studying dynamic models. In the standard case, it is well known

how to determine if a model has a recursive structure; for example, Stokey,

et al. (1989) describe a large number of models that can be analyzed re-

cursively. The presence of a recursive formulation implies that the optimal

decision at time t is a time-independent function f of a small set of state

variables. This property plays a crucial role in many applications of dynamic

models for several reasons: it facilitates the analysis and empirical testing of

the model; it is enough to approximate just one function in order to compute

the equilibria for all periods1; contracts can be speci�ed without taking into

account all past and present realizations of exogenous stochastic shocks (as
they would with Arrow-Debreu contracts) since a few state variables are suf-
�cient statistic for past history; �nally, models of learning can be formulated
by specifying f as the object to be learned.

A key condition in standard dynamic programming techniques is that
only past variables can in
uence the set of feasible current actions. Kydland
and Prescott (1977) showed that many dynamic economic models of interest,
failed to satisfy this condition and, therefore, the Bellman equation failed to
hold in these models. This is a well known problem in dynamic games where

it is usually imposed that an equilibrium solution must be sub-game perfect.
This lack of recursivity is likely to arise in contracting problems, where in-
tertemporal participation, incentive or competitive constraints de�ne the set
of feasible contracts. Also, in models of optimal policy, agent's reactions to
government policies are taken as constraints. In all those cases, future actions

limit the set of current feasible actions available to the planner. Despite the
increased interest in the study of optimal dynamic contracting problems, a
general method for �nding a proper recursive formulation is still absent from
the literature.

In this paper we provide an integrated approach for a recursive formu-

lation of a large class of economic models. We show how, in many cases
where implementability constraints depend on plans for future variables and

the original maximization problem is not recursive, an equivalent recursive

1Several computational algorithms that exploit the recursive structure of the solution
are decribed, for example, in the volumes of Cooley (1995) and Marimon and Scott (1998).
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saddle point problem can be constructed leading to a recursive formulation.

We build on traditional tools of economic analysis, such as duality theory

(in optimization problems), �xed point theory (in in�nite dimensional spaces),

and dynamic programming. We proceed in three steps. We �rst study the

planners problem with incentive constraints (PP) as an in�nite-dimensional

maximization problem, for which standard duality theory applies. Second,

we show the equivalence between the planner's problem and a modi�ed sad-

dle point problem (SPP). Third, we extend dynamic programming theory to

show that the (SPP) has a recursive formulation in the sense that it satis-

�es a saddle point functional equation (SPFE) which generalizes Bellman's

equation..

The resulting saddle point problem (SPP) expands the set of state vari-

ables to include new variables that summarize the evolution of the lagrange
multipliers of the original (PP) problem2. Such transformation creates some
technical di�culties since the new (co)state variables can not be bounded.
Fortunately, we can exploit the resulting homogeneity properties of the re-

turn function and, in this way, we are able to extend the standard contraction
mapping approach to establish the relationship between SPP and the SPFE.

We show that solving the lagrangean (SPP) is equivalent to solving the
recursive SPFE without concavity assumptions. This is important because
incentive constraints may not have a convex structure. If concavity is sat-
is�ed, then solving the SPP (and, therefore, the SPFE) is equivalent with

solving the maximization problem PP. In the absence of concavity, as in any
application of lagrangean theory, our SPFE characterization is su�cient but
it may not be necessary for a solution.3

2With this formulation, the resulting stationary policy function is continuous. Without
the additional (co)state variables, the value function would be discontinuous (to account
for the fact that non incentive compatible paths are unfeasible). Rustichini (1996) has
recently followed the approach of allowing discontinuities of the value function. He does

not add co-state variables. Unfortunately, this approach is very limited since, as our
work shows, new co-state variables that account for when and how incentive constraints
have been binding need to be introduced in order to achieve the optimum under full
commitment.

3Most of the literature on Ramsey taxation proceeds to analyze solutions to the la-
grangean even in the absence of concavity. The lagrangean approach does work in prac-
tice in most cases, since it happens that the lagragean often has a solution. To the extent
that our recursive formulation characterizes all solutions to the SPP, concavity is no more
necessary for our approach than it is for standard applications of Ramsey equilibria.
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Our approach can be applied to a very large class of dynamic macroeco-

nomic models, such as models of optimal �scal or monetary policy, business

cycle or �nancial markets models with default. It can also be used in in-

dustrial organization models of optimal regulation, game theoretical models

as well as the study of enforceability and monitoring of contracts subject to

incentive constraints. We do maintain, in this paper, the assumption of full

information4.

That a large class of problems have a common recursive structure is not

just a technical result. It also helps in providing a common economic charac-

terization of many contractual problems, perhaps, similar to the way that the

study of recursive competitive equilibria has enhanced our understanding of

the economic structure that is common to many dynamic economic models.

For example, a standard application of the Second Welfare Theorem shows
that, under some assumptions, recursive competitive equilibria are solutions
to a planner's problem in which agents' weights are constant across time. Our
recursive characterization makes it clear that, with intertemporal incentive

constraints, the recursive solutions correspond to planner's problems where
agents' weights vary according to their histories (more precisely, according to
how incentive constraints have been binding in the past). In our approach,
the additional (co)state variables indicate whether and how such adaptation
of the planner's objective function must take place. In general, such adapta-
tion of the planner's objective not only can a�ect the relative weight across

agents, but also the planner's intertemporal valuations. For example, time-
inconsistency problems can be interpreted as the planner's temptation to set
the (co)state variables to its initial zero value.

The fact that at the initial period our (co)state variables are well de�ned
(in fact, they are zero, re
ecting the fact that there is no past history) allows

for a proper recursive formulation. This, for example, is not true of the ap-
proach of taking \present values as state variables," pioneered by the work
on repeated games of Abreu, et al. (1990), since initial present values of an

optimal problem can only be obtained once the problem has been solved.
In practice, it is often di�cult to bound the range of possible initial values,

as a backwards iteration of \future present values" of the APS approach
requires. Furthermore, in order to �nd the optimal allocation under the im-

4In a follow up paper we characterize recursive contracts with incentive constraints
under private information.
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plementability constraints we do not need to characterize the whole set of

feasible contracts (of all sub-game perfect equilibria in repeated games), and

we can exploit e�ciency properties in order to obtain our recursive charac-

terizations. The fact that we have a properly de�ned initial condition and

that we can calculate the optimum "directly" highly simpli�es the practical

application of our approach.

The rest of the paper is organized as follows. In Section 2 we summarize

our approach and we show how it can be applied to two simple examples5.

Section 3 develops the saddle-point theory, Sections 4 its dynamic program-

ming formulation, and Section 5 concludes. Most proofs are contained in the

�nal appendices.

2 Formulating contracts as recursive Saddle

Point Problems

In this section we summarize our approach. We discuss the relationship
between the maximization problem of interest with a saddle point version
of the Bellman equation and conclude that, if the set of state variables is
expanded to include some new co-state variables, the problem becomes re-
cursive. We also discuss the relationship between these state variables and

the evolution of the distribution of wealth, as well as the relationship to the
time-consistency problem. We apply the results to two examples. All the
proofs, formalities, and the technical assumptions needed are discussed in
Sections 3 and 4.

The standard case of dynamic programming is concerned with problems

that take the following form (see, for example, Stokey, et al. (1989) and
Cooley, (1995)):

Program 0

sup
fatg

E0

1X
t=0

�tr(xt; at; st)

s.t. xt+1 = `(xt; at; st+1); at 2 A(xt; st); t � 0 (1a)

5Section 2 is practically self-contained. This should allow the potential user to apply
our approach without having to go through the technicalities in the rest of the paper.
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x0; s0 given

at measurable with respect to (: : : ; st�1; st);

where r is a given return function; � 2 (0; 1) the discount factor; fstg an

exogenous Markov stochastic process; x an endogenous state variable; a a

control or decision variable, subject to the technological constraint A, and,

�nally, the transition function ` de�nes the evolution of the endogenous state.

The objects �; r;A; ` and the transition of st are assumed to be known.

Under standard assumptions, this problem is known to have a recursive

structure, in the sense that there exists a value function v satisfying the

Bellman functional equation

v(x; s) = sup
a2A(x;s)

fr(x; a; s) + �E [v(x0; s0)js]g

s.t. x0 = `(x; a; s0)

This functional equation can be derived using standard dynamic program-
ming techniques (see, for example, Stokey, et al. (1989)). It yields a station-
ary policy function f such that the optimal allocation satis�es at = f(xt; st)
for all t. The key aspects of this observation are that the policy function f is

the same in all periods, and that only the values of (xt; st) matter from the
whole past history. Given this recursive structure solving the model amounts
to solving for the function f . A number of computational techniques are
available for this purpose.

Nevertheless, many interesting economic problems are not of the form
of Program 0. This often happens in maximization problems that include

di�erent incentive or intertemporal constraints that can not be reduced to the
above technological constraint (1a). In this paper we will consider problems
that can be represented in the following form:

Program 1

sup
fatg

E0

1X
t=0

�tr(xt; at; st)

s.t. xt+1 = `(xt; at; st+1); at 2 A(xt; st); (1a)

g
j
1(xt; at; st) + Et

NjX
n=1

�ng
j
2(xt+n; at+n; st+n) � 0; j = 1; :::; k; t � 0(2)
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x0; s0 given.

at measurable with respect to (: : : ; st�1; st):

Clearly, we have just added the constraint (2) for given g mappings.

Constraints of the form (2) are not a special case of (1a), since they involve

expected values of future variables6. We know from Kydland and Prescott

(1977) that, under these constraints, the usual Bellman equation is not sat-

is�ed, the solution is not of the form at = f(xt; st) for all t and the whole

history of past shocks st can matter for today's optimal decision.

In this paper we show that problems in the canonical form of Program 1

can also be cast in an alternative recursive framework. We consider the two

canonical cases Nj =1 and Nj = 1; other cases can be easily incorporated.

The �rst step in our approach is to convert Program 1 into a recursive saddle
point problem (SPP) of the form:

Program 2

inf
f
tg

sup
fatg

E0

1X
t=0

�th(xt; at; �t; 
t; st)

s.t. xt+1 = `(xt; at; st+1); at 2 A(xt; st); (1a)

�t+1 = '(�t; 
t; st+1); 
t � 0; t � 0 (3)

�0 = 0; x0; s0; given,

(at; 
t) measurable with respect to (: : : ; st�1; st);

where the mappings de�ning the technological constraints (1a) are as before,
and the mappings h, ' can be derived from r, g;Nj: Here, �t acts as a co-
state variable, and we will show that its transition function ' depends on

whether the j constraint (2) has Nj = 1 or 1. Notice that SPP shares with
Program 0 the features of not having future variables in the constraints and
that all the functions in the constraints are known. This is why, anticipating
results, we call this a recursive saddle point problem. The problem where �0
is arbitrary is of theoretical interest, and it will be considered in Section 3

when we derive a recursive formulation.

6When g2 = r and N = 1 this problem can not be alleviated by substituting the
discounted sum of (2) with the value function v(xt; st): Even then, this constraint is not a
special case of (1a) because the requirement that ` and A be known mappings in Program

0 would be violated.
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We will treat Program 2 as a primitive program and we will show that

there is a duality theorem linking it with Program 1. Unfortunately, since

Program 2 is a saddle point problem, the standard theory of dynamic pro-

gramming does not apply. A main contribution of this paper is to extend

dynamic programming theory to recursive saddle point problems. We show

that, under certain assumptions, solutions to Program 2 obey a saddle point

functional equation (SPFE) in the sense that there exists a unique value

function W (x; �; s) satisfying

W (x; �; s) = inf

�0

sup
a2A(x;s)

fh(x; a; �; 
; s) + � E [W (x0; �0; s0)j s]g

s.t. x0 = `(x; a; s)

and �0 = '(�; 
; s0)

for all (x; �; s) and such that W (x0; �0; s0) is the value of Program 2 for
initial conditions (x0; �0; s0). This is a generalization of Bellman's equation.

Letting  be the policy correspondence of this SPFE, in the sense that

 (x; �; s) 2 arg inf

�0

sup
a2A(x;s)

fh(x; a; �; 
; s) + � E [w(x0; �0; s0)j s]g ;

s.t. x0 = `(x; a; s)

and �0 = '(�; 
; s0)

The key result in this paper is that the optimal solution of Program 1 satis�es
(at; 
t) =  (xt; �t; st) for all t and �0 = 0: and it implies that the solution
is recursive in the sense that only the values of (xt; �t; st) are relevant from
past history and the policy function  is time invariant and can be found by

studying the SPFE.
Notice that, in order to have the solution of the SPP equivalent with the

solution of the problem of interest Program 1 calls for setting �0 = 0; while
in future periods �t is determined according to  and '. This is a special

feature of the optimal plan that provides a clear interpretation of the time-

inconsistency problem. It is technologically feasible to the planner to reset
�t = 0 at any time t; and this is what it would do if it could ignore past

commitments. But if the planner sets �t = 0 it will achieve a suboptimal
allocation. Full commitment on the part of the planner means, precisely,

that it commits to the evolution of � determined by  and ' for all periods.
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Dependence of the optimal solution on � is the reason that the model is not

recursive in the standard sense of having a time-invariant policy function of

(x; s):

2.1 Present value constraints.

We now discuss how Program 1 can be transformed into a Program 2 formu-

lation for the case of N =1. This means that future variables enter in the

implementability constraint (2) in the form of a discounted present value.

A case of particular interest is an economy with J agents, each agent

having instantaneous utility function uj, and intertemporal participation con-

straints of the form

Et

1X
n=0

�n uj(cj;t+n) � �j(!t) for all j; t (4)

These constraints restrict the utility of all agents to be at least as large
as some default value �j(!t). The planner's problem that allocates re-

sources e�ciently subject to individual participation constraints is of the
form of Program 1 with r representing the one-period social welfare func-
tion

P
J
�juj; (�j � 0;

P
J
�j = 1), with g2;j � uj(cj;t) and g1;j � uj(cj;t)�

�j(!t). The solution to this problem de�nes a social contract that takes into
account, not only technological, but also incentive and legal constraints7.

Now we obtain the corresponding SPP of the form of Program 2 for Pro-
gram 1. Notice that the corresponding Lagrangian with respect to (2) is,

L � E0

1X
t=0

�t

"
r(xt; at; st) + 
t

 
g1(xt; at; st) + Et

1X
n=0

�ng2(xt+n; at+n; st+n)

!#

subject to (1a), measurability constraints, and given 
t � 0; where, ��t
t is
the Lagrange multiplier of (2) at t.

This is still not of the form of Program 2 above, since future variables

are present in the return function of L. However, under the measurability
restriction, the law of iterated expectations implies that the conditional ex-

pectations Et in the objective function of L can be imbedded in E0. Finally,

7Restrictions on budget constraints can also be written as a special case of constraints
(2) for N =1: See, for example, Marcet, et al. (1996).
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reordering terms using simple algebra, it is easy to �nd that the function H

de�ned as

H � E0

1X
t=0

�t [r(xt; at st) + 
tg1(xt; at; st) + �tg2(xt; at; st)]

�0 = 0; and, for all t � 0; �t+1 = �t + 
t

is such that, for all feasible sequences, L � H:.

Clearly, the saddle point of H is a special case of Program 2, taking

h(x; a; �; 
; s)

� h0(x; a; s) + 
h1(x; a; s) + �h2(x; a; s)

� r(x; a; s) + 
g1(x; a; s) + �g2(x; a; s)

'(�; 
; s) � �+ 
; �0 = 0

Example 1. A partnership with limited commitment

We consider, as an example, a model of a partnership, where several

agents can share their individual risks and jointly invest in a project which
can not be undertaken by single (or subgroups of) agents. Formally, there is
a single good and J in�nitely-lived consumers, with preferences represented
by E0

P1

t=0 �
t u(cj;t); u strictly concave and monotone; c represents individ-

ual consumption. Agent j receives an endowment of consumption good !j;t
at time t. Total production is given by F (k; �), and it can be split into con-

sumption c and investment i: The stock of capital k depreciates at the rate
�: The joint process f�t; !tg

1
t=0 is assumed to be Markovian and the initial

conditions (k0; �0; !0) are given
8.

Under the above constraints, the Second Welfare Theorem implies that

Pareto Optimal (PO) allocations can be decentralized by a system of com-

petitive markets for every given initial distribution of wealth. PO allocations

8A version of this problem was studied in Marcet and Marimon (1992). They had two
agents, one risk averse and the other an {unconstrained{ risk-neutral agent who acted as
planner. The default value in that paper also depended on capital.
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can be found by solving:

max
fct;itg

E0

1X
t=0

�t
X
j2J

�j u(cj;t)

for positive weights �; subject to technological constraints and initial condi-

tions. This problem is of the form of Program 0 with r(x; a; s) =
P

j2J �j u(cj);

s � (�; !); x � k; a � (i; c); `(x; a; s) � (1� �)k + i, and

A(x; s) �

(
(i; c) � 0 :

X
j2J

cj + i � F (k; �) +
X
j2J

!j

)
:

Therefore, standard dynamic programming is applicable, the usual Bellman

equation is satis�ed, and the optimal solution satis�es (ct; it) = f(kt; !t; �t),
where f is the decision function associated with the standard Bellman equa-
tion. Furthermore, if u is di�erentiable, optimal consumption allocations
satisfy

u0(ci;t)

u0(cj;t)
=

�j

�i
; for all i; j and t (5)

In particular, when, by the First Welfare Theorem, the PO allocation is
an Arrow-Debreu competitive allocation, 1=�j is agent j's marginal utility

of income, which {in a strict form of the Permanent Income Hypothesis{
remains constant through time, showing that individual consumption paths
only depend on aggregate consumption and the initial wealth distribution.

The PO allocation can only be observed in economies where the planner
has the ability to enforce the optimal contract by punishing any deviation

from the optimal plan.9 We now assume the enforcement technology available
to the planner can not prevent any agent from switching to autarky in a given
period and staying there forever. Then, the planner has to take into account

the following participation constraints

Et

1X
n=0

�n u(cj;t+n) � vaj (!t) for all j; t (6)

where vaj (!t) � Et

P1

n=0 �
n u(!j;t+n):

9If the economy is decentralized by a system of competitive asset markets, full enforce-
ment implies that all agents honor their debts.
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Under these constraints, the planner's problem is of the form of Program

1 since (6) is of the form (2) for N =1 once we let g
j
2(x; a; s) � u(cj) and

g
j
1(x; a; s) � u(cj)�v

a
j (!).

10 Therefore, using the algebra in this subsection,

it can be transformed into a Program 2 with

H � E0

1X
t=0

�t
X
J

�
(�j + �j;t) uj(cj;t) + 
j;t

�
u(cj;t)� vaj (!t)

��
(7)

where

h(x; a; �; 
; s) �
X
j2J

�
(�j + �j + 
j)u(cj)� 
j v

a
j (!)

�
:

Then, the solution of the SPP can be obtained by studying the SPFE

W (k; �; !; �) = inf

�0

sup
c;i

(X
j2J

�
(�j + �0j) u(cj)� 
j v

a
j (!)

�
+� E [W (k0; �0; !0; �0) j!; � ]g (8)

s.t. k0 = (1 � �)k + i;
X
j2J

cj + i � F (k; �) +
X
j2J

!j

and �0 = �+ 


Letting  be the policy function associated with this functional equation, ef-
�cient allocations satisfy (ct; it; 
t) =  (kt; �t; �t; !t) with initial conditions
(k0; 0; �0; !0).

Notice that the objective function of (7) can be interpreted as if the
weights that the planner assigns to each agent are shifting over time, accord-
ing to whether or not the participation constraint is binding. Furthermore,
if u is di�erentiable,

u0(ci;t)

u0(cj;t)
=

�j + �j;t+1

�i + �i;t+1
; for all i; j and t:

Thus, the optimal allocations amount to choosing e�ciently the time pro�le

of the time-dependent weights (�j+�j;t+1), in such a way that the participa-
tion constraints are satis�ed. Every time that the participation constraint for

10Clearly, the function va can be found without knowledge of the solution.
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an agent is binding, his weight is increased by the amount of the correspond-

ing lagrange multiplier. An agent is induced not to default by increasing his

consumption not only in the period where he is tempted to default, but also

for many of the following periods; in this way, the additional consumption

that the agent receives to prevent default is smoothed over time. That is, in-

dividual paths of consumption depend on individual histories (in particular,

on past \temptations to default") not just on the initial wealth distribution

and the aggregate consumption path, as in the Arrow-Debreu competitive

allocations. This also shows that if enforcement constraints are never bind-

ing (e.g., punishments are severe enough) then �t = �0 and we recover the

\constancy of the marginal utility of expenditure". In other words, the evo-

lution of the co-state variables can be also interpreted as the evolution of the

distribution of wealth11.
In Section 3 we state an interiority condition that is needed for existence

of a SPP; also, some convexity conditions are needed for uniqueness of the so-
lution. These conditions are trivially satis�ed in this example under standard

strict concavity assumptions.

2.2 Two-period intertemporal constraints

Consider now the case where N = 1 in (2). Intertemporal constraints of this
form arise in dynamic Stackelberg games. For example, in dynamic Ramsey
problems, where the government chooses policy variables subject to the Euler
equations satis�ed in equilibrium. Example 2 below is one of these cases.

Let ��t
t be the Lagrange multiplier of (2). We proceed as in Subsection

2.1, constructing the Lagrangean, applying the law of iterated expectations
and reordering terms in order to group together terms that depend on infor-
mation available at t. We can check with simple algebra that the objective
function for the Lagrangian of this problem takes the form

H = E0

1X
t=0

�t (r(xt; at; st) + 
tg1(xt; at; st) + �tg2(xt; at; st)) (9)

for all feasible sequences, letting �t = 
t�1 and �0 = 0.

The saddle point of H is of the form of Problem 2, taking

11Kletzer and Wright (1998) apply an example, similar to the one presented here, to
discuss sovereign debt problems.
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h(x; a; �; 
; s) � h0(x; a; s) + 
h1(x; a; s) + �h2(x; a; s)

� r(x; a; s) + 
g1(x; a; s) + �g2(x; a; s)

'(�; 
; s) � 
; �0 = 0

Example 2. A Ramsey problem

We consider a simplemodel of Ramsey equilibrium, which has a constraint

of the form (2) for N = 1. There is a constant returns to scale technology

that, when labor is normalized to one, reduces to the technology of Example
1. There is a representative agent who rents capital to a �rm and inelastically
supplies one unit of labor. Capital and labor markets are competitive, but no

�nancial assets are available to the government. Government spending fcgtg
generates utility for the consumer, and it is �nanced by levying an income tax,
�t, that equally taxes capital and labor income. Furthermore, government's
budget must be balanced in each period. The problem of optimal policy
consists of choosing among di�erent combinations of government spending

and taxes that satisfy the budget constraint of the government and that are
compatible with competitive equilibrium.

This example adds one complication relative to previous papers on op-
timal taxation since, even using the primal approach, the implementability
constraints can not be summarized in one constraint as is done, for example,

in Lucas and Stokey (1983) and Chari, et al. (1995). This is due to the
absence of �nancial assets. Other than this, our example is meant to be as
simple as possible.

The representative consumer solves the problem

max
fct;itg

E0

1X
t=0

�t [u(ct) + v(cgt )]

s.t.ct + kt+1 � rtkt(1 � �t) + (1 � �)kt + wt(1� �t) (10)

The Euler, �rst order, condition for the consumer is

u0(ct) = �Et [u
0(ct+1) (rt+1(1� �t+1) + 1 � �)] (11)
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Since prices are competitive, rt = F 0(kt; �t) and wt = F (kt; �t) � rtkt. The

budget constraint of the government in period t is,

c
g
t = �t(rt kt + wt) = �t F (kt; �t) (12)

Following Ramsey's principle of optimal taxation, the government max-

imizes the representative consumer's tastes subject to feasibility constraints

and the implementability constraints (11) and (12).

Strictly speaking, the 'equal' sign in the above Euler equation means that

the set of allocations that is feasible to the planner has an empty interior.

In the next section it is shown that, as usual, the Lagragean approach is

su�cient for a solution only if an interior point exists. In appendix 3 we

show that, in the usual case, the solution is equivalent to a problem where

the Euler equation is written as a weak inequality. Combining all these
observations, we see that the Ramsey problem maximizes the utility of the

agent subject to the implementability constraint

u0(ct) � �Et

�
u0(ct+1)

�
F 0(kt+1; �t+1)

�
1 �

cgt+1
F (kt+1; �t+1)

�
+ 1 � �

��
:

Then, the Ramsey problem is of the form of Program 1 with s � �;
x = k; a = (i; c; cg); r(x; a; s) = u(c) + v(cg), `(x; a; s) � (1 � �)k + i,

A(x; s) = f(i; c; cg) � 0 : i+ c + cg � F (k; �)g and the constraints (2) given
by

g1(x; a; s) � �u0(c)

g2(x; a; s) � u0(c)

�
F 0(k; �)

�
1�

cg

F (k; �)

�
+ 1 � �

�
:

Then, the SPP of Program 2 holds for

h(x; a; �; 
; s) � u(c) + v(cg) + 
 u0(c)

�� u0(c)

�
F 0(k; �)

�
1�

cg

F (k; �)

�
+ 1 � �

�
(13)

The corresponding SPFE is

W (k; �; �) = inf

�0

sup
c;i;cg

fh(x; a; �; 
; s) + � E [W (k0; �0; �0) j� ]g

s.t. k0 = (1 � �)k + i; c+ i+ cg � F (k; �)

and �0 = 
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With the policy function  associated to this SPFE, we can �nd the optimal

solution to the Ramsey problem by setting (ct; it; c
g
t ; 
t) =  (kt; �t; �t) for

all t, with �0 = 0. This uniquely de�nes a stationary policy for � in an

obvious way.

As in the previous example, su�cient conditions for the interiority and

convexity conditions are discussed in appendix 3. The interiority condition

is satis�ed in most applications. The convexity conditions can only be ob-

tained under restrictive assumptions; obviously, this is not a problem with

our approach, but a problem that often arises in Ramsey equilibria.

2.3 Other applications and relation to the literature

A number of numerical algorithms can be used to compute (or approximate)
the function  . A number of applications are already present in the literature,
and they have used di�erent algorithms. For example, Marcet and Marimon
(1992), Marcet, et al. (1996) and Rojas (1993) approximate the �rst order

conditions with PEA, Kehoe and Perry (1998) perform backward iterations
on the value function, which is related to iterating the above SPFE, and
Hansen, et al. (1985) compute the solution in the linear case using traditional
tools of linear dynamic programming. In a follow up paper we provide several
examples and the details in computing solutions to those examples.

Other approaches are available in the literature trying to reduce the di-
mension of history-dependent optimal contracts (or equilibrium strategies).
We brie
y mention and discuss those approaches. A detailed account of ad-
vantages and disadvantages of di�erent methods can only be done in the
context of concrete examples and it falls beyond the scope of this paper.

The work of Hansen, et al. (1985) can be seen as an early application

of the approach we take in this paper. They formulated the problem with
lagrange multipliers as co-state variables in a linear model with a two-period
constraint like the one discussed in section 2.2. They also discussed the rela-

tion of the �xed initial condition �0 = 0 with the time-inconsistency problem.
In another piece of early work, Kydland and Prescott (1980) propose to in-

clude the lagrange multiplier of the budget constraint of the consumer as a
co-state variable12.

12Our work provides a formal proof that introducing the co-state variables is su�cient
for the optimal solution in Hansen, et al. (1985). It is not clear if the approach of Kydland
and Prescott (1980) does provide an optimal solution in cases with uncertainty.
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The primal approach, as applied in Lucas and Stokey (1983) and Chari,

et al. (1995), can be used in many problems of optimal policy. If the gov-

ernment can complete the markets with its policy instruments, all the im-

plementability constraints are summarized into one, and the vector of state

variables is not enlarged relative to the standard case, after period 1. Within

our framework, this means that the co-state variables are constant; in most

models (such as examples 1 and 2 and the applications just cited), the co-

state variables need to be introduced13.

Rustichini (1996) discusses a model similar to our example 1 and he ar-

ti�cially imposes the restriction that the solution depends only the natural

state variables, in that case (k; !; �). He de�nes a map that delivers a value

function satisfying incentive constraints under this restriction. In most mod-

els, the map de�ned by this author does not reach the optimum under full
commitment, while our approach would. In those models, it is precisely
the introduction of the co-state variables that allows consumption smooth-
ing across periods (see our discussion of consumption smoothing at the end

of example 1); the solution computed by the approach of Rustichini (1996)
would not allow to spread the compensations for default over di�erent peri-
ods, but agents receive a single one-shot compensation when they are tempted
to default. Thus the optimum under full commitment is not achieved.

The pioneer work of Abreu, et al. (1990) proposes to summarize past
histories in the function of promised utilities. This amounts to using a func-

tion as a co-state variable, which still leaves for a fairly large state space. In
some cases, (see Green (1987), and Thomas and Worral (1990)) this function
can be summarized into a few co-state variables14. This approach is used
by Phelan and Townsend (1992). Our approach provides a common frame-
work that encompasses two-period constraints as well as discounted sums

other than discounted utilities (as is the case with some present value budget
constraints); it makes it possible to directly obtain and characterize e�cient

13See, for example, Benhabib, et al. (1997) for an \optimal" tax policy derived using
non-constant co-state variables.

14See also Chang (1996) for a general disscussion, and an application to the design of
credible monetary policies, of the APS approach, as well as the similar approach pioneered
by Cronshaw and Luenberger (1994). See, for example, Sargent and Ljungqvist (1998)
and Sargent (1999) for some macroeconomic applications of the approach of using �rst
backwards iteration of \future present values" (i.e., APS) and then maximizing over the
set of feasible {incentive compatible{ contracts.
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contracts on the Pareto frontier without having to characterize the whole set

of possible equilibria and, ultimately, as we discussed in the introduction, to

obtain fully recursive solutions, in the sense that a time-invariant map is de-

�ned and initial conditions are given. In contrast, using the APS approach,

the initial value function at time zero is not known and needs to be solved

for separately. Having to solve for the initial condition may lead to unstable

outcomes, much in the same way as with solving Euler equations by forward

shooting. Nevertheless, the APS approach is more suitable to characterize

the set of all incentive compatible contracts (i.e., sub-game perfect equilib-

ria) and (until the theory in this paper is not further developed) to study

problems with informational constraints.

3 Programs 1 and 2 and their duality

In this Section we study �rst Program 1 and show how, under suitable as-
sumptions, it has solutions, which have a Lagrangean formulation. The un-

derlying theory is well known (see, for example, Luenberger (1969)) and we
extend it to cover constraints of the form (2). We then, study Program 2

and show that, under appropriate conditions, there exist saddle-point solu-
tions. Treating Program 2 as a primitive program allows us to develop a
recursive theory that does not speci�cally rely on Program 1. Nevertheless,

we show how to derive Program 2 from Program 1. We end the section with
a global duality theorem linking both programs (which requires convexity as-
sumptions) and a su�ciency theorem showing that Program 2 solutions are
Program 1 solutions (with weaker convexity requirements). We call Program
1 the Planner's Problem (PP) and Program 2 the Saddle Point Problem

(SPP).

3.1 Program 1 (PP)

We �rst recall Program 1

PP

V (x0; s0) = sup
fatg

E0

1X
t=0

�tr(xt; at; st)

s.t. xt+1 = `(xt; at; st+1); at 2 A(xt; st); t � 0 (1a)
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g
j
1(xt; at; st) + Et

24 NjX
n=1

�ng
j
2(xt+n; at+n; st+n)

35 � 0; j = 1; :::; k (2)

x0; s0 given.

at St �measurable

We make the following assumptions15,

A1. S is a compact (Borel) set of an Euclidean space. fstg;st 2S; is a

Markovian process satisfying the following (Feller) property: if f : S !

R is bounded and continuous (i.e., f 2 C(S)), then E[f j�] : S ! R is

also bounded and continuous (i.e., E[f j�] 2 C(S))16.

A2. X is a compact subset of R`; A(�; s) is a compact, convex valued
and continuous correspondence from X to Rm: Furthermore, `(�; � ; s) :
X �Rm ! X is continuous.17

A3. r(�; �; s) : R` � Rm ! R is continuous and bounded. Furthermore,
� 2 (0; 1).

A4. gjn(�; �; s) : R` � Rm ! R; n = 1; 2; j = 1; :::; k is continuous and
bounded.

A4b. gjn(�; �; s); n = 1; 2; j = 1; :::; k and r(�; �; s) are quasiconcave, and the
set of fatg satisfying (1a) is convex

18.

A5. There exists an � > 0 and, for all (x0; s0); a program fâng satisfying
(1a) such that d(ân; A(bxn; sn)c) � " and19

g
j
1(x0; â0; s0) + Et

24 NjX
n=1

�ng
j
2(x̂n; ân; sn)

35 � �

15We denote by St the �-�eld generated by all possible sequences (s0; :::; st).
16If the underlying transition kernel of fstg is Q, then E[f js] �

R
f(s0)Q(s; ds0).

17Our assumptions, such as A2, need only to be satis�ed \for almost all s 2 S", with
respect to the probabilities de�ned by the transition probability; i.e., Q(s; �):

18This last condition is satia�ed if, for example, A(`(x; � ; s); s) has a convex graph for
all (x; s):

19As usual, the superindex c on a set denotes the complement of this set; d denotes the
Euclidian distance between a point and a set.
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where x̂n+1 = `(x̂n; ân; sn+1) and, for each j = 1; :::; k; either Nj =1

or Nj = 1:

AssumptionsA1 - A3 are standard in stochastic maximization problems.

AssumptionA5 is a generalized version of a standard interiority assumption.

AssumptionA4 corresponds to the new set of constraints (2). It requires that

the constraint set is well behaved (closed and bounded) even when these con-

straints are taken into account. The convexity assumption A4b is common

in maximization problems, but fairly restrictive in many applications with

implementability constraints. As we will see, this assumption is only required

to obtain global duality results that guarantee the equivalence between solu-

tions of PP and solutions of SPP, but is not needed for many of our results20.

In particular, Lagrangean multipliers may exist and value functions may be
well de�ned even A4b is not satis�ed (see, for example, Luenberger (1969)
and Stokey, et al. (1989)). In that case, solutions of a Lagrangean are also
solutions to the maximization problem.

The in�nite-dimensional formulation of PP

We can describe, more compactly, PP as a maximal problem in L1.

Given an initial condition (x0; s0), let

f(a) = E0

P1

t=0 �
tr(xt; at; st)

s.t. xt = `(xt�1; at�1; st) for t > 0

and let g(a) be de�ned, coordinatewise, as

g(a) t =

266664
d(at; A(xt ; st)

c)

g11(xt; at; st) + Et

hPN1

n=1 �
ng12(xt+n; at+n; st+n)

i
:::

gk1 (xt; at; st) + Et

hPNk

n=1
�ngk2(xt+n; at+n; st+n)

i
377775

s.t. for t > 0; xt = `(xt�1; at�1; st)

With this notation, PP with initial condition (x0; s0) becomes

20In particular, unless it is explicitly mentioned, we will not make such assumption; e.g.,
A1-A5 means A1,A2,A3,A4 and A5.
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(PP) sup
g(a)�0

f(a)

This is a standard maximization problem in L1, the following proposition

shows that our assumptions guarantee the existence of a solution to (PP).

Proposition 1 Assume A1-A3, A4 and A5. There exists a program a�

which solves PP with initial condition (x0; s0).

Before proving the �rst proposition, it is convenient to be more explicit

with respect to the underlying commodity space. By A1, there is a well

de�ned probability space (S1;S1; P ). If Lm
1(S1;St; P ) denotes the space

of m-valued {essentially bounded{ St-measurable functions, then the con-

tract space is A =fa : 8t � 0; at 2 Lm
1(S1;St; P )g: The contract space, A,

has a product structure. We consider the product topology, characterized

by having every projection {say, to Lm
1(S1;St; P ){ with its corresponding

topology. For example, when we refer to the weak�-topology, we mean that
such topology is considered in any projection (i.e., the �(L1; L1) topology
on L1(S1; St; P ))

21. We will make use of the topology of convergence in

probability, denoted P -topology. 22 An important feature of the P -topology

is that, with this topology, L1(S1; St; P ) is a complete metric space23.

Proof: By assumption A5 there are feasible solutions. Given assumptions
A1, A2 and A4, it is easy to see that the set fa 2A : g(a) � 0g
is closed and totally bounded with respect to the P -topology (i.e., for
any � > 0, it can be covered with a �nite number of spheres of radius
�). Since the P -topology de�nes a complete metric space, it follows

(see, Dunford and Schwartz (1957), Theorem I.6.15, p.22) that fa 2A :

21Our approach extends to the more general case where, for every t > 0, at 2 At

and At is an arbitrary linear space, provided that A1-A5 are appropriately modi�ed as
to guarantee that a solution to PP (or SPP) exists. Our approach relies on the time
separability of the objective function and of the constraint sets (or some weaker time
recursive form of these maps) and, therefore, does not depend on the speci�c topological
structure of Lm

1
.

22A metric dp can be de�ned on L1(S1; St; P ) by dp(x; x̂) =
R

jx�x̂j

1+jx�x̂j
P (ds): This

metric induces the topology of convergence in probability.
23See, for example, (Neveu (1970), Pr. II 3-4).
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g(a) � 0g is compact. By assumptions A2 & A3 r(�; �; �) is uniformly

integrable, therefore f(�) is continuous with respect to the P -topology.

It follows that a maximal element, a�, exists.�

This proposition shows that PP has a well de�ned value. However, more

than in the existence of solutions, we are interested in their characterization

and, in particular, in attaining a recursive formulation. To this end, we study

�rst the Lagrangean structure of PP. An interesting feature of PP is that

g: A! L1 and, as it is well known, the positive orthant of L1 has a non

empty interior, as it is required for a standard separation argument24.

Proposition 2 Assume A1- A4, A4b & A5. Let a� be a solution to PP

with initial condition (x0; s0). There exist a ~

� 2 L1 such that the lagrangean

L(a; ~
) = f(a) + ~
g(a)

has a saddle point at (a�; ~
�), i.e.,

L(a�; ~
) � L(a�; ~
�) � L(a; ~
�) (14)

for all a 2A and ~
 2 L1;+. Furthermore, V (x0; s0) = L(a�; ~
�):

Proof See Appendix 1.

3.2 Program 2 (SPP)

In this subsection we take Program 2 as our primitive program and show
the existence of solutions. Program 2 is a Saddle Point Problem (SPP) and,

given arbitrary initial conditions (x0; �0; s0) (i.e., in this Section we do not
constrain �0 = 0), its value {possibly, in�nity{ is W (x0; �0; s0):

SPP

24Even if a standard separation argument can not be applied, because the assumptions
underlying PP are not satis�ed, it may be possible to extend our approach, as long as
Lagrange multipliers are well de�ned (and summable). This can be the case when g(�) maps
into a more general space {say, using separation arguments as in Mas-Colell and Zame
(1991) { or when the problem is not a global convex problem and Lagrange multipliers

are for example derived as dual variables in a smooth local optimization problem (see the
Remark following Theorem 2).
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W (x0; �0; s0) = inf
f
tg

sup
fatg

(
E0

1X
t=0

�th(xt; at; �t; 
t; st)

)
s.t. xt+1 = `(xt; at; st+1); at 2 A(xt; st); t � 0 (1a)

�t+1 = '(�t; 
t; st+1); 
t � 0; t � 0 (3)

(x0; �0;s0) given.

(at; 
t);St �measurable

We make the following assumptions, in addition to A1-A2,

B1. h(�; �; � �; s) is continuous; h(�; �; �; 
; s) is bounded and h is of the form

h(x; a; �; 
; s) � h0(x; a; s) + 
h1(x; a; s) + �h2(x; a; s)

Furthermore, � 2 (0; 1)25

B1b. h(�; �; �; �; s) is quasiconcave, and the set of fatg satisfying (1a) is
convex .

B2. There exists an � > 0 and, for all (x0; s0); a program fâng satisfying
(1a) with d(ân; A(bxn; sn)c) � " such that,

h
j
1(x0; â0; s0) + E0

24 NjX
n=1

�th
j
2(x̂n; ân; sn)

35 � �

where x̂n+1 = `(x̂n; ân; sn+1). For j = 1; :::; k; either Nj =1; in which
case 'j(�; 
; s) = �j + 
j ; or Nj = 1, in which case 'j(�; 
; s) = 
j :

As we will see in the next subsection (and should be clear from Section
2), when Program 2 is obtained from Program 1, assumptions B1-B2 are
satis�ed whenever Program 1 satis�es A3-A5.

Given an initial condition (x0;�0;s0), it is also possible to write SPP in a

more compact form by letting

H(a;
) = E0

P1

t=0 �
th(xt; at; �t; 
t; st)

s.t. for t > 0; xt = `(xt�1; at�1; st) and �t = '(�t�1; 
t�1; st)

25We use the notation �h2(x; a; s) to denote
Pk

j=1 �
j[h2(x; a; s)]

j .
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q(a) t = d(at; A(xt; st)
c)

s.t. for t > 0; xt = `(xt�1; at�1; st)

With this notation, the saddle point problem takes the form

W (x0; �0; s0) = inf

�0

sup
q(a)�0

H(a; 
)

We will also use the value function decomposition

H(a; 
) � H0(a) +H1(a; 
)

� E0

1X
t=0

�t [h0(xt; at; st)] + E0

1X
t=0

�t [
th1(xt; at; st) + �th2(xt; at; st)]

which leads to the following decomposition

W (x; �; s) �W0(x; �; s) +W1(x; �; s)

When SPP is derived from PP, then Propositions 1 and 2 guarantee
the existence of solutions to SPP. Nevertheless, we are interested in treating
SPP as a primitive problem. The following proposition shows that, with as-
sumptions A1-A2 and B1-B1b-B2, SPP has a solution and the existence

result follows from a �xed point theorem. As in the existence of Nash equi-
libria, convexity is a necessary condition for the application of -a generalized
version of- Kakutani's �xed point theorem, but, as in games, solutions may
exist even when convexity fails (see Appendix 1 for its proof, as well as for
the proof of its Corollary)26.

Proposition 3 Assume A1-A2 and B1-B1b-B2. Given initial conditions

(x0; �0; s0), there exists a solution (a�; 
�) to SPP. Furthermore, all solu-

tions to SPP have value W (x0; �0; s0).

The following corollary provides bounds on multipliers and it is of particu-
lar interest for developing a recursive formulations, as well as computational

solutions. Assumption B2 plays a key role, while it does not rely on the

convexity assumption B1b.

26We let k
k� =
P

1

t=0 �
t k
tk :
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Corollary to Proposition 3. Assume A1-A2 and B1-B2. Let (a�; 
�)

be a solution to SPP. There exist a positive constant �K such that

(a�; 
�) satis�es k
�k� <
�K �max f1; k�0kg.

3.3 Duality

We �nish this Section by relating Program 1 and Program 2. Theorem 1

provides a duality theorem for recursive contracts in which we derive SPP

from PP using Proposition 2, which requires the convexity assumption A4b.

Theorem 2 is a su�ciency theorem for recursive contracts: SPP solutions are

PP solutions. This second theorem exploits the fact that SPP can be derived

from PP even when the global convexity assumptions (of Theorem 1) are not

satis�ed (as long as summable multipliers exist).
We now make it clear how to derive SPP from PP. To this end, notice

that ~
g(a) = E0

P1

t=0

Pk

j=0 ~

j
t g

j(a)
t
, and that, for j = 1; :::; k,

E0

1X
t=0

~
jt g
j
t (a) = E0

1X
t=0

~
jt

24gj1(xt; at; st) + Et

NjX
n=1

�ngj2(xt+n; at+n; st+n)

35
= E0

1X
t=0

�t
jt

24hj1(xt; at; st) + NjX
n=1

�nhj2(xt+n; at+n; st+n)

35
� E0

1X
t=0

�t
�


j
th

j
1(xt; at; st) + �

j
t+1h

j
2(xt+n; at+n; st+n)

�
where the second equality follows from identifying hjm(�) with gjm(�); m =
1; 2; 
jt with ~
jt�

�t and applying the law of iterated expectations. The third
follows from simple algebra and taking '(�; 
; s) = � + 
 if Nj = 1 and
'(�; 
; s) = 
 if Nj = 1: Now identify hj0(�) with r(�) and let �0 = 0, then it

follows that H0(a) = f(a) and H1(a; 
) + ~
0q(a) = ~
g(a); where ~
0t is the

lagrange multiplier associated with the resource constraint q(a)t � 0: This
shows how an SPP satisfying B1-B1b-B2 can be derived from PP.

Theorem 1. Let PP, with initial condition (x0; s0), satisfy A1{A4, A4b

& A5. The SPP (derived from PP) with initial condition (x0; 0; s0)
satis�es A1{A2 and B1-B1b-B2. Furthermore, a� is a solution to
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PP if and only if there exist 
� and (a�;
� ) is a solution to SPP

(derived from PP); that is, W (x0; 0; s0) = V (x0; s0).

Proof : The proof consist on deriving PP from SPP, assembling the results

of the last two subsections and applying Lagrange Duality theory (see,

for example, Luenberger (1969), 8.6, Theorem 1). In particular, the

theorem follows from four basic facts:

1. a� is a solution to PP, with initial condition (x0; s0), if and only if a�

is a solution of sup g(a)�0 f(a) (when f and g are de�ned with respect

to the initial condition (x0; s0)).

2. maxg(a)�0 f(a) = min~
2L1;+ maxa2A [f(a) + ~
g(a)]

3. min~
2L1;+ maxa2A [f(a) + ~
g(a)] = min
�0maxq(a)�0H(a; 
)

4. (a�; 
�) is a solution to SPP, with initial condition (x0; 0; s0), if and
only if (a�; 
�) is a solution of inf
�0 supq(a)�0H(a; 
)

The �rst and the fourth fact are immediate from our constructions in the
last two subsections. The second fact is the Lagrange Duality result, when a
solution a� exists (which it does by Proposition 1).

To see the third fact notice that, by Proposition 2, when (a�; 
�) is a
solution to SPP and �
� � (
�0 ; �


�
1; :::; �

t
�t ; :::), then �

� 2 L1;+ . Further-

more, given the convexity and interiority assumptions on resource constraints
one can also show that, for the maximization part of H(a; 
�); there is a mul-
tiplier associated with such constraint (a version of Proposition 2 for the max
part of SPP). That is, H(a; 
) + ~
0q(a) de�nes a Lagrangian for SPP. It

follows that, with the previous identi�cation of maps and multipliers, it is
also possible to go from SPP to the Lagrange formulation of PP.�

3.4 Su�ciency

Theorem 1 assumes convexity (i.e., A4b) to guarantee that there exist an

appropriate multiplier, however, as long as SPP has a solution then it is a

solution to the PP problem. Proposition 3 assumes convexity (i.e., B1b) to
guarantee the existence of a solution to SPP, however, it is not a necessary
condition for existence of solutions to SPP. The following su�ciency theorem
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does not rely in any convexity assumption and, therefore, can be a starting

point for problems whose SPP formulation is known to have a solution.

Theorem 2. Given initial conditions (x0; 0; s0), let (a
�; 
�) be a solution

to SPP. Then a� is a solution to PP. Furthermore, W (x0; 0; s0) =

V (x0; s0).

Proof: The proof is an extension, to SPP, of a su�ciency theorem for La-

grangian saddle points (see, for example, Luenberger (1969), Theorem

8.5.2, p.221). First notice that since �0 = 0 (and with the simple

algebra used in the proof of Theorem 1)

H(a; 
) � H0(a) +H1(a; 
) � E0

1X
t=0

�th0(x; a; s)

+E0

1X
t=0

�t

j
t

24hj1(xt; at; st) + NjX
n=1

�th
j
2(xt+n; at+n; st+n)

35
By minimality of 
�; for every 
 � 0;

H1(a
�; 
� + 
) �H1(a

�; 
�)

it follows that, almost surely, for every t;

h
j
1(x

�

t ; a
�

t ; st) +

NjX
n=1

�th
j
2(x

�

t+n; a
�

t+n; st+n) � 0

Identifying, as in the proof of Theorem 1, gjm with hjm;m = 1; 2; and
noticing that, by the de�nition of SPP, q(a�) � 0 , the previous in-
equalities show that g(a�) � 0. Now using again the minimality of


�;

H1(a
�; 
�) �H1(a

�; 0) = 0

which, together with 
� � 0 and g(a�) � 0 imply that H1(a
�; 
�) = 0:

Now suppose, there exist ~a satisfying g(~a) � 0 and f(~a) > f(a�); then

{identifying f with H0- it must be that

H0(~a)+H1(~a; 

�) >H0(a

�)+H1(a
�; 
�)

which contradicts the maximality of a� for the SPP.�

26



4 Dynamic {saddle point{ programming

Our main interest, however, is not in the existence of a solution to SPP,

but in showing that solutions to SPP can have a recursive structure. We say

that a function Ŵ : X �MU � S ! R satis�es the saddle point functional

equation (SPFE) corresponding to (SPP) if and only if:

Ŵ (x; �; s) = inf

�0

sup
a2A(x;s)

n
h(x; a; �; 
; s) + �EŴ (x0; �0; s0)

o

x0 = `(x; a; s0) and �0 = '(�; 
; s0)

We derive the existence and uniqueness of a solution to SPFE adapt-

ing and extending the contraction mapping approach. As in maximization
of dynamic problems, other approaches can be used to show the existence
of a value function satisfying SPFE, but, as we will see, given our under-
lying assumptions, there is no loss of generality in using the contraction

mapping approach. To apply it, we must �rst de�ne an appropriate space

of functions. We exploit the fact that the value function of SPP inher-
its from the function h the following quasi-linear structure: W (x; �; s) =
W0(x; �; s) +W1(x; �; s), with W0(x; �; s) homogeneous of degree zero and
W1(x; �; s) homogeneous of degree one, therefore we constraint our search
to functions satisfying this property. The main di�culty with the contrac-

tion mapping approach in our context is that the 
's and �'s are unbounded
and, because of homogeneity of degree one of W1; the corresponding value
function must also be unbounded. We de�ne a sequence of contraction map-
pings, parameterized by a bound K on k
k . We then show that, with the
assumptions of the last subsection, the SPFE has solutions (Proposition 4)

and that the contraction theorem applies to our space of functions, for any

K (Proposition 5). Finally, we use the fact that whenever the SPP has a
solution the 
's are bounded to show the correspondence between SPFE

and SPP (Theorem 3), and we end the Section collecting our results, which

allows to relate SPFE and PP (Theorem 4).

We �rst de�ne the space of \value" functions,
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M = fW : X �Rk
+ � S !R s.t.

i) W (�; �; �) = W0(�; �; �) +W1(�; �; �) and 8� > 0

W0(�; ��; �) = W0(�; �; �)and W1(�; ��; �) = �W1(�; �; �)

ii) Wj(�; �; s) is continuous and bounded k = 0; 1g
The space M is a normed vector space with the norm

kWk = sup fjW (x; �; s)j : k�k � 1; x 2 X; s 2 Sg

In Appendix 2 we show thatM is a nonempty and complete metric space

(Lemma 1)27.

We �rst �x an arbitrary positive constantK and letK� = maxfK;K k�kg :

We de�ne the operator TK on M by

(TKW )(x; �; s) :=: inf
f
�0:k
k�K�g

sup
a2A(x;s)

fh(x; a; �; 
; s) + �EW (x0; �0; s0)g

s.t. x0 = `(x; a; s0) and �0 = '(�; 
; s0)

If a solution to SPP exists (e.g., by Proposition 3) and if, as we postulate
below, W corresponds to the value function of SPP then we can replace \in-
fsup" by \minmax."28. We now study the properties of TK (see Appendix 2).
In particular, that TK :M !M (Lemma 2) and that it satis�es Blackwell's
conditions of monotonicity (Lemma 3) and discounting (Lemma 4). It is then

easy to show that these conditions imply that the TK operator satis�es the
contraction property and, therefore, has a unique �xed point. More precisely,

Proposition 4 Assume A1-A2 and B1-B2. TK :M !M is a contraction

mapping.

Proof: (See Appendix 2).

27See also Alvarez and Stokey (1995) for similar arguments extending the contraction
mapping approach to homogeneous maps.

28We can also show directly (by similar arguments than the ones used in Proposition 3)
that SPFE has a solution, for W 2 M , by assuming A1-A2 and B1-B1b-B2 and that
Wj(�; �; s) is quasi-concave, k = 0; 1.
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The value function W = TKW , de�nes a policy map29  K such that, if

(a; 
) 2  K(x; �; s), then for x0 = `(x; a; s) and �0 = '(�; 
; s0),

W (x; �; s) = h(x; a; �; 
; s) + �EW (x0; �0; s0))

We say that  K generates the program (a�;
�) from the initial conditions

(x0; �0; s0) if for all n � 0 and (s0; : : : ; sn), (a
�
n; 


�
n) 2  K (x�n; �

�
n; sn), where

(x�0; �
�
0) = (x0; �0), x

�
n+1 =`(x�n; a

�
n; sn+1) and ��n+1 = '(��n; 


�
n; sn+1). As

usual, the fact that TK is a contraction guarantees existence and uniqueness

of a unique W that is a �xed point of this mapping, and that iterations on

this mapping converge to it.

Theorem 3. Let SPP, satisfying A1-A2 and B1-B2, have a solution. a)

If W :X �Rk
+�S !R is the value function of SPP, then there exist

a �K such that, for all K � �K, TKW = W . b) If (a�;
�) is generated
by  K from (x0; �0; s0) and, for all t, k


�
t k < K��

t
, then (a�;
�) solves

(SPP) with initial conditions (x0; �0; s0):

Proof: We �rst show that W 2 M: That it can be decomposed {as in (i){
follows from the fact that

W (x0; �0; s0) = E0

1X
t=0

�th(x�t ; a
�

t ; �
�

t ; 

�

t ; st)

= E0

1X
t=0

�th0(x
�

t ; a
�

t ) + E0

1X
t=0

�t [
�t h1(x
�

t ; a
�

t ) + ��th2(x
�

t ; a
�

t )]

� W0(x0; �0; s0) +W1(x0; �0; s0)

Given this decomposition, to show that W satis�es the homogeneity
properties of (i) it su�ces to show that, for any � > 0; \(a�; 
�) is a

solution to SPP with initial conditions (x; �; s) if and only if (a�; �
�)
is a solution to SPP with initial conditions (x; ��; s):" We now prove
this claim.

29It can also be shown, using standard arguments, that the correspondence  is upper-
hemi-continuous and, therefore, has a measurable selection (see, for example, Stokey, et
al. (1989) ; in particular, Theorem 7.6 p.184).
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Denote by (a�(�); 
�(�)) a solution to SPP with initial conditions

(x; ��; s); and similarly for �0: Now,

H(a�(�); 
�(�)) = H0(a
�(�); 
�(�)) +H1(a

�(�); 
�(�))

= H0(a
�(�); 
�(�)) + ��h2(x;a

�(�)0)

� H0(a
�(�0); 
�(�)) +H1(a

�(�0); 
�(�))

=
�

�0

�
H0(a

�(�0);
�0

�

�(�)) +H1(a

�(�0);
�0

�

�(�))

�
+(1�

�

�0
)H0(a

�(�0);
�0

�

�(�))

�
�

�0
[H0(a

�(�0); 
�(�0)) +H1(a
�(�0); 
�(�0))]

+(1 �
�

�0
)H0(a

�(�0); 
�(�0))

= H0(a
�(�0); 
�(�0)) + ��h2(x;a

�(�0)0)

The �rst equality follows from the same argument used in the proof of
Theorem 2, regarding the saddle point nature of (a�(�); 
�(�)) (i.e.,

H1(a
�; 
�) = �h2(x;a

�
0)); the �rst inequality from the maximality of

a�(�);the second inequality from the minimality of 
�(�0) and the fact
that, in fact, H0 does not depend on 
�, and, again, the last equality
follows from the saddle point nature of (a�(�0); 
�(�0)): Since these
inequalities are satis�ed for arbitrary � > 0 and �0 > 0, it follows that,
for �xed (x; �; s);a�(�) = a�(1) (more precisely, that a�(�) is a maximal

element of SPP with initial conditions (x; �; s) )

To see that 
�(�) = �
�(1) (more precisely, that ��1
�(�) is a minimal
element of SPP with initial conditions (x; �; s) ) notice that

H(a�(�); 
�(�)) � H(a�(�); �
�(1))

= H0(a
�(�); 
�(1)) + �H1(a

�(�); 
�(1))

= � [H0(a
�(1); 
�(1)) +H1(a

�(1); 
�(1))]

+(1� �)H0(a
�(1); 
�(1))

� �
�
H0(a

�(1); ��1 
�(�)) +H1(a
�(1); ��1 
�(�))

�
+(1� �)H0(a

�(1); ��1 
�(�))

= H0(a
�(1);
�(�)) +H1(a

�(1); 
�(�))

= H(a�(�); 
�(�))
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where, the �rst inequality follows from the minimality of 
�(�); the

second inequality from the previous identity a�(�) = a�(1);the second

inequality from the minimality of 
�(1); the third equality from the

homogeneity properties of H; and the last equality follows, again, from

the previous identity: a�(�) = a�(1):

A standard generalization of the maximum principle shows the con-

tinuity of Wk(�; �; s);while its boundedness is inherited from the hj
functions. Therefore, W 2 M:

Now let �K be the constant of Corollary to Proposition 3, then by this

Corollary, for K � �K, if (a�; 
�) is a solution to SPP with initial

conditions (x; �; s);thenk
�k� < K�, which implies that k
�0k < K�:

Similarly, at (x�t ; �
�
t ; st);the bound on SPP implies that k
�tk < K��

t
:

It follows that, for K � �K , the bound on TK is not binding for
SPP solutions. Uniqueness of the contraction map guarantees that

TKW = W .

To see the second part of the theorem, let (a�;
�) be generated by  K0

from (x0; �0; s0);then for somecW 2M ,cW (x0; �0; s0) = TKcW (x0; �0; s0)
for all K � K 0 since, by assumption, for all t, k
�t k < K��

t
. But

by (a), for K � K, TKW = W;where;W is the value function of

SPP. By uniqueness, it follows that W (x0; �0; s0) = cW (x0; �0; s0) =

E0

P1

t=0 �
th(x�t ; a

�
t ; �

�
t ; 


�
t ; st): That is, (a

�;
�) is a solution to SPP
with initial conditions (x0; �0; s0):�

4.1 A �nal theorem

We are �nally in a position to recast our results in a comprehensive theorem,

which follows from the previous results, in particular, Theorems 1-3, and
relates SPFE and PP.

Theorem 4. a) Let PP satisfy A1-A3, A4 & A5 and derive the corre-
sponding SPP. If there exist a K and a (a�;
�) generated (from initial

conditions (x0; 0; s0)) by a policy  K corresponding to a value func-

tion W satisfying SPFE, with the property that, for all t; k
�t k < K��

t
,
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then a� solves PP with initial conditions (x0; s0); and value V (x0; s0);

Furthermore, W (x0; 0; s0) = V (x0; s0):

b) Assume A1-A2 and A3, A4, A4b & A5. PP has a solution,

and if a� solves PP with initial conditions (x0; s0); and value V (x0; s0);

then there exist a K and a (a�;
�) generated by a policy  K (with

initial conditions (x0; 0; s0)) derived from a value functionW satisfying

SPFE, with the property that, for all t; k
�t k < K��

t
: Furthermore, W

(x0; 0; s0) = V (x0; s0):

Proof: a) By construction, the corresponding SPP satis�es A1-A2 and B1-

B2. Let (a�;
�) be generated from  K , with the bounds K��

t
never

binding, then by Theorem 3, (a�;
�) solves SPP, with initial conditions

(x0; 0; s0) and, by Theorem 2 , a� is a solution to PP satisfying W
(x0; 0; s0) =V (x0; s0).

b) That PP has a solution follows from Proposition 1. If a� solves PP
with initial conditions (x0; s0) and we assume A1-A4, A4b & A5, by
Theorem 1 there exist a 
� such that (a�;
�) is a solution to a SPP

(derived from PP) with initial conditions (x0; 0; s0). By Theorem 3 the
value function of SPP, W , satis�es SPFE for K � �K and TKW = W .
Therefore, there exist a policy map  K generating (a�;
�): �

In summary, as we have discussed, many economic problems take the
PP form. We have shown how to transform them in the SPP form and
we have provided conditions guaranteeing the existence of solutions to SPP,

and -weaker- conditions, under which, a solution to SPP is also a solution
to PP. More interestingly from a computational point of view, we have also
shown that, under our assumptions, all SPP solutions satisfy a saddle point
functional equation (SPFE). That is, in applications of our theory one only
has to check that PP satis�es our conditions (i.e., A1-A3, A4 & A5) to be able

to guarantee by Theorem 4a) that the solution of SPFE is a solution to the
original PP problem. In fact, we provide conditions guaranteeing that any

SPP solution can be achieved as a solution to SPFE. With global convexity

assumptions (i.e., assuming A4b too), we can be sure that all PP solutions

can be found by solving SPFE, without such convexity assumptions it may

be that there are solutions to PP that are not solutions to the corresponding
SPP formulation. Nevertheless, provided that SPP has a solution, then the
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maximal value V (x0; s0) is achieved by our recursive characterization in terms

of a SPFE..

5 Conclusions and extensions

We have shown that a large class of problems with implementability con-

straints can be analyzed by an equivalent recursive saddle point problem.

This saddle point problem obeys a saddle point functional equation, which is

a version of the Bellman equation. This approach works for a very large class

of models with incentive constraints, limits in the budget constraint, optimal

policy, optimal regulation, etc. This means that a uni�ed framework can

be provided to analyze all these models. Instead of having to write optimal

contracts as history-dependent contracts one can write them as a stationary
function of few state (and co-state) variables. This means, for example, that
the time-inconsistency problem does not complicate considerably the numer-
ical solution to this problem, only a few co-state variables need to be added,

and computation of the solution is greatly simpli�ed.
Our current research aims at relaxing the assumption of full information,

developing in detail some computational aspects of this method, and explor-
ing a range of applications to several models, including strategic dynamic
behavior, optimal policy and borrowing under incomplete insurance.
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APPENDIX 1 (Proofs of Section 3)

Proof of Proposition 2 The existence of a functional 
�b 2 ba+ that satis-

�es

L(a�; 
b) :�: L(a
�; 
�b) :�: L(a; 


�

b) (15)

for all a 2 A and 
b 2 ba+ follows from the standard theory of con-

strained optimization in linear vector spaces (see, for example, (Luen-

berger (1969), Section 8.3, Theorem 1 and Corollary 1)). To obtain

this result we make use of the following facts: i) a solution to PP ex-

ists (Proposition 1); ii) as we already mentioned, by assumptions A4

and A5 g(�) maps into L1 and L1;+ has a non empty interior; iii)

by assumption A3, f(�) is continuous and quasiconcave, and iv) by

assumption A5, a Slater interiority condition is satis�ed.

We have to show that inequalities (15) are also satis�ed with multipliers

that are countably additive (i.e., in L1;+).

Given an initial condition (x0; s0), we can model the exogenous un-
certainty as an in�nite branching process from s0. Abusing notation,
let (for the remaining of the proof) S0 = fs0g and St be the set
of possible values of st following s0. If there are n = k + 1 con-
straints in period t, let Z = [10 (St � n). Since, by assumption A1,

fstg is a Markovian process, there is a well de�ned measure space
(Z; Z; �). That is, g : A!L1(Z; Z; �), and 
b 2 ba+(Z; Z; �). Let

b;t(A) = 
(A \ (St � n)).

Second, we recall some mathematical facts (already used in Bewley
(1972)). By Yosida-Hewitt decomposition, given 
 2 ba+, there exist
unique 
c;t � 0 and 
p;t � 0 such that 
c;t is countable additive and 
p;t
is purely �nitely, satisfying: 
b;t = 
c;t + 
p;t. Furthermore, for every

�t > 0, there exist At 2 Z, such that 
c;t(At) < �t and 
p;t(Z nAt) = 0.

It follows that, if fs : a
(n)
t (s) 6= at(s)g � Z n A

(n)
t , and

P
t
�
(n)
t ! 0

(as n!1; which can be achieved by an appropriate choice of f�
(n)
t g),

then limn 
c(fs : a(n)(s) 6= a(s)g = 0 and, if f(�) is continuous in

probability (i.e., in the P -topology), then f(a(n))! f(a).

We now use these facts, and the interiority assumption A5, to show

that 
�c is, in fact, a supporting Lagrange multiplier.
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Consider �rst the left inequality of (15). Since g(a�) � 0; it follows

that 
�bg(a
�) = 0. In the Yosida-Hewitt decomposition both terms

are nonnegative, therefore 
�cg(a
�) = 0. On the other hand, for all


 2 L1+; 
g(a
�) � 0;. These last two facts show the left inequality of

the saddle point condition (14).

Now we show the right inequality of (14). Suppose for some a 2 A,

f(a) + 
�cg(a) > f(a�) + 
�cg(a
�). For t > 0, let F

(n)
t = [t

r=1A
(n)
r ,

where the sets A
(n)
r are ordered {according to the branching stochastic

process starting from s0{ and satisfy the above Hewitt-Yosida decom-

position conditions. Let F
(n)

0 = ;. Then, a new contract a(n) can be

de�ned by a
(n)

0 = a0, and, for t > 0,

a
(n)
t (s) =

(
at(s) if s =2 F

(n)
t

ât(s) if s 2 F
(n)
t n F

(n)
t�1

where fât+r(s)g
1
r=0 is the interior program {of assumptionA5{ starting

from (xt(s); st). Therefore, we have that,

f(a(n)) + 
�bg(a
(n)) � f(a(n)) + 
�cg(a

(n))
! f(a) + 
�cg(a)

The inequality follows from the fact that 
p � 0 and on sets with purely
�nitely positive measure the program is, by construction, interior. The
convergence property follows from the P -continuity of f , the bounded-

ness assumption A4 and the construction of a(n). It follows that, for n
large enough,

f(a(n)) + 
�bg(a
(n)) > f(a�) + 
�cg(a

�)
= f(a�) + 
�bg(a

�)

which contradicts (15) and proves that the saddle point condition (14)

is satis�ed (with 
�c).

Finally, to see the last statement of the proposition, notice that

L(a�; 
�c) = f(a�) = V (x0; s0);

where the �rst equality follows from the fact, already proved, that

�bg(x

�) = 
�cg(x
�) = 0 and the second equality follows by de�nition�
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Proof of Proposition 3: Our goal is to show the existence of a solution to

the following problem:

SPP

W = inf

�0

sup
q(a)�0

H(a; 
)

We �x the initial conditions (x0; �0; s0) and proceed in two steps. First

we show that if we further restrict the set of feasible 
 sequences,

the corresponding SPPm problem has a solution, and second we show

that, with our interiority assumptions, such a restriction can be made

without loss of generality. The truncated problem is

SPPm

inf
f
:
�0 and k
k��mg

sup
q(a)�0

H(a; 
)

where k
k� =
P1

t=0 �
t k
tk.

Before we proceed, we collect a couple of facts that we will use in
the proof. i) if an ! a, in probability, then, given an initial con-
dition (x0; s0); x

n ! x in probability, where, xn0 = x0and, for t �
0; xnt+1 = `(xnt ; a

n
t ; st+1);which in turn implies that fhj(x

n
t ; a

n
t )g !

fhj(xt; at)g; j = 0; 1; 2 in the P -topology; ii) by (the second part of)
B2 if k
k � m k'(�; 
 ; s)k� m+ k�k :

We now decompose the problem as

R1(
) = maxq(a)�0H(a; 
)
and
R2
m(a) = minf
:
�0 and k
k�mgH(a; 
)

We �rst consider the existence of maximal elements a� 2 R1(
) � L1
By assumptionB2 the set of feasible solutions is nonempty. By assump-
tions A1 and A2, and following the same argument that in the proof

of Proposition 1, fa :q(a) � 0g is compact in the P -topology. By fact

(i)H(�; 
) is P -continuous, whenever f(�t; �t
t; �
t�t)g 2 L1; which, by

fact (i), it is the case if k
k � m; therefore, R1(
) is non-empty. Now,

consider the existence of minimal elements 
� 2 R2
m(a). Given that

� 2 (0; 1);the set
n
(�t; �t
t; �

t�t) : k
k� � m and k�k
�
�M

o
is norm
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bounded, pointwise closed and convex. i.e., it is �(L1; L1) compact.

Furthermore, given (a;x) 2 L1, for j = 0; 1; 2, fhj(xt; at)g 2 L1. It

follows that H(a; �) is (�(L1; L1)) continuous in 
, and that R2
m(
)

is non-empty. Compactness of the constraint sets and the continuity

and quasiconcavity properties of H(�; �) (for �xed (x0; �0; s0)), imply

that Rm(�; �) � (R1(�); R2
m(�)) is a convex-valued upper-hemi contin-

uous correspondence (i.e, has a closed graph) mapping a convex, com-

pact set in itself. It follows from a �xed point theorem that there exist

(a�; 
�) 2 Rm(a
�; 
�):

Now, we show that for large m, (a�; 
�) is also a �xed point of the

untruncated problem.

Let â (and the corresponding x̂ ) be the interior program of assumption
B3, then notice that

H(â; 
�) = E0

1X
t=0

�th0(x̂t; ât) + �0h2(x0; â0 )

+E0

1X
t=0

�t
�

�t h1(x̂t; ât) + ���t+1h2(x̂t+1; ât+1)

�
� E0

1X
t=0

�th0(x̂t; ât) + �0h2(x0; â0 ) + � k
�k
�

Therefore,

0 � H(a�; 
�)�H(â; 
�) � H(a�; 
�0
)�H(â; 
�)

� E0

1X
t=0

�t [h0(x
�

t ; a
�

t )� h0(x̂t; ât)] + �0 [h2(x0; a
�

0 )� h2(x0; â0 )]

+E0

1X
t=0

�t
�

�0h1(x

�

t ; a
�

t ) + ��0h2(x
�

t+1; a
�

t+1)
�
� �jj
�jj�

� B �maxf1; k�0kg � �jj
�jj�

The �rst inequality follows from the maximality of a�; the second from
minimality of 
�;the third from the previous inequalities, and from the
boundedness assumption B1. Therefore, jj
�jj� � maxf1; k�0kgB=�.
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Now let m � maxf1; k�0kg �K � maxf1; k�0kg 2B=�, and (a�; 
�) 2

Rm(a
�; 
�): Suppose there exist a ~
 � 0; jj~
jj� > m; satisfyingH(a�; 
�) >

H(a�; ~
): Let �
 �0 be such that, for all t � 0 �
t = �
�t +(1��)~
t, for

some � 2 (0; 1), and jj�
jj� � m: But then, by B2

H(a�; 
�)�H(a�; �
)

= (1� �)[H(a�; 
�)�H(a�; �
)]

> 0

and this contradicts the fact that 
� 2 R2
m(a

�):

Finally, to see the uniqueness of the value. Let (a�; 
�) and (a0; 
0) be

two solutions to SPP, then by applying the saddle point property to

both solutions we obtain

H(a0; 
 0) � H(a�; 
 0) � H(a�; 
�) � H(a0; 
�) � H(a0; 
0)

�

Proof of Corollary to Proposition 3: It follows from the proof to Propo-
sition 3 that, if assumptions there exist a �K such that the solution
(a�; 
�) to SPP satis�es k
�k

�
< �K �maxf1; k�0kg�

APPENDIX 2 (Proofs of Section 4)

Lemma 1. M is a nonempty complete metric space.

Proof: That it is non-empty is trivial. That every Cauchy sequence fW ng 2

M converges to a function ~W satisfying ii) follows from standard argu-
ments (see, for example, Stokey, et al. (1989), Theorem 3.1 and Lemma
9.5); these arguments apply to both components W n

j ; j = 0; 1. To see
that the homogeneity properties are also satis�ed, for any (x; �; s) and

� > 0, let �0 = 1 and �1 = �, then, for j = 0; 1,

jW j(x; ��; s)� �jW j(x; �; s)j
= jW j(x; ��; s)�W j

n(x; ��; s) + �jW j
n(x; �; s) � �jW j(x; �; s)j

� jW j(x; ��; s) � W j
n(x; ��; s)j + �j jW j

n(x; �; s) � W j(x; �; s)j

! 0

�
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Lemma 2. The operator TK maps M into itself.

Proof:

(TKW )(x; �; s) =
h
h0(x; a

�; s) + �EW0(x
�0; ��

0

; s0)
i

+
h

�h1(x; a

�; s) + �h2(x; a
�; s) + �EW1(x

�0; ��
0

; s0)
i

therefore,

k(TKW )(x; �; s)k � kh0(x; a
�; s) k+ �




W0(x
�0; ��

0

; s0)





+max f1; k�kgK kh1(x; a
�; s) k+ k�k kh2(x; a

�; s)k

+�(maxf1; k�kgK + k�k)





W1(x
�0;

��
0

k��
0

k
; s0)






It follows that the boundedness condition of ii) is satis�ed. A routine

generalization of the maximum principle (see, for example, Stokey, et
al. (1989)) to this saddle point case, shows that (TW )(�; �; s) is con-
tinuous. To see that the homogeneity properties are satis�ed, consider
(x; ��; s), with � > 0, and a corresponding solution (a��; 


�
�). Let


�1 = ��1
��, then

(TW )(x; ��; s) = (TW )0(x; ��; s) + (TW )1(x; ��; s)

=
�
h0(x; a

�
�; s) + �EW 1(x�

0

� ; '(�; 

�
�); s

0)
�

+
�

��h1(x; a

�
�; s) + ��h2(x; a

�
�; s) + �EW1(x

�0

� ; '(��; 

�
�); s

0)
�

=
�
h0(x; a

�
�; s) + �EW0(x

�0

� ; '(�; 

�
1); s

0)
�

+�
�

�1h0(x; a

�
�; s) + �h2(x; a

�
�; s) + �EW1(x

�0

� ; '(�; 

�
1); s

0)
�

= (TW )0(x; �; s) + �(TW )1(x; �; s)

�

Lemma 3 (monotonicity) Let F; G 2 M be such that F � G, then
(TKF ) � (TKG).

Proof Fix (�; x; s), then for any �0 satisfying �0 = '(�; 
; s) � 0,

max
a2A(x;s)

fh(x; a; �; 
; s) + �EF (`(x; a; s); �0; s0)g

� max
a2A(x;s)

fh(x; a; �; 
; s) + �EG(`(x; a; s); �0; s0)g
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It follows that

min
f
�0:k
k�K�g

max
a2A(x;s)

fh(x; a; �; 
; s) + �EF (`(x; a; s); '(�; 
; s); s0)g

� min
f
�0:k
k�K�g

max
a2A(x;s)

fh(x; a; �; 
; s) + �EG(`(x; a; s); '(�; 
; s); s0)g

�

In our context, if F 2 M and a 2 R, we de�ne the function F + a 2 M

by (F + a)(x; �; s) = F (x; �; s) + a.

Lemma 4 (discounting) For all W 2 M , and a 2 R+, TK(W + a) �

TKW + �a.

Proof First notice that, for any (x; �; s) and 
 � 0,

max
a2A(x;s)

fh(x; a; �; 
; s) + �E(W + a)(`(x; a; s); '(�; 
; s); s0)g

= max
a2A(x;s)

fh(x; a; �; 
; s) + �EW (`(x; a; s); '(�; 
; s); s0) + �ag

= max
a2A(x;s)

fh(x; a; �; 
; s) + �EW (`(x; a; s); '(�; 
; s); s0)g+ �a

Now, using these equalities and the above de�nition for F + a,

TK(W + a)(x; �; s)

= min
f
�0:k
k�K�g

max
a2A(x;s)

fh(x; a; �; 
; s) + �E(W + a)(`(x; a; s); '(�; 
; s); s0)g

= min
f
�0:k
k�K�g

max
a2A(x;s)

fh(x; a; �; 
; s) + �EW (`(x; a; s); '(�; 
; s); s0)g+ �a

= (TKW + �a)(x; �; s)

We have shown that TK(W + a) � TKW + �a�

Proof of Proposition 4: The argument is standard. We show that the
contraction property is satis�ed. Let F;G 2M , then, using the homo-

geneity property of the functions in M , for any (x; �; s),

F (x; �; s) = G(x; �; s) + [F (x; �; s)�G(x; �; s)]

� G(x; �; s) + jF (x; �; s)�G(x; �; s)j
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That is, F � G + jjF �Gjj. By the monotonicity and the discounting

properties, it follows that TKF � TKG+�jjF�Gjj. But now, reversing

the roles of F and G we obtain that

jjTKF � TKGjj � �jjF � Gjj

Since 0 < � < 1 we have that TK is a contraction mapping.

APPENDIX 3 (A1-A5 in examples 1 and 2)

Example 1

It is easy to check that, with more structure on the model, assumptions
A1{A4, A4b & A5 are all satis�ed. For A1 we only need to assume that

the support of (�t; !t) is contained in a bounded set for all t. The Feller
property is satis�ed, for example, under the usual cases that f�t; !tg

1
t=0 takes

only discrete values or the conditional distribution of (�t; !t) conditional on
(�t�1; !t�1) is continuous with respect to the latter. For the next assumptions,
if 0 < � < 1; F : R+ �R ! R+ and limk!1 Fk(k; �) < 1� � almost surely

in � (where Fk is the derivative with respect to k) we know that there exists
a k <1 such that kt < k ; also, if F and u are assumed to be continuous in
[0,k]; then the mappings A; ` and r are clearly continuous and bounded in
this interval, so A2 and A3 are satis�ed. The assumption that u is continuous
plus the assumptions on the shock s we have introduced above guarantee that

the value function of autarky vaj is continuous and bounded for both agents,
which guarantees A4. Furthermore, if u and F are assumed quasi-concave,
then assumption A4b is also satis�ed.30

Finally, for the interiority condition A5, we �rst assume that k0 � kl for
kl > 0 su�ciently small31, and that for all k � kl and each possible value of

the technology shock F (k; �) � cl + �kl for some cl > 0. This is satis�ed,

for example, if F is increasing, the usual Inada condition F
0

(0) = 1 holds.

30Proving A4b is very easy in this example because of the fact that va does not depend
on endogenous variables. In models where the value of autarky depends on the capi-
tal, such as the model of Marcet and Marimon (1992), proving quasi-concavity is more
complicated.

31Or, alternatively, by introducing the constraint kt � kl in the technology A:
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Under such conditions, a feasible sequence for consumptions and investments

can be constructed to satisfy

bit = �kl; bkt = (1� �)bkt�1 +bit bcjt = !jt +
F (bkt; �)� �kl

3
(16)

for all t: This sequence satis�es bkt � kl and, therefore, bcjt � !jt+c
l=3: Since

cl=3 units of production are thrown away every period, we have bc1t+bc2t+bit �
F (bkt; �t) + !1t + !2t + cl=3 and the choice variables are in the interior of the

feasible set. Finally, de�ne the function �(c) = min!2S!j u(!+ c) � u(!),

where S!j is the support of all !jt and assume that, for any c > 0; we have

�(c) > 0 .32 Then we have that u(bcjt)�u(!jt) � �(cl=3); and assumption A5

is satis�ed for

" =
1

1 � �
�(cl) (17)

Therefore, we conclude that under mild assumptions on the technology,
preferences and endowments A1-A4, A4b & A5 are satis�ed. Theorem 4
guarantees that all solutions to the planner's problem (PP) can be found
by solving SPFE and viceversa. If we relax the quasi-concavity assumption
(for example, if F has an interval of increasing returns) Theorem 4a still

guarantees that solutions to the SPFE are solutions to the PP.

Example 2

Assumptions A1{A4 can be dealt with in a similar manner as Example
1, so we will not repeat them here.

To guarantee assumption A4b and A5, however, is not easy in this exam-

ple. The �rst di�culty in is that, because of the 'equality' sign in equation
(11) the set of allocations satisfying this equation is not convex, and the in-
teriority assumption can not be satis�ed. We will proceed by replacing the
equality in the PP by a weak inequality; if we can then show that in the

optimum the planner chooses an allocation where the equation satis�ed as

32That �(c) > 0 can be guaranteed, for example, if the derivative of u is bounded away
from zero in the support of the !0s. Most applications satisfy this property.
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an equality, we can be sure that the optimum is the same as with (11) and

that we are solving the model of interest33.

Now we have to decide if we write the inequality as � or as � : Consider

the case � and let the full optimum without distortionary taxes be denoted

by fect;ektg1t=0. Clearly,
u0(ect) = �Et [u

0(ect+1)( ert+1 + 1 � �)] � �Et [u
0(ect+1) ( ert+1(1� e�t+1) + 1 � �)] ;

where the �rst equality is a property of the full-optimum and the inequality

follows from the fact that tax rates are positive. Hence, changing the equality

in (11) to a � would make the �rst best feasible, the solution would be the

�rst optimum, which is not the same as the Ramsey equilibrium. So, this

option does not deliver a solution equivalent to the solution under (11).

Now, let us consider the case of replacing the equality with a � to consider
the restriction

u0(ct) � �Et [u
0(ct+1) ( rt+1(1 � �t+1) + 1� �)] : (18)

This would be the �rst order condition if the consumer faced a constraint

kt � kUt ; (19)

where kUt is an upper bound on capital imposed on the consumer. The
Euler equation (18), therefore, corresponds to a policy environment where
the government has the ability to impose some upper bounds on capital
accumulation kUt on the consumer, and the policy instruments available to

the planner are now fkUt ; �tg. Any sequence fct; kt; �t; c
g
tg that satis�es (18)

can be implemented by a government policy that sets kUt = kt in periods
and realizations when the inequality is satis�ed as strict inequality and kUt
very large if (18) is satis�ed as equality. It is clear that the planner will

choose sequences where (18) is satis�ed as an equality, since the equilibrium

with distorting taxes has underaccumulation of capital relative to the full

optimum
nekto1

t=0
. This implies that the planner facing restrictions (18) and

33Note that a similar approach is used in standard general equilibrium theory, where
feasibility constraints written as an equality usually do not de�ne a convex set. Often,
the equality is replaced with a weak inequality and the appeal to non-satiated preferences
guarantees that the feasibility constraint is also satis�ed as equality.
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(19) will not choose a sequence where kUt is binding, and the government will

act so that (18) is satis�ed as an equality. Then, the optimum under (18) is

equivalent to the Ramsey equilibrium.

Under this modi�cation, it is clear that the interiority condition A5 is

satis�ed, since the planner could choose a set of upper bounds to the capital

stocks that are binding. This shows that, in this example, the su�ciency of

SPFE is guaranteed.

However, in order to be sure that SPFE has a solution we have to make

sure that the solution to PP is also a SPP solution. As we have seen this

is guaranteed if our convexity assumptions (A4b or B1b) are satis�ed34.

Nevertheless, virtually all studies of Ramsey equilibria proceed by analyzing

the lagrangean directly, without checking whether the convexity assumptions

are satis�ed (and often they are not), taking the existence of solutions -to
SPP- for granted. In fact, if a solution to SPP exists, our results guarantee
that such a solution can be formulated recursively in term of the SPFE and,
of course, this also provides a solution to PP.

34It can be shown that, under some restrictive conditions on utility functions and pro-
ductions functions, the feasible set is convex. For example, u(c) � e�
c; c

g
t � cg for cg

small, F 000 � cg
@2(F 0=F )

@2k
< 0 for all cg � cg, and �t=1 guarantees concavity of h(�; �; �; �; s),

a much stronger condition than the quasi-concavity assumption of B1b.
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