1. Use the MATLAB program bigshow.m to simulate the following time series processes and to report their impulse response functions and their (log) spectral densities.

(a) \(x_t = \varepsilon_t \)

(b) \(x_t = \varepsilon_t + .5\varepsilon_{t-1} \)

(c) \(x_t = .9x_{t-1} + \varepsilon_t \)

(d) \(x_t = 1.2x_{t-1} - .3x_{t-2} + \varepsilon_t \)

(e) \(x_t = 1.2x_{t-1} + .3x_{t-2} + \varepsilon_t \)

(f) \(x_t = .8x_{t-1} - .5x_{t-2} + \varepsilon_t \)

where \(\varepsilon_t \) is an iid shock. Briefly comment on the stochastic properties of these processes. Which exhibit business cycle features? Which are stationary? Do any possess interior maxima in their spectral densities? If so, what is the frequency of the implied cycle?

2. Do Exercise 1.3 (parts a. and b. only) in Ljungqvist & Sargent.

3. Do Exercises 4.1 and 4.3 in Ljungqvist & Sargent.

4. At the beginning of each period, a worker can choose to work at her last period’s wage or draw a new wage. If she draws a new wage, the old wage is lost and she must wait one period before she can start her new job. New wages are i.i.d. draws from the c.d.f. \(F \), where \(F(0) = 0, F(B) = 1 \) for \(B < \infty \). The worker seeks to maximize \(E_0 \sum_{t=0}^{\infty} \beta^t w_t \), where \(w_t \) is the wage in period-\(t \).

(a) Write down the Bellman equation for the worker. (Hint: the value function appears in both options available to the worker).

(b) Now suppose the worker receives an unemployment compensation of \(c \). What is the Bellman equation now?

(c) Assume wage offers are distributed uniformly on the interval \([0, 1]\). Use the program ex2.m to numerically solve the Bellman equation for alternative values of \(\beta \) and \(c \). (This program first discretizes things and then uses a value function iteration method. The value function iteration is done by calling the program valit.m.) How does the reservation wage vary with \(\beta \) and \(c \)? Interpret the results.
5. This problem asks you to compute the solution to a standard stochastic growth model using two alternative numerical methods. The first is a standard linear quadratic approximation. The second is projection method. It expands the value function in terms of Chebyshev polynomials, and computes the basis coefficients via collocation. To do this you need to access the MATLAB files in the compecon toolbox, which is based on the text *Applied Computational Economics and Finance*, by Mario Miranda and Paul Fackler. Go to the course webpage and download and unzip the file `compecon.zip`. Some of the programs use C code, and you will need to first run the program `mexall` to create the necessary MATLAB readable files. Once you’ve done this, just run the program `demdp07.m`. (Note: there are many interesting and useful demo programs in this package. You may want to play around with others.)

The model is as follows. There is a representative agent who produces and consumes a single composite good. The stock of the good available at the beginning of period-\(t\) is \(s_t\), and its law of motion is given by:

\[
s_{t+1} = \gamma x_t + \epsilon_{t+1} h(x_t)
\]

where \(x_t\) is the amount invested, \(\gamma\) is the survival rate of capital (1 minus the depreciation rate), \(h\) is the production function, and \(\epsilon\) is a productivity shock with a mean of 1. Hence, the Bellman equation is given by:

\[
V(s) = \max_{0 \leq x \leq s} \left\{ u(s - x) + \delta E_{\epsilon} V(\gamma x + \epsilon h(x)) \right\}
\]

For this particular problem, assume the utility function takes the CRRA form \(u(c) = c^{1-\alpha}/(1-\alpha)\), and that the production function takes the Cobb-Douglas form \(h(x) = x^\beta\). Set \(\alpha = 0.2\) and \(\beta = 0.5\). Also assume the productivity shock is lognormal(0,\(\sigma^2\)), and set \(\sigma = 0.1\), \(\gamma = 0.9\), and \(\delta = 0.9\).

As discussed in class, the projection method approximates the value function as \(V(s) \approx \sum_{j=1}^n c_j \phi_j(s)\), where \(\phi_j(s)\) are Chebyshev polynomials, and the \(c_j\) coefficients solve the collocation equation:

\[
\sum_{j=1}^n c_j \phi_j(s_i) = \max_{0 \leq x \leq s_i} \left\{ u(s_i - x) + \delta \sum_{k=1}^K \sum_{j=1}^n w_k c_j \phi_j(\gamma x + \epsilon_k h(x)) \right\}
\]

where \(\epsilon_k\) and \(w_k\) are quadrature nodes and weights for the discrete approximation of the lognormal shock. For this problem, use a three-node Gaussian quadrature by setting \(n_{shocks} = 3\). Also, try a 10-function Chebyshev polynomial basis (set \(n = 10\)) on the interval \([5, 10]\) (set \(s_{min} = 5\) and \(s_{max} = 10\)).

Briefly describe and interpret the policy and value functions. Are there any differences between the Linear-Quadratic approximation and the Chebyshev approximation?