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INTRODUCTION TO OPTIMAL CONTROL

These notes develop the necessary and sufficient conditions for some standard
control problems. Finite-horizon problems—including a variety of endpoint conditions—

are studied in sections 1 - 6. Infinite-horizon problems are studied in sections 7 - 12.
FINITE HORIZONS
1. A standard control problem

A canonical control problem is to choose piecewise continuous (vector-valued)

controls {u(t), 0 <t < T} to

max [ f(t2(0), u(t)) di + 9(x(T)) 1)
s.t. u(t) € UCR™, (2)
Z(t) = g(t,z(t),u(t)), allt, (3)

given z(0) = o, (4)

where T is fixed and z (T) is free. Other terminal conditions will be discussed later

on. The ‘givens’ are

x(t) = [x1(t), ..., zn(t)]  n — vector of state variables
u(t) = [ug(t), ..., um(t)]  m — vector of controls
UCR™ control set

ft,x,u) return function

g(t,z,u) law of motion (vector valued)
o(x) salvage function



Assume f, g, and ¢ are continuously differentiable and strictly concave (strictly
convex for a minimum). Additional constraints on z and u can also be incorporated

and will be discussed later on.
2. Necessary conditions

To characterize a solution, we ask what properties the optimal path {u*(¢)} for
the controls must satisfy.

First, note that for any pair {x,u} that satisfies the constraints, laws of motion,
and boundary conditions, (2)-(4), and any continuous function A(¢) that is piecewise

continuously differentiable,

Ty = [ (0, u(e)dt + 6 (7))
= [ 1fmu) + X0 gt ) 4] di -+ G (T)).

0

Integrating by parts we find that

[ oaydr= [ (3ea) de - D) (D) + NO) - 2(0)],

SO

J{z,u} = /OT [f+O-g)+ (A-2)] dt+o(X(1)) (5)
= [AT) - x(T)] + [AM0) - 2(0)] .

The important thing is that (5) gives the net return J{z,u} from any feasible plan
{z,u}, where X is any piecewise continuously differentiable (PCD) function.

Now suppose that {z*,u*} is an optimal path and that {z,u} is a feasible path.
Let f*, g*, ¢* be the functions evaluated at {z*,u*}, and let f, g, $ be the functions



evaluated at {z,u}. Define

Then for any PCD function A,

65 = JHz,up — J{z" v’}
_ /0 [(f—f*)+(A~(g—g*))+(X("E—m*))]dt
(¢ — &) — INT) - (2(T) — z*(T))],

where we have used the fact that z(0) = 2*(0) = x¢ . Suppose that {z,u} is a small

perturbation of {z*,u*}, so that we may use a first-order approximation. Then

T .
b6y = /0 [(fo 200 +A) - 80+ (fu+ Agu) - 6] dt (6)
¢/ (1)) = A(D)] 8,().
The important thing is that (6) must hold for any feasible perturbation and any PCD

function A.

In particular, we may choose the function A defined by
A= —lfe+ Mg, MT) = ¢/ (1)) (7)
In this case we obtain

5y~ /0 1+ Agulb dt. 8)

But (8) implies that 6; < 0 for all feasible 6, if and only if

u*(t) = argmax [f(t,2"(t),u) + A(t)g(t, z*(t),u)], allt. (9)

uclU

If u is in the interior of U, we get the FOC f, + A\g, = 0. If u* is on the boundary of

U, then the appropriate inequality must hold.



To summarize, necessary conditions for {z*, u*} to be an optimum are that (2)-
(4) and (9) hold, where X satisfies (7).

These conditions can be generated easily by defining the Hamiltonian
H(t7xuu7)‘):f(t7xuu)+)‘g(t7x7u) (10)

Then the necessary conditions for an optimum are

u* = argmax,cy H,
it = OH/O\, z*(0) = o, (11)
N = —0H/ox, ANT) = ¢/ (z*(T)).

The first line of (11) is the optimality condition, the second and third are the laws
of motion for the states and costates. One may think about solving the system by
first using the optimality conditions to obtain values for the m control variables as
functions of the state and costate variables. If f and g are strictly concave in wu,
and if U is a convex set, then this gives a unique optimum, call it «*(z,A). Then
substituting into the laws of motion for the state and costate variables gives a system
of 2n differential equations with 2n boundary conditions: initial conditions for the
states, terminal conditions for the costates. Bingo!

Note that the states and costates, {z*, A} must be continuous functions of time,
and the controls {u*} must be piecewise continuous functions of time. Thus, the

controls may jump (occasionally), but the states and costates may not.
3. Sufficiency

Consider the problem in (1)-(4). Suppose that {u*,z* A} satisfies (11), where H
is defined in (10). Assume that f is concave jointly in (x,u) and ¢ is concave in z.

Let {u,x} be any other pair satisfying the constraints, laws of motion, and boundary

conditions (2)-(4). Then
T
b = [t (o- )
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< [0 8+ (8] di 4 67 6T (by concavity)
_ /OT [((A+2g2) - 8:) + (Ags - 8)] dt+ [0 - 6a(T)],
where 6, and 6, are defined as before. Since
/OT Ao, ]at — —/OT N-b] dt+ INT) - (D)) — [A(0) - 6,(0)]
- /oT A9 —g7) dt + [MT) - &(T)],

we find that

sr< [ 1 Mg -9 — (e —2) — giu— )}

where we have used the fact that A\(T") = ¢'(2*(T")). Hence 6, is nonpositive if A > 0
and ¢ is concave jointly in (z,u), or if A < 0 and ¢ is convex in (z,u).
This condition often fails. An alternative, due to Arrow, is much more useful.

Suppose {z*, u*, \} satisfies the necessary conditions for a maximum. Define
) )

U (t,z,\(t)) = argmax H (t,z,u, A(t)), allt,

uelU

to be the policy function for the controls, given values for the states, costates, and

time. Then define the maximized Hamiltonian
H* (1,2, M(0) = H [, U (1,2, A1), A(5)], all £
A sufficient condition for {z* u*} to be optimal is that H* be concave in z, all ¢.

4. Existence

It is not hard to construct problems for which an optimum dies not exist. Clearly
U should be compact, so the “static” problem of maximizing the Hamiltonian w.r.t.

u has a solution. But there are other problems. S&S give the following example.



Suppose you have a hotplate, with an initial temperature of 100°C, whose only control
is an on-off switch. You want to minimize the integral of the squared deviations of
the temperature from 100°C over the interval [0,T]. If there is no cost the turning
the switch on and off, the objective can always be improved by flipping the switch
faster and faster.

See Ekeland and Turnbull or Seierstad and Sydaeter for some conditions for

existence.
5. Various Boundary Conditions

Suppose the terminal time 7" is free and the salvage function ¢(7,z(7)) has time
as an argument. Suppose that some of the terminal stocks are fixed, some are subject
to a nonnegativity constraint, and some are free. In particular, assume that

z(T) = xir i=1,..,4q,

z;(T) free, i=q+1,...,r

z(T) > 0, i=r+1,..n.
For simplicity, suppose that all of the initial stocks are fixed.

Suppose {z*,u*} on [0,7] is an optimal path and that {z,u} on [0,T + 6] is a
feasible path. Define (6., 6,), (f*, g%, ¢*), and (f, g, ¢) as before. Then for any PCD
function X defined on [0, 77,

oy = J{z,u} — J{z",u"}

= /OT [(f—f*)—i-)\(g—g*)—i-).\(x—x*)} dt+/TT+6Tf dt
+[¢(T + b7, 2(T + 67)) — ¢(T',27(T))] — MT) [2(T) — 2*(T)]

where we have used the fact that z(0) = z*(0) = xzo, as before. The first-order

approximation is then
T .
o5~ [ [l Age+ Xbe + [fu+ Mgl dt + [FT) + 6D or - (12)
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+¢2(T) [#(T + br) — 2™(T)] = MT)[z(T) — 2*(T)].

As before, (12) must hold for any feasible perturbation and any PCD function A.
Notice that A is defined only on [0, 7. Also notice that since the two terminal dates
are possibly different, the two terms in the last line do not have matching terms in

z(T'). Define ézr = x(T + 6r) — 2*(T) to be the difference in the two terminal states,
and note that

z(T)—az*(T) = «(T)—x(T+6r) + (T +6r) —a*(T)

= —g(T)br + bz,
5, ~ Aﬁ[UQ+Agy+XMz+Lﬂ—%NhM4dt (13)
+ [0 (T) = MT)] bz + [f(T) + (1) + MT)g(T)] b7

The FOC for v and the laws of motion for A\ are as before. The terminal conditions

for the state variables are

z;(T) is fixed, X\;(T) is free i=1,..q,

z;(T) is free, N(T) — 0¢/0x; =0, 1=q+1,..,7,

xz(T) 207 AZ(T)_8¢/8x1 207 Z:T+1a y T,
(1)

If T is free, then

If T < T, then
H(T) + ¢,(T) >0, with equality if T < 7.

If there is a constraint of the form K (z(7")) = 0 or > 0 on the terminal state, then

Xi(T) — 0¢/0x; = pK;(z),



where p > 0, with eq. if the constrain does not bind.

If T < T, and K depends on T, then the terminal date must satisfy
H(T) + ¢(T) 4+ pKy(T,x) >0, with equality if T < 7. (14)
If T is free, then (14) must hold with equality.

6. Calculus of Variations

If ©(t) = g(t,x,u) = u(t), then we can write f(¢,z,4) and eliminate the laws of
motion. In this case we have a classical Calculus of Variations problem. Notice that

if the solution is interior, we get

fu+)\ = 07
I = u, z(0) = o,
A = fe M) =),
fo=A=MD) - [(Aas= @)+ [ 1. ds
or

[ s+ fu=~alm)]

This is the Euler equation in integral form. One may also write it in the more usual

form
fo = df,/dt.

If ©(t) = g(t,z,u) = u(t) —nz, and the solution is interior, the same method still

applies. In this case

H = f(t,z,u) + AMu — nx],



so the conditions for an optimum are

Jut A =0,
T = u—nz, z(0) =z,
A=nd = —fo M) =¢'(D)).

Hence we can integrate the costate equation to get
T
O™ = [ fuls,m,u) e ds + ¢ (@(T))e ™
t
and then substitute from the optimality condition to get
T
[ el 7 ds + fults,w)e ™ = o a(T)e
t
For nn = 0, this is exactly the Euler equation in integral form.
INFINITE HORIZONS
The next sections deal with infinite-horizon problems.
7. A standard control problem

The canonical infinite horizon is

max /O T (), u(t)) dt (15)

st. wu(t) e U C R™, (16)
2'(t) = g(t,z(t),u(t)), allt, (17)
given z(0) = . (18)

The necessary conditions for a maximum are the same as before, except for the termi-

nal conditions. There are no longer any necessary terminal (tranversality) conditions.



But if the problem is concave (satisfies Arrow’s condition), then adding the following

conditions is sufficient (for a present value Hamilton):

lim A(t) >0, and Jim A(t)z(t) = 0.

t—o0
For an autonomous problem with discounting at the rate p > 0, and a current value

Hamiltonian, the conditions are

lim e™”\(t) >0, and lim e *\(t)z(t) = 0.

00 =00

A useful application of these TC’s is the following. Consider a discounted, au-
tonomous problem, formulated in current value terms. Let U*(x, ) be the optimal
policy function, defined by maximizing the Hamiltonian. Suppose the system has a
steady state (z®, \*). Suppose, too, that for any initial state zp, an initial value \g

for the costates can be chosen so that the system of 2n ODE’s

N(t) = pA(t) = [fe (2(8), u(t) + Age (x(2), u(t))],

converges to this steady state, where
u(t) =U"(z(t),\(t)), allt.

Then clearly the TC’s hold.

Notice that for infinite horizon problems we have the following facts:

1. For a strictly concave problem, if an optimum exists, it is unique.

2. For an autonomous problem with discounting, any path that converges to a
steady state satisfies the TC’s.
Suppose we have an autonomous, concave problem with discounting. A path that
satisfies the necessary conditions and converges to a steady state is optimal (by 2).
Therefore, any other path that satisfies the necessary conditions must violate the

TC’s (by 1). [You can check this directly, too, if you wish, but it seems redundant.|
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8. Optimal growth: Cass-Koopmans

Consider the problem

max /Ooo e PU (c(t)) dt

st K(t) = f(k@)—6k(t) —c(t),
0

IA
o
~~
~
SN—
VAN
=
—~
3
—~
~+
SN—
SN—

given k(0) = ko> 0.
Assume that U and f are strictly increasing and strictly concave, with

limU'(¢) = +oo, and lim U'(c) =0,

c—0 c—00
]lﬂirr(l)f’(k) = 400, and  lim f'(k)=0.

In addition, assume that kg is small, so the upper bound on consumption can also
be ignored, or else that capital goods can be consumed (so gross investment can be
negative).

The (current value) Hamiltonian is
H(k,e,A) = Ule) + A[f(k) = 6k = o],
so the conditions for a maximum are

H, = 0=U'(c)— A
“Hy = N —ph=-\[f(k)—¢],

lim e "' \(t) > 0, and lim e " \(t)k(t) = 0.

t—o0 t—o0
The first two are necessary. These three, together with the concavity of the objective

and the law of motion, are sufficient.
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Define v = U’!, and note that

1 . .
Y(A) = o))~ 0, limy(A)=o0c, and lim y(})=0.

Hence the policy function ¢ = () is well defined and continuous.

Consider the system of differential equations

N(t) = [p+ 06— f(k@)]AD),
Kt) = f(k(t) = 0k(t) = v(A).

Notice that

N o= 0 if fi(k)=p+6
K o= 0 if  f(k) — 6k =y(\).

Define (k*, A*) by
F'(B)=b64p, [(F) =0k =y(\).
This is the unique steady state for the system. Note that A\* = U’(¢®), where ¢ =
f(E®) — 6k>.
To study transitional dynamics, define k¥ > k9 > k® by

f(k) =0k, f/(k)=6.

Note that & is the largest maintainable capital stock, and that the concave function

f(k) — Ok reaches a maximum at k9. Define A(k) by

so (k,A(k)) is the locus where k' = 0. Note that the steady state pair (k*, A*) is one

point on this locus. To find the slope of this locus, differentiate to get

f'(k) =6

V' (A(R))

Since 4" < 0, it follows that A’(k) < 0 for £ < k9, and A'(k) > 0 for k& > k9. See

N (k) =

Figure 1 for the phase diagram.
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9. Linearizing around the steady state

To study transitional dynamics near the steady state, linearize around the steady

state to get

Kt) ~ [f' =6l (k=k) =7 (A=X),
N(t) = =f"NE=F)+[+p-TA=N),

where all functions are evaluated at the SS. Note that the marked term is zero at the

steady state. Hence we have

a! p =7 (\) x
y/ _f//(ks))\s 0 ys ’
where z = (k—k®), and y = (A — X°). This a linear homogeneous system, with

constant coefficients. The characteristic equation is
(p—R)(0—R)—~'f'X* =0,
so the roots are

1
R= {pi Jor + 47’f”)\3] .

Since 44/ f"A* > 0, it follows that the roots are real and of opposite sign.
Given any small zg = ko — k° (of either sign), an approximation to the (unique)

solution can be constructed as follows. The solution is of the form

z(t) = are™' + age™,
y(t) = bre™ 4 bye™
where (a;, b;) is a scalar multiple of the eigenvector v; associated with R;, i = 1,2. Let

Ry < 0 be the negative root. The transversality conditions imply that the positive

root must have zero coefficients: as = by = 0. The initial condition for capital implies
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that a; = xy. The initial condition b; = y, for y can be calculated by computing the

eigenvector. (If you are using Matlab, this is very convenient.) Or, note that
y'(0) = Riyo = — f"Nxo,

SO
B _f”)\sxo
= 7R1 .

The equation for the characteristic roots can be used to study the effect of various

Yo

parameters on the speed of convergence. Raising the discount rate p slows down

convergence. To study the effect of curvature in the utility function, note that
_U(e)
- U”(CS)'

Consider a change in U that leaves the steady state unchanged. This can be ac-

Y (A%)A°

complished by taking a concave transformation of U that leaves U(c®) and U’(c*)
unchanged. Thus, U”(c¢*) increases in absolute value, slowing down convergence.
Similarly, consider a concave transformation of the production function f that leaves
f(k®) and f’(k®) unchanged. Then f”(k®) increases in absolute value, increasing the
speed of convergence.

The savings rate along the optimal path is

SO

. _E f’k’_c_’
(t)_f[f C]’

so the sign is indeterminate: the savings rate may rise or fall along the optimal path.
The analysis here has been in terms of the pair (k, \) . Since there is a one-to-one
relationship between A and ¢, the pair (k,c) could have been used instead.
Exercise. Suppose there is exogenous population growth at the constant rate
n > 0. Show how the formation above can be reinterpreted to incorporate population

growth. Explain why the restriction p > n is needed.
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Exercise. Suppose there is exogenous, labor augmenting technical change at the

constant rate g > 0. That is
Y () = F [K(#),e™ L] .

Assume that the utility function has the CIES form

Formulate the problem so that the previous analysis applies. Is any restriction on g

needed?
10. Log-linear approximation

When approximating around the SS, it is sometimes more convenient (and more

accurate) to linearize in the log space. Instead of using the linear approximation

fR) = f(R°) + f'(k°) (k= k),

_1 k S
z=1n ) so z=

k=ke =~k (1+2), and k—k"=£k°2

define

Y

| &

and
f(R) = f(R) + [ (B k2.
This is especially useful when the functions being approximated are of the form f(k) =
Ak®, so
f(k) = f(E°) [1 4 az].

To see this, consider the system of ODE’s

n

.',tz' (o771 .
— J —
- = E ai x;”, 1=1,..,mn.
i 54
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Suppose this system has a steady state at (T,...Z,) . Define the log deviations from

the steady state to be z; = In (x;/x?), all i. Then we have
2:’2‘ =~ Za”f‘;}” [1 + Oé,L]Z]] s 1= 1, ey N
j=1

The sum of the first terms is zero, by the definition of a steady state, so

n
S~ —Qj .
Zi & Zaijxj oz, 1=1,...,n.
i=1
Numerical approximation to power functions are generally more accurate of the lin-

earization is done in the log space.

Exercise. Consider the two-dimensional system

Let X =In(z/2°) and Y = In(y/y®). Show that

X' a  by*/z? X

Y’ cx® [y® d Y
Hence both systems have the same characteristic roots. If an eigenvector for the
system that is linear in levels is (v;1,v;2), then the log system has an eigenvector
(Vi Vi) = (var/ 2, via [ y*) -

Exercise. For the Cass-Koopmans model, suppose the utility and production
functions are
=7 -1

Ule)= "=, o>0,

l1—0
and

f(k) =Ak*, O0<a<]l.

What is the linear approximation to the laws of motion in the log space?
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11. Rebelo’s Ak model

Suppose the production function is linear in capital, and consider the problem

0o 1—o _
max / G*Ptc(t)ildt
0 l1—0

st k(t) = Ak(t) — c(t),
given k(0) = ko > 0.

The (current value) Hamiltonian is

Hiken) = D77 =1y k=,

l1—0

so the conditions for a maximum are

c(t)? = A\
A
2 = oA
)\ p Y

Jlim e PAt) >0, and lime PA(t)k(t) =0
Note that )
c__1A_A-p
c oA o’

so consumption grows at a constant rate, and that rate is positive if and only if A > p.
Clearly, constant consumption growth implies that ¢/k = v is constant, so capital

growth is also constant. Hence

k : 1—

k c o o

The second TC holds if and only if

A.

lim e *c(t)"“k(t) = 0.

t—o0
Since consumption and capital grow at the same rate, we need

l1—0
p >

(A—p),
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or

p>(1—o0)A.

Thus, the model implies sustained growth along a unique optimal path if and only if
A > p > (1—0)A. Note that if all output is saved, k(t) = koet’. If all output along
this path is also consumed, then c(t) = Akge’. Thus, total utility along this path is
bounded if the TC holds.

12. A perverse example

This example is from Takayama, who got it from Arrow and Kurz, who got it
from H. Halkin, who thought it up (I guess). It is an infinite horizon problem with
many optimal paths where the TC’s do not hold. The problem is

max /0 T = ()] u(t)dt

st 2'(t) =[1—x()]u(t), =x(0)=0,

—1 <u(t) <+1.
For any T" > 0,
T T
/ 1 —a()]u(t)dt = / 2 (t)dt
0 0
= z(T)
=1 e_U(T),
where

Hence any path for which limy_,., U(T) = 400 is optimal. For example, let u(t) = u,

where 0 < @ < 1. Since solutions of this sort are interior, 0H/0u = 0, where
H(z,u,A\)=(1+X)(1—-2)u
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Hence it must be the case that A(t) = —1, all ¢. [Note that N = —0H/0z =
(1+XN)u=0,if A= —1.] Hence

lim A(t) = —1, and Jim At)x(t) = —1.

t—oo

In general, TC’s for infinite horizon problems are tricky. See Ekeland and Teman

(1976) and Araujo and Scheinkman.
13. Other caveats

A problem may have no feasible solution. For example, consider

max /OT e U (c(t)) dt

st K(t) = F(k(t) — 6k(t) — e(t),
0 <eft) < f(k(1),

For kr sufficiently large and/or kg and T sufficiently small, the feasible set is empty.
If the problem has constraints, the extremum may not be a regular point.
Or, the objective function may get zero weight in the Hamiltonian. The following

example is from Kamien and Schwartz (KS), p. 137.

T
max / u(t)dt
0

There is only one feasible path, u(t) = 0. Let
H= )\Ou + )\1U2,

The correct answer is obtained by setting Ay = 0. Setting A\¢ = 1 does not work.

[Why?] See KS, Section 14 and references.
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