COURSE OBJECTIVES AND PREREQUISITES

Standard representative agent models in macroeconomics are successful along some dimensions, and are useful as theoretical benchmarks, but they also suffer some important shortcomings. They do not explain microeconomic data on consumption and saving, they have only modest success in explaining business cycles, they are abject failures in explaining asset prices, and almost by definition, they are incapable of explaining unemployment.

This course will address these deficiencies. The general theme will be to introduce frictions of various kinds. Two general types of frictions will be studied: (1) Search and Matching frictions, and (2) Frictions arising from asymmetric information and limited commitment. Search and matching frictions are used to study labor markets. Asymmetric information and limited commitment generate endogenously incomplete markets and imperfect risk-sharing. These so-called “heterogeneous agents” models will be applied to a variety of topics: (1) dynamic optimal taxation, (2) unemployment insurance, (3) asset pricing, (4) business cycles, (5) international trade policy, and (6) international capital flows.

There is an important unifying methodological theme running throughout the course; namely, the use of recursive methods (eg, dynamic programming) to formulate and analyze complex dynamic stochastic general equilibrium models. One of the goals of the course will be to learn how to think in terms of state variables and Bellman equations. Another goal will be to learn how to solve Bellman equations, both analytically and numerically.

COURSE STRUCTURE

The first few weeks of the course will be devoted to learning some of the tools of modern macroeconomics. These include: Markov chains, stochastic difference equations and lag operators, Fourier transforms and spectral densities, and Bellman equations. Students will be asked to write simple MATLAB programs that implement the ideas discussed in class. The remainder of the course will put these tools to use in a variety of economic settings.

COURSE EVALUATION

<table>
<thead>
<tr>
<th>Weight in Grade</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Sets</td>
<td>20%</td>
</tr>
<tr>
<td>Term Paper</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm exam</td>
<td>25%</td>
</tr>
<tr>
<td>Final exam</td>
<td>35%</td>
</tr>
</tbody>
</table>

The paper should be 15-20 pages. It can be a literature review, a replication of previous results, or even the start of a thesis! The problem sets will be available as PDF files on the class webpage (at www.sfu.ca/~kkasa/).
COURSE MATERIALS

There is one required book for this course: *Recursive Macroeconomic Theory*, by Lars Ljungqvist and Thomas Sargent (2nd Edition, 2004) published by MIT Press. There are also a number of journal articles, working papers, and supplementary notes that are available for download on the course webpage. Students desiring a more comprehensive and rigorous treatment of recursive methods should consult Stokey and Lucas’ treatise *Recursive Methods in Economic Dynamics*, published in 1989, but still in print. Finally, Sargent’s classic texts *Macroeconomic Theory* and *Dynamic Macroeconomic Theory*, both published in 1987, are still useful and still in print.

Ljungqvist and Sargent’s book is available at the campus bookstore and on reserve at the library.

COURSE OUTLINE AND READINGS

Readings marked with a (*) are downloadable from the course webpage.

I. RECURSIVE METHODS (6 lectures)

Jan. 11 – **Introduction and Overview**
 Ljungqvist & Sargent, Chpt. 1

 Ljungqvist & Sargent, Chpt. 2
 Sargent (1987), *Macroeconomic Theory*, Chpt. 11

Jan. 18 – **Functional Equations and Dynamic Programming**
 Ljungqvist & Sargent, Chpt. 3 and Appendix A

Jan. 20 – **Practical Dynamic Programming I**
 Ljungqvist & Sargent, Chpt. 4 (pgs. 95-104)

Jan. 25 – **Practical Dynamic Programming II**
 Ljungqvist & Sargent, Chpt. 4 (pgs. 104-108)

Jan. 27 – **Linear-Quadratic Dynamic Programming**
 Ljungqvist & Sargent, Chpt. 5 and Appendix B
 * Sims et al. (2003), “Calculating and Using Second-Order Accurate Solutions . . . ”

II. SEARCH AND MATCHING (4 lectures)

Feb. 1 – **McCall’s Job Search Model**
 Ljungqvist & Sargent, Chpt. 6 (pgs. 139-158)

Feb. 3 – **Ljungqvist and Sargent’s Model of European Unemployment**
Feb. 8 – **The Mortensen-Pissarides Matching Model**
Ljungqvist & Sargent, Chpt. 26 (pgs. 946-958)
Problem Set 1 due

Feb. 10 – **Competitive Search Equilibria**
Ljungqvist & Sargent, Chpt. 26 (pgs. 941-945, 959-960)

III. RECURSIVE EQUILIBRIA (2 lectures)

Feb. 15 – **Rational Expectations and Markov-Perfect Equilibria**
Ljungqvist & Sargent, Chpt. 7

Feb. 17 – **General Equilibrium with Complete Markets**
Ljungqvist & Sargent, Chpt. 8 (pgs. 208-234)

IV. OVERLAPPING GENERATIONS MODELS (2 lectures)

Feb. 22 – **The Basic OLG Model**
Ljungqvist & Sargent, Chpt. 9 (pgs. 264-278)
Problem Set 2 due

Feb. 24 – **Applications of OLG Models**
Ljungqvist & Sargent, Chpt. 9 (pgs. 278-299)

V. ASSET PRICING (2 lectures)

March 1 – **Euler Equations and Martingale Measures**
Ljungqvist & Sargent, Chpt. 13 (pgs. 392-426)

March 3 – **Midterm Exam**

March 8 – **Hansen-Jagannathan Bounds and the Equity Premium Puzzle**
Ljungqvist & Sargent, Chpt. 13 (pgs. 426-444)
* Constantinides & Duffie (1996), “Asset Pricing with Heterogeneous Consumers”
* Brav et al. (2002), “Asset Pricing with Heterogeneous Consumers and Limited . . .”
VI. INCOMPLETE MARKETS (7 lectures)

March 10 – Self-Insurance
Ljungqvist & Sargent, Chpt. 16

March 15 – Competitive Equilibrium with Exogenously Incomplete Markets
Ljungqvist & Sargent, Chpt. 17 (pgs. 566-585)

March 17 – Applications of Incomplete Markets
Ljungqvist & Sargent, Chpt. 17 (pgs. 586-606)

March 22 – Dynamic Stackelberg Problems
Ljungqvist & Sargent, Chpt. 18

March 24 – Insurance vs. Incentives: Lack of Commitment
Ljungqvist & Sargent, Chpt. 19 (pgs. 636-661), Chpt. 20 (pgs. 697-713)
* Krueger & Uhlig (2003), “Competitive Risk-Sharing Contracts with One-Sided Commitment”

March 29 – Insurance vs. Incentives: Asymmetric Information
Ljungqvist & Sargent, Chpt. 19 (pgs. 662-686)
 Problem Set 3 due

March 31 – Applications
Ljungqvist & Sargent, Chpts. 21 and 23
* Atkeson (1991), “International Lending with Moral Hazard and Risk of Repudiation”
* Bond & Park (2003), “Gradualism in Trade Agreements with Asymmetric Countries”

VII. MONETARY AND FISCAL THEORIES OF INFLATION (2 lectures)

April 5 – Ten Monetary Doctrines
Ljungqvist & Sargent, Chpt. 24 (pgs. 857-880)

April 7 – The Friedman Rule
Ljungqvist & Sargent, Chpt. 24 (pgs. 880-884)

April 11-15 – FINAL EXAM (exact date not yet decided)
Term Paper and Problem Set 4 due