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1. Introduction

In a recent paper, Hopenhayn and Nicolini (1997) study the properties of an optimal

insurance arrangement between a risk-neutral insurer (principal) and a risk-averse worker

(agent). They assume that the agent begins life unemployed and expends a hidden amount

of effort to find a job in each period. His probability of finding a job is increasing in the

amount of effort exerted; once he finds a job, he keeps it forever. Importantly, the insurer has

complete control over the agent’s consumption, because the agent cannot secretly transfer

consumption from one period to the next.

They find that in an optimal contract between the principal and the agent, the agent’s

consumption is a decreasing function of his time spent unemployed. This general result

has two consequences. First, an agent who has been unemployed for t periods has a lower

consumption than an agent who has been unemployed for (t− 1) periods. Second, an agent

who finds a job after a long period of unemployment must make a higher payment to the

insurer than an agent who finds a job after a short period of unemployment.

As stated above, Hopenhayn and Nicolini assume that the principal can costlessly

monitor the agent’s savings and condition contractual payments on this variable. One can

show that the optimal contract in Hopenhayn and Nicolini’s setting has the property that

the agent is savings-constrained when unemployed: the agent’s shadow interest rate is lower

than the principal’s shadow interest rate. Nor is this feature of the Hopenhayn-Nicolini

contract unique to the unemployment insurance problem. Rogerson (1985a) shows that in

settings with repeated moral hazard, it is generally optimal to impose a sufficiently severe

punishment for poor output performance that the agent ends up being savings-constrained.



Intuitively, the agent would like to save so as to mitigate next period’s punishment.1

It follows that with moral hazard, the optimal dynamic contract is only incentive-

compatible under the assumption that the principal is able to costlessly monitor the agent’s

asset levels. This assumption is somewhat restrictive. After all, there are a number of

ways that a person can transfer resources to the future (like foreign bank accounts or by

accumulating durables) that may be hard for outsiders to observe. It is therefore important

to understand the intertemporal structure of optimal contracts when the agent is allowed to

engage in secret asset accumulation.

This paper is a contribution to this general research agenda. I relax the assumption

that savings can be monitored by the principal in the Hopenhayn-Nicolini unemployment

insurance model, and assume instead that the agent can secretly save at the same rate as

the principal. I then look to solve for the optimal insurance contract.2 Not surprisingly,

this problem is generally impossible to solve analytically. Unfortunately, it is also difficult to

solve numerically. In a recent paper, Fernandes and Phelan (2000) have described a recursive

formulation for a related class of problems. It is not known, though, how to translate their

recursive formulation into a practical computational procedure when savings can take on a

continuum of values. Werning (2002) and Abraham and Pavoni (2003) attack the problem

by using a computationally feasible first-order approach that replaces the agent’s incentive

constraints with the corresponding first order conditions. However, I show that even in simple

1In a recent working paper, Shimer and Werning (2003) consider unemployment insurance in a version of
the McCall search paradigm. They assume that the insurer cannot observe the wage drawn by the unemployed
agent. They show that if the agent has exponential utility, then the optimal unemployment insurance contract
is the same whether or not the agent can secretly save and/or borrow.

2I search across all incentive-comptable insurance contracts. Abdulkadiroglu, Kuruscu, and Sahin (2002)
instead consider an incomplete markets economy with a limited set of possible unemployment insurance
systems. They numerically characterize the optimal unemployment insurance system in that set.
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examples, the first-order approach may not be valid because the agent’s decision problem is

intrinsically non-concave in effort and savings.

It is possible, though, to obtain an analytical solution in a particular case, even when

the first-order approach is known to be invalid. I assume that the agent’s disutility from

effort is linear in the probability of his finding a job, and that the principal wants the agent

to exert an interior amount of effort while unemployed. Under these assumptions, I prove

that the optimal unemployment insurance contract takes an extremely simple form. During

the period that an agent is unemployed, his consumption is constant. When he becomes

employed, his consumption jumps up to a new constant level that is independent of the

duration of the unemployment spell. This structure implies that once the agent’s savings level

is unobservable, it is optimal for the agent to be borrowing-constrained when unemployed.

The intuition behind this result is as follows. The contract has to be designed to

punish the agent as severely as possible, given that it must deter the agent from saving. This

intuition would seem to lead to the optimal contract’s featuring consumption-smoothing, so

that the principal and agent have the same shadow interest rate.3 However, the very fact that

the first-order approach fails is a sign that this intuition is wrong. The binding intertemporal

incentive constraint is one in which the agent jointly deviates from the optimal contract by

simultaneously saving more and working less. When the contract is designed to prevent this

joint deviation, the agent ends up being borrowing-constrained given that he does work the

amount specified by the contract.

3This intuition is valid in the environment with hidden income and hidden storage studied by Cole and
Kocherlakota (2001). The key difference between the two settings is that in Cole and Kocherlakota, the two
types of deviations (storing from period t to period (t+ 1) and then lying) are not complementary in utility.
In contrast, shirking and storing are complementary in the model studied in this paper.
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In this paper, I assume that the unemployed agent cannot borrow secretly. I have

two reasons for this restriction. The first is technical: in the linear disutility case, there are

no incentive-compatible contracts (including repetition of any static contract) if agents can

engage in both hidden borrowing and lending. The second is more substantive. It is much

more difficult for individuals to engage in hidden borrowing than hidden saving, because their

loans have to be enforced. In contrast, as Cole and Kocherlakota (2001) explicitly model,

hidden saving can take the form of physical investment. Physical investment requires no

outside enforcement and so is intrinsically more difficult to monitor.

2. The Problem

In this section, I describe a variant of the Hopenhayn-Nicolini unemployment insurance

model, augmented to allow for hidden savings. The principal has von Neumann-Morgenstern

utility function:

−
∞X
t=1

βt−1ct

and the agent has von Neumann-Morgenstern utility function:

∞X
t=1

βt−1[u(ct)− v(pt)]

where, in both utility functions, ct is the agent’s consumption in period t. The variable pt is

the agent’s effort in period t, and lies in the set [0, 1]. I assume that u0,−u00, v0 > 0, v00 ≥ 0,

and that u is bounded from above and from below. I assume that 0 < β < 1.

An agent can be employed or unemployed; he begins life unemployed. The choice
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of pt affects the probability of becoming employed for an unemployed agent. Specifically, if

an agent is unemployed at the end of period (t − 1), then the probability of his becoming

employed in period t is pt, and the probability of his staying unemployed is (1 − pt). If an

agent is employed at the end of period (t−1), he stays employed in period t with probability

one. Thus, being employed is an absorbing state.

The agent’s employment status is observable to others, but his choice of pt is unobserv-

able. As well, the agent can secretly save at rate 1/β−1. I consider contracts in this economy

that specify two sequences {cEt , cUt }∞t=1. Given such a contract, an agent who is unemployed

in period t receives compensation cUt from the principal. If an agent became employed for the

first time in period t, then his compensation from the principal in period s ≥ t is cEt . Thus,

once an agent is employed, his compensation is constant over time. (It is simple to show that

because the principal and agent have the same discount factor, this smooth compensation is

efficient in this economy.)

I assume that the principal wants to (weakly) implement a sequence of effort choices

p∗ = {p∗t}∞t=1 by the agent when unemployed, where 1 > p∗t > 0 for all t. I define an incentive-

compatible contract (cE, cU) to be one such that:

{S∗t , e∗t}∞t=1 ∈ arg max
{St,pt}∞t=1

∞X
t=1

βt−1
t−1Y
s=1

(1− ps){ptu(ζEt )/(1− β)− v(pt) + (1− pt)u(ζ
U
t )}

s.t. ζEt = cEt + St−1(1− β)/β for all t

ζUt = cUt + St−1/β − St for all t

St, pt, 1− pt, ζ
E
t , ζ

U
t ≥ 0 for all t

so that it is weakly optimal for an unemployed agent to choose p∗t in all t. Note that if an agent
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becomes employed in period t with savings St−1, then his optimally smoothed consumption

is (cEt + St−1(1− β)/β) in every period thereafter.4

It is straightforward to show that, given any incentive-compatible contract, there exists

a payoff-equivalent contract (cE0, cU 0) in which the agent’s optimal savings sequence is zero. I

restrict attention to these contracts that induce zero savings, and look to solve the following

cost-minimization problem (UIP ):

min
cE ,cU

∞X
t=1

βt−1
t−1Y
s=1

(1− p∗s){p∗t cEt /(1− β) + (1− p∗t )c
U
t }

s.t.

(0, p∗) ∈ arg max
S,1≥p≥0

∞X
t=1

βt−1
t−1Y
s=1

(1− ps){ptu(cEt + St−1(1− β)/β)/(1− β)

+(1− pt)u(c
U
t + St−1/β − St)− v(pt)}

∞X
t=1

βt−1
t−1Y
s=1

(1− ps){ptu(cEt )/(1− β) + (1− pt)u(c
U
t )} ≥ u∗

cEt , c
U
t ≥ 0 for all t

In words: What contracts are the minimal-cost incentive-compatible contracts among all

those that provide the agent with ex-ante utility of at least u∗?

4I do not formally model why the principal desires to implement an interior p∗. It is standard in principal-
agent problems to model the principal’s objective as being linear in p; this assumption, combined with the
linearity of the agent’s utility function in p, would generically result in the principal’s preferring a bang-bang
specification for p.
However, in this unemployment insurance problem, the principal may prefer an interior choice for p because

of search externalities. Suppose that the principal is contracting with a unit measure of agents, and that a
given agent’s disutility from choosing a probability p is given by pΨ(p), where p is the average p chosen by
the other agents in the economy. If Ψ is increasing, then there are congestion effects - it becomes harder for
a given agent to find a job when other agents are searching a lot. When designing the optimal contract, the
principal internalizes the externality implicit in Ψ, and the principal’s choice of p will, for a generic class of
problems, be interior.
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3. Difficulties

In this section, I consider two recently developed approaches to solving UIP . The

first is to make the problem recursive in some fashion. I find that this approach is, at least

of this writing, computationally infeasible. The second is to use a version of the first-order

approach. I find that this approach will not work if the curvature of v is sufficiently small.

A. Can We Make the Problem Recursive?

Much of the recent analysis of dynamic moral hazard problems is based on an insight

of Spear and Srivastava (1987). They show that, without hidden savings or other hidden

state variables, dynamic moral hazard problems are recursive in the following sense: in each

period, the principal chooses current consumption and next period’s continuation utility so as

to minimize his costs subject to the incentive constraints, and subject to delivering a specified

amount of continuation utility to the agent. Hence, the principal-agent problem is recursive

with respect to a one-dimensional state variable: continuation utility.

The difficulty in making UIP recursive in a similar fashion is that if an agent brings

savings into the period, his response to any given contract is different than if he does not

bring savings. In other words, the presence of hidden savings essentially introduces an adverse

selection problem at each date. Fernandes and Phelan (2000) show how to deal with this

kind of dynamic adverse selection problem: the principal must minimize his costs subject to

delivering a given amount of continuation utility to every type.

Here’s how Fernandes and Phelan’s insight works in this context. Suppose the principal

wants to induce an unemployed agent to choose p∗ in every period. Given an incentive-

compatible contract (cE, cU), we can define V (S)/(1 − β) to be the ex-ante utility of the
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agent if he begins life with S units of savings (as opposed to with zero) and then chooses an

optimal effort and savings strategy in response to the contract. Thus, V is a value function.

Define DOM to be the set of all such value functions (as we vary the incentive-compatible

contract (cE, cU)). Further, given a value function V in DOM , let Π(V ) be the infimal cost

to the principal of all incentive-compatible contracts that generate the value function V.

Then, the function Π: DOM → R+ satisfies the following functional equation (FE):

Π(V ) = min
cE ,cU ,W

p∗cE/(1− β) + (1− p∗){cU + βΠ(W )}

s.t.

(0, p∗) ∈ arg max
S0≥0,1≥p≥0

{pu(cE)− v(p)(1− β)) + (1− p){u(cU − S0)(1− β) + βW (S 0)}

V (S) = max
S0≥0,1≥p≥0

{pu(cE + S(1− β)/β)− v(p)(1− β)}

+(1− p){u(cU + S/β − S 0)(1− β) + βW (S 0)}

cE, cU ≥ 0,W ∈ DOM

At a given point in time, the principal seeks to minimize the expected value of his discounted

costs, given that he wishes to induce an agent with no assets to choose effort p∗ and to choose

not to save. The possibility of hidden savings means that, in order to make sure the contract

is in fact incentive-compatible, the agent needs to know how much utility he will get from

choosing values of savings other than the principal’s preferred level of savings (zero). Hence,

the principal needs to satisfy a promise-keeping constraint that applies to all values of S, not

just S = 0, and needs to pick a continuation value functionW , not just a continuation utility.

We now have a recursive approach to UIP . Let Π be the solution to (FE). Then, the
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principal’s first step is to solve the minimization problem:

min
V ∈DOM

Π(V )

s.t. V (0) ≥ u∗

He obtains a solution V0 to this minimization problem. Next, the principal solves the mini-

mization problem in (FE) with V0 substituted in for V , and obtains a solution (c
E
1 , c

U
1 ) and a

continuation value function V1. He again solves the minimization problem in (FE), now with

V1 substituted in for V. This will deliver a (c
E
2 , c

U
2 ), as well a continuation value function V2.

The principal can continue in this recursive fashion; the resulting (cEt , c
U
t )
∞
t=1 solves UIP.

Note that because of hidden savings, the relevant state variable is now a function, not

a number as when only effort is hidden. This is inevitable, because we have to keep track

of continuation utility for all types - that is, for all savings levels. As well, we have to use a

generalization of Abreu, Pearce and Stacchetti (1990) to iterate on (infinite-dimensional) sets

of functions until we find DOM. These infinities pose significant computational difficulties.

Hence, at this point in time, it is not known how to implement Fernandes and Phelan’s

recursive approach in practice when the agent has a continuum of possible savings levels.5

B. The First-Order Approach

Much of the analysis of moral hazard problems uses the first-order approach. To see

how this approach works, it’s useful to look at a two-period version of the unemployment

insurance problem posed in the previous section. I set the discount rate equal to zero, and

5However, if the agent had only a finite number of possible savings levels, we might be able to use this
approach to some effect (a la Doepke and Townsend (2003)).
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assume that the agent has preferences of the form:

ln(c1) + ln(c2)− v(p2)

and a technology of the form:

y = E with probability p2

= U with probability 1− p2

The agent can secretly save at a zero rate of return. The principal cannot observe the agent’s

choice of storage level or the agent’s choice of e2; the principal can condition the agent’s

second period consumption on the realization of y.

The principal’s problem is to (weakly) implement a choice p∗2 ∈ (0, 1) at minimal

expected cost, given that the agent must receive at least reservation utility u∗.Mathematically,

the principal’s problem is:

min
c1,cE ,cU≥0

c1 + p∗2cE + (1− p∗2)cU

s.t. (S, e∗2) ∈ max
e2∈E
S≥0

ln(c1 − S) + p2 ln(cE + S) + (1− p2) ln(cU + S)− αv(p2)

ln(c1) + p∗2 ln(cE) + (1− p∗2) ln(cU)− v(p∗2) ≥ u∗

It is simple to show that given a solution to this problem (c1, cE, cU), then (c1−S, cE+S, cU+S)

is also a solution which leads the agent not to store. Hence, the principal’s minimal costs are
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not increased by considering the following problem with a smaller constraint set:

min
c1,cE ,cU≥0

c1 + p∗2cE + (1− p∗2)cU

s.t. (0, p∗2) ∈ max
1≥p2≥0
S≥0

ln(c1 − S) + p2 ln(cE + S) + (1− p2) ln(cU + S)− αv(p2)

ln(c1) + p∗2 ln(cE) + (1− p∗2) ln(cU)− v(p∗2) ≥ u∗

I call this problem P1.

A difficulty with this problem is that there is no obvious way to attack it using standard

Lagrangian methods. The first-order approach gets around this difficulty by replacing the

agent’s decision problem with its first-order necessary conditions. This creates the following

problem P2:

min
c1,cE ,cU≥0

c1 + p∗2cE + (1− p∗2)cU

s.t. ln(cE)− ln(cU) = α

1/c1 ≥ p∗2/cE + (1− p∗2)/cU

ln(c1) + p∗2 ln(cE) + (1− p∗2) ln(cU)− v(p∗2) ≥ u∗

This problem has two advantages relative to P1. The first is obvious: the constraint

set is such that the problem is easily amenable to Lagrangian methods. The second advantage

is more subtle. In the previous subsection, we saw that the recursive formulation of P1 is

difficult to implement computationally. Werning (2002) considers multiperiod versions of the

problem P2. He shows that, in each period, the principal chooses current consumption and

next period’s continuation utility subject to the incentive constraints on effort, subject to
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delivering a pre-specified amount of continuation utility and subject to not exceeding a pre-

specified upper bound on marginal utility of consumption. The last constraint guarantees

that the principal is satisfying the agent’s intertemporal Euler equation at each point in

time. Thus, multiperiod versions of P2 are recursive in two state variables: continuation

utility and an upper bound on continuation marginal utility. This is much simpler than

multi-period versions of P1 (like our original problem UIP ), where we have to keep track of

an infinite-dimensional state variable (and solve as well for the domain of that state variable).

So, it seems like a good idea to attack P2 instead of P1. Unfortunately, solving P2

may not be the same as solving P1. The problem is that the agent’s objective function is

not globally concave in savings and effort. It follows that the first order conditions of the

agent’s decision problem are only necessary: the constraint set to P2 is in general larger than

the constraint set to P1. This creates the possibility that the solution to P2 may not be

incentive-compatible. I now show that this possibility is in fact realized if v has sufficiently

low curvature.

To do so, I first solve P2. In this two-period context, the solution is simple: at an

optimum, the two weak inequalities must hold with equality. If the last constraint is an

inequality, simply lower c1: this lowers the principal’s objective without violating the other

two constraints. If the second constraint is an inequality, raise c1 by εc1, lower cE by εcE

and lower cU by εcU . This keeps the agent’s ex-ante utility the same, and does not affect the

agent’s effort decision. The principal’s objective is lowered because c1 < p∗2cE + (1 − p∗2)cU

(by Jensen’s inequality).

Thus, the solution to P2 is the unique triple (c∗1, c
∗
E, c

∗
U) that satisfies all constraints

with equality. However, (c∗1, c
∗
E, c

∗
U) is not in the constraint set of P1. Here’s why. Given
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(c∗1, c
∗
E, c

∗
U),the agent’s objective is supposedly maximized at S = 0 and p2 = p∗2. By construc-

tion, the agent’s first order conditions are satisfied (with equality). But look at the Hessian

of his objective:

−1/(c∗1)2 − p∗2/(c
∗
E)
2 − (1− p∗2)/(c

∗
U)
2 (1/c∗E − 1/c∗U)

(1/c∗E − 1/c∗U) −v00(p∗2)

A necessary condition for S = 0 and p2 = p∗2 to solve the agent’s problem is that this Hessian

be negative semi-definite. It’s true that the diagonal elements are non-positive. But the

determinant of the Hessian is negative if v00(p∗2) is sufficiently small, and so, even though

the agent’s first order conditions are satisfied at S = 0 and p2 = p∗2, he can experience a

second-order gain by increasing S above 0 and lowering p2 below p∗2.

Thus, even in this simple example, the first-order approach is invalid if v has sufficiently

low curvature. This possibility is generated by the fact that the agent’s objective function is

not guaranteed to be non-concave as a function of p2 and S. The same kind of reasoning can

be applied in the infinite-horizon setting of Section 2 to show that we cannot always use the

first-order approach.6

There is no set of known conditions in the infinite horizon problem UIP that are

sufficient to guarantee that the first-order approach is valid with hidden savings. Abraham

and Pavoni (2003) point out, though, that it is possible to verify whether a particular solution

to the first-order approach problem is actually a solution to the true problem. They use a two-

6Even without hidden savings, it is possible that the first-order approach is invalid. The basic problem,
again, is that the agent’s problem may not be globally concave in effort. However, there are known sufficient
conditions that preclude this possibility and P1 satisfies those sufficient conditions. See Rogerson (1985b) for
a full discussion.
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step numerical procedure in their analysis of optimal unemployment insurance with hidden

borrowing and lending. First, they solve the first-order approach problem (the infinite-horizon

analog of P2). Second, they verify whether the solution is incentive-compatible, by checking

whether the agent finds it optimal to choose p∗ when confronted with the solution contract.

They conclude that for all of their parameterizations, the solution to the first-order approach

problem is in fact the solution to the true problem.

Werning (2002) also attacks UIP by solving the first-order approach problem. For

some specifications of u and v, he shows numerically and analytically that in the solution to

this problem, the difference between cUt and cEt is falling over time. (He interprets this falling

differential as implying that unemployment benefits should be increasing in the duration of

unemployment.) His paper does not have the kind of explicit verification step contained

in Abraham and Pavoni. Hence, his paper contains no information about whether his

characterization of the solution to the first-order approach problem carries over to the true

problem UIP or not.

4. Solving the Insurance Problem in the Linear Disutility Case

We now return to the problem UIP : what is the principal’s preferred contract among

all those incentive-compatible contracts that provide the agent with ex-ante utility no less

than u∗? We have seen in the previous section that there are no generally valid approaches

that are currently computationally feasible to solving contracting problems with hidden effort

and hidden savings. In this section, I specialize the problem by assuming that:

v(p2) = αp2, α > 0
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Under this assumption, the first-order approach is definitely invalid, because the Hessian of

the agent’s objective is guaranteed not to be negative definite. Nonetheless, I can provide a

complete analytical characterization of the optimal contract.

A. A Relaxed Problem

We begin by first constructing a superset for the set of incentive-compatible contracts.

Any incentive-compatible contract must satisfy:

(R1) (1− β)
∞X
s=0

βsu(cUt+s) = u(cEt )− α(1− β) for all t

This restriction derives from the linearity of the agent’s problem. In particular, in period t,

the agent’s problem is linear in pt+s for s ≥ 0. Hence, if he chooses pt > 0 in every period, he

must be indifferent among all possible p sequences, including setting pt+s = 0 for all s, and

setting pt = 1.

This restriction (R1) is implied by effort’s being hidden. In addition, hidden savings

implies that any incentive-compatible contract must also satisfy:

(R2) cUt ≤ cUt+1 for all t

Suppose cUt+1 < cUt . Then, an unemployed agent in period t prefers to set (St > 0, pt+1 = 0)

to setting (St = 0, pt+1 = 0). But R1 implies that the agent is indifferent between setting

(St = 0, pt+1 = 0) and (St = 0, pt+1 = p∗t+1). Hence, if c
U
t+1 < cUt , it is not optimal for

an unemployed agent in period t to set St = 0 and pt+1 = p∗t+1. This is a contradiction of

incentive-compatibility.
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Note that R2 implies that a contract may satisfy both R1 and:

(R3) u0(cUt ) ≥ p∗t+1u
0(cEt+1) + (1− p∗t+1)u

0(cUt+1) for all t

and still not be incentive-compatible. R1 and R3 are the first-order necessary conditions

that are implied by the optimality of effort strategy e∗ and zero savings. But, just as in the

discussion of the first-order approach in the previous section, they do not take into account

the second-order consequences of simultaneous changes in savings and effort.

Thus, the set of contracts that satisfy R1 and R2 are a superset of the incentive-

compatible contracts. We now pose a relaxed problem: among the contracts that satisfy R1

and R2, and provide the agent with at least u∗ in ex-ante utility, which ones does the principal

prefer?

B. Solving the Relaxed Problem

To solve the relaxed problem, we begin with two straightforward observations. First,

in any solution to the relaxed problem, the ex-ante utility constraint must hold with equality.

If it does not, we can lower u(cU1 ) by ε and u(cE1 ) by ε(1 − β). This change improves the

principal’s objective without violating any of the constraints for ε small. Second, note that

the constraints R1 and R2 together imply that in any solution, cUt < cEt for all t.

The next step is the key one: in any solution to the relaxed problem,

cUt = cUt+1

Suppose not, and cUt < cUt+1. Then, we can construct a new contract by using a perturbation
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similar to that in Rogerson (1985a): raising u(cUt ) by ε, lowering u(c
U
t+1) by εβ

−1 and lowering

u(cEt+1) by εβ−1(1− β). This new contract satisfies R1 for any ε, and satisfies R2 as long as

ε is sufficiently small. The new contract’s change in cost relative to the old one is given by:

ε/u0(cUt )− εp∗t/u
0(cUt+1)− ε(1− p∗t+1)/u

0(cEt+1)

≤ ε/u0(cUt )− ε/u0(cUt+1) (because u
00 < 0 and cEt+1 > cUt+1)

< 0

and so the old contract was not optimal.

Hence, in any contract that solves the relaxed problem, cUt = cU for all t. From R1,

we know that:

cEt = cE = u−1(u(cU) + α(1− β))

for all t. We can then find the unique solution to the relaxed problem by substituting into

the ex-ante utility constraint to find:

cU = u−1[u∗(1− β)]

C. The Optimal Contract

We have characterized the unique solution to the relaxed problem. To verify that it

in fact solves the original problem, we need to show that this solution is in fact incentive-
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compatible. But note that for any p,

u0(cU) ≥ pu0(cE) + (1− p)u0(cU)

Hence, no matter what p sequence that he chooses, an unemployed agent never wants to

save. As well, the agent is indifferent between all levels of p in each period. It follows that

the contract is indeed incentive-compatible, and must be in fact the principal’s preferred

incentive-compatible contract.

D. Discussion

It is useful to contrast this contract with the optimal contract when the agent cannot

secretly save. When savings are observable, it is optimal in this setting for the principal to

leave unemployed agents savings-constrained , so that:

u0(cUt ) < pt+1u
0(cEt+1) + (1− pt+1)u

0(cUt+1)

Intuitively, the optimal way to provide incentives in period (t + 1) is to punish the agent so

severely when he is unemployed that he would like to save from period t to period (t+ 1).

Once the agent can save secretly, it is no longer possible to punish the agent so severely.

The key principle underlying the optimal contract is that it is designed to punish the agent

as much as is possible ex-post, given the agent’s ability to undermine such punishments

using secret savings. One might think that this principle means that the optimal contract

would adjust to secret savings by making the above inequality an equality. Indeed, had we

incorrectly used the first-order approach to “solve” UIP , the “solution” would in fact have
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had this property.

The problem with this thinking is that even if a contract satisfies the intertemporal

Euler equation u0(cUt ) = pt+1u
0(cEt+1)+(1−pt+1)u0(cUt+1), the agent can still undermine the pun-

ishment inherent in the contract by saving secretly. In particular, suppose the intertemporal

Euler equation holds but cUt > cUt+1. Then, the agent will find it optimal to save (c
U
t − cUt+1)/2

from period t to period (t + 1) and then set pt+1 = 0 in period (t + 1). In other words, the

possibility of a joint deviation of saving and shirking imposes the even tighter intertemporal

restriction of cUt ≤ cUt+1 on the optimal contract. Given this restriction, the optimal contract

imposes the most severe punishment on the agent in period (t+1) — and this implies that cUt

equals cUt+1 in the optimal contract.

The structure of the optimal contract implies that for all t:

u0(cUt ) > pt+1u
0(cEt+1) + (1− pt+1)u

0(cUt+1)

so that for all t, the agent is borrowing-constrained. Earlier, I restricted attention to contracts

which induce zero savings on the part of the agent. This raises the question of whether there

are other optimal contracts which induce the same consumption allocation for the agent, but

a positive amount of private savings in at least some period. But it is optimal for the agent to

be borrowing-constrained at every date in the optimal contract; hence, private savings must

be zero at every date.

It is useful to note as well that the optimal contract in this setting is renegotiation-

proof: it is Pareto optimal at the beginning of each period. (Of course, it is not Pareto

optimal after the agent has exerted effort within a period, but before the realization of his
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employment status.) In contrast, Chiappori et al (1994) find that the ex-ante optimal contract

is not renegotiation-proof when they consider a principal-agent problem in which the agent

has only two possible effort choices and can secretly borrow and lend.

5. Conclusions

This paper considers the optimal provision of unemployment insurance for an agent

who can secretly exert effort to find a job and who can secretly save. The paper argues

that it is not practical to compute an approximate solution to the contracting problem using

currently available recursive methods. As well, the first-order approach is not generally valid:

the complementary nature of shirking and saving makes the agent’s problem non-concave.

Despite these difficulties, it is possible to completely and analytically characterize

the optimal contract when the agent’s disutility of effort is a linear function of his prob-

ability of finding a job. The paper uses this characterization to show that the nature of

optimal unemployment insurance is considerably changed if the agent can engage in secret

saving. In particular, the agent’s compensation when he is unemployed or when he gets a

job is independent of his history, instead of depending in complicated ways on the duration

of unemployment. As well, rather than being savings-constrained, the agent faces binding

borrowing constraints at each date.

It is natural to ask whether these findings are robust to introducing small amounts of

curvature in v. I suspect that the exact history independence result will collapse - although

my guess is that even in those cases, there will not be much loss in welfare in restricting

the contract to be history independent. As well, I suspect too that the optimal contract

will continue to leave the agent borrowing-constrained (which also means that the first-order
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approach will not work). The challenge that remains is to develop robust and practical

numerical methods to assess these, and other, conjectures. The continuous-time approach of

Williams (2003) may be a promising step in this direction.
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