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Abstract. This paper studies the following problem. An agent takes actions based on a
possibly misspecified model. The agent is large, in the sense that his actions influence the
model he is trying to learn about. The agent is aware of potential model misspecification
and tries to detect it, in real-time, using an econometric specification test. If his model
fails the test, he formulates a new better-fitting model. If his model passes the test, he
uses it to formulate and implement a policy based on the provisional assumption that
the current model is correctly specified, and will not change in the future.

We claim that this testing and model validation process is an accurate description
of most macroeconomic policy problems. Unfortunately, the dynamics produced by this
process are not at all well understood. We make progress on this problem by relating
it to a problem that is well understood. In particular, we relate it to the dynamics of
constant-gain stochastic approximation algorithms. Doing this enables us to appeal to
well known results from the large deviations literature to help us understand the dynamics
of testing and model revision. We show that as the agent applies an increasingly stringent
specification test, the large deviation properties of the discrete model validation dynamics
converge to those of the continuous learning dynamics. This sheds new light on the recent
constant-gain learning literature.

JEL Classification Numbers: C120, E590

1. Introduction

Since the days of Frisch, Tinbergen, and Haavelmo, econometrics has held out the
hope of improving government policy, especially macroeconomic policy. Initially, efforts
focused on issues of simultaneity and identification, since these problems had not yet been
confronted by the experimental data of the natural sciences. By the early 1970s, these
problems were largely resolved, and applied econometricians could ply their trade using
a sophisticated toolbox of instrumental variables and two- and three-stage least squares
estimators.

Unfortunately, just as these methods began to seem routine, Lucas [30] and Sims [39]
advanced alternative, but equally devastating, critiques of the Cowles Commission method-
ology. Lucas argued that basic dynamic economic theory predicted that econometric mod-
els would not be invariant to changes in government policy. Policy changes would change
agents’ decision rules, and this would change the model. In this case, using a model to for-
mulate a new policy is invalid, unless it properly accounts for the reactions of the private
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sector. Cowles Commission methods did not do this.1 Sims, on the other hand, did not
worry about regime changes. He argued that the notion of a regime change was fraught
with conceptual difficulties, associated with observing unexpected events, and even if such
things could be well defined, they did not happen very often in practice, and hence, were
of limited importance to the task of implementing normal science. Instead, Sims focused
on the dubious nature of the Cowles Commission identification strategy, based on large
numbers of zero restrictions.

In principle at least, both of these critiques have been overcome. The Lucas critique
suggested an alternative identification strategy, based on cross-equation restrictions (see
Lucas and Sargent [29]). The Sims Critique was largely overcome by Sims himself, in his
development of VAR methods. Despite these successes, it is probably fair to say that a
cloud of skepticism still hangs over most macroeconometric research.

Why is this? One possible answer stems from a crucial assumption which, until quite
recently, has been maintained by virtually all macroeconometric research. Responding to
the Lucas Critique requires assumptions about the models that agents use when formulat-
ing their plans. The maintained assumption of current macroeconometric research is that
the government policymaker “knows the model”. Not only that, he knows the private
sector knows the model, and they know he knows the model, and so on, ad infinitum.
That is, both the government and the private sector have a correctly specified model, and
this model is common knowledge.2

Economists have always been uncomfortable with this assumption.3 However, it has only
been recently that much progress has been made in weakening it. Our approach is inspired
by Sargent’s [36, 37] work on bounded rationality. This approach combines the following
elements: (1) There is a decisionmaker that takes actions based on a possibly misspecified
model, (2) These actions influence the true data-generating process. This is descriptive
of many large agent situations, like government policymaking. It also wreaks havoc when
attempting to apply classical statistical methods, which are based on the assumption of
an exogenous data-generating process. Instead, we are confronted with a self-referential
dynamic system [31] in which the data generating process interacts with the decision
marker’s belief formation process. As a result, all the classical convergence and consistency
theorems go out the window, and we must devise new methods that incorporate the
following features: (3) The decision maker is aware of potential model misspecification,
and tries to detect it, in real-time, using best practice econometric methods; (4) If the
current model is rejected, he formulates a new model that is more in line with the data,
and finally; (5) If the current model is not rejected, he formulates and implements a policy
based on the provisional assumption that the current model is correctly specified and will
not change in the future. This last ingredient puts us squarely in the bounded rationality
camp, since the decisionmaker fails to recognize and respond to his own influence over
future data. He learns, but purely in a passive, retrospective way. Of course, it also

1However, Jacob Marschak [32], a Cowles founding father, was aware of the problem.
2During the past couple of years there has been a flood of research on model uncertainty and robust

policies. We relate our approach to this research as we go along.
3See Frydman and Phelps [20] for an early collection of articles expressing doubts about the common

knowledge assumptions of the Rational Expectations Hypothesis
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side-steps the conceptual difficulties of a Bayesian approach (see, e.g., Bray and Kreps
[4]).

Confronted individually, each of these features can be handled. For example, due to
the work of Vuong [41] and Hansen and Sargent [21], econometricians now know how to
test and compare misspecified models. Due to the work of Chu, Stinchcombe, and White
[11] econometricians know how to detect model changes in real-time. Due to the work of
Marcet and Sargent [31] economists know how to analyze self-referential dynamic systems.
Unfortunately, when you combine all these elements, there are few, if any, results.

Our paper attempts to make progress on this difficult problem. We do this by relating it
to a different problem with known features. Specifically, we show that in a certain limiting
sense the dynamics produced by a testing-and-model-validation process are equivalent to
the dynamics produced by a continuously revised, constant-gain stochastic approximation
algorithm. Given this, we can then approximate our model validation dynamics by ap-
pealing to the recent results of Williams [42] and Cho, Williams, and Sargent [10]. These
papers apply large deviation methods to characterize the escape dynamics of adaptive
learning models. Escape dynamics are proving to be a useful way to model a wide-range
of markov-switching data, such as inflation stabilizations (Sargent [37]) and recurrent
currency crises (Kasa [23] and Cho and Kasa [8]).

The convergence between these two processes occurs as the decisionmaker applies an
increasingly stringent specification test. When testing, we assume he employs a generalized
relative entropy test (see Dembo and Zeitouni [17], ch. 7), which is known to be optimal in
the Neyman-Pearson sense, even for quite general alternatives. For this reason, Zeitouni
and Gutman [43] call it a ‘universal hypothesis test’. The use of a relative entropy test
is also quite natural here, given our focus on large deviations, since we know from Stein’s
lemma that there is a close connection between Type I and Type II error rates and relative
entropy, and we know from Sanov’s Theorem that there is a close connection between
relative entropy and large deviation rate functions.4 The test accepts the current model if
and only if the relative entropy between the data and the model does not exceed a given
threshold, say ρ > 0. We do not have to say much about this threshold, since we focus
on the case ρ ↓ 0. More generally, one could specify ρ to optimally trade-off Type I and
Type II errors.5

When his model is rejected we assume the decisionmaker builds a new model using
maximum likelihood estimation. When ρ is large, these model revisions occur infrequently,
and as a result, the reference model path tends to be rather ‘jerky’. However, we show
that as ρ ↓ 0 the discrete model revision dynamics converge in a very strong sense to the
continuous recursive learning dynamics. In particular, both the testing dynamics and the
learning dynamics induce probability distributions over sample paths. Our convergence
result implies that these two probability distributions coincide not only in the ‘center’ of
the distribution, but also in the tails. From this, we can conclude that the two processes
share the same large deviation properties (e.g., escape routes and escape times) as ρ ↓ 0.

4See Cover and Thomas [16] for a nice discussion of Stein’s lemma. Dembo and Zeitouni [17] provide a
thorough discussion of Sanov’s Theorem.

5See, e.g., Lai and Shan [28]. They point out that under certain conditions relative entropy tests are
intimately related to more familiar CUSUM tests.
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This asymptotic equivalence result sheds new light on the rapidly growing constant-gain
learning literature. The early least-squares learning literature focused on the question of
asymptotic convergence to a Rational Expectations equilibrium.6 This is an inherently
nonstationary problem, and is mainly of theoretical interest. To explain observed time
series, there are great advantages to studying stationary equilibria. Constant gain learning
algorithms produce stationary equilibria. The recent constant gain learning literature has
shown that when agents suspect that the model they are learning about may be changing
over time, and they respond to their suspicions by placing more weight on recent data,
then persistent cyclical dynamics can sometimes result. Interestingly, while these dynamics
confirm the agents’ suspicions, they do so in an entirely self-referential way, since they only
occur because of the agents’ suspicions.

One common way to motivate constant gain learning is to highlight its connections to
more familiar Kalman filtering approaches. As noted by Sargent [37], and discussed in
more detail by Sargent and Williams [38], constant gain recursive learning algorithms are
(nearly) equivalent to the Kalman filter when priors are based on ‘slow’ random walk
parameter drift. Drawing this connection is useful, because it reveals a potential problem
with contant gain learning models. In particular, the small-noise/random-walk specifica-
tion of parameter drift in a sense ‘commits’ the agent to a constant rate of parameter drift,
when in fact, during escape episodes, the parameters may be changing quite rapidly. This
raises the question of whether we are inappropriately tying the hands of the agents in our
models.7

A model validation approach potentially avoids this inconsistency. Rather than adopt
the somewhat artificial assumption that agents update their models each period at the
same rate, we can instead adopt the more realistic assumption that agents monitor their
models continuously, but only abandon them if they go sufficiently far off track. A time
invariant rejection threshold will automatically generate a greater rate of model revision
during times of economic turbulence. However, as we discuss later, a model validation
approach does face a similar issue, since we must decide how to use past data when
constructing our test statistics. The statistically optimal rate of discount may well be
time varying. We briefly touch upon this issue at the end of the paper, in the context of
robust hypothesis testing [43, 33, 34].

Another payoff from our result is that it helps us to understand a puzzling feature
of macroeconomic policy. Recent work by Cogley and Sargent [13] suggests that the Fed
actually began to suspect the short-term Phillips curve was misspecified by the mid-1970s,
several years before the Volcker disinflation. Cogley and Sargent attribute this policy
inertia to Bayesian model uncertainty. The Fed stuck to a high inflation policy because
it risk-dominated the policy implied by the better-fitting model. Our paper provides an
alternative interpretation of policy inertia - even if a model is rejected, it is typically the
case that a similar model is the best fitting model. That is, even though a tail-sensitive
test, like our relative entropy test, may detect a change, estimators like least squares or

6The treatise by Evans and Honkapohja [19] provides a definitive survey of this literature.
7Note, this issue is related to a recent debate between Sims [40] and Cogley and Sargent [12]. Sims

argues that heteroskedasticity, which is not properly accounted for in agents’ models, can fool them into
thinking their models are changing. Recent empirical work by Cogley and Sargent [15] suggests a role for
both.



LEARNING AND MODEL VALIDATION 5

maximum likelihood, which focus on fitting the center of the distribution, will typically
dictate a modest model revision. Drastic policy changes only take place at self-confirming
equilibria, where model rejections are surprising, and therefore, informative.

The remainder of the paper is organized as follows. Section 2 motivates the analysis
by outlining a version of the canonical Phillips curve example of Sargent [37]. Section
3 contains a detailed description of both the recursive learning dynamics and the model
validation dynamics. Various assumptions and regularity conditions are also discussed.
Section 4 proves that the H-functionals of the two processes converge to each other as
ρ ↓ 0. From Kushner [27], this is sufficient to establish convergence of the escape dynamics.
Section 5 discusses extensions, and section 6 concludes with some suggestions for future
research.

2. An Example

Although we formulate our results in a general setting, it is useful to begin with a
concrete example. A general treatment of the problem involves a lot of notation and
terminology, and it will be helpful to have observable counterparts in mind as we go
along. To do this we borrow heavily from Sargent [37] and Cho, Williams, and Sargent
[10] (henceforth denoted CWS).

2.1. Recursive Learning. Consider the following example of Sargent [37], in which
unemployment ut and inflation yt are assumed to evolve according to the expectation-
augmented Phillips curve:

(2.1) ut = u∗ − θ(yt − xe
t ) + v1t,

where θ > 0, xe
t is the private sector’s forecast of inflation, u∗ is the natural rate of

unemployment, and v1t is white noise. The realization of actual inflation yt is determined
by the government’s inflation target xt and a nominal shock v2t:

(2.2) yt = xt + v2t

where v2t is also white noise. Sargent [37] and CWS [10] impute a subtle form of mis-
specification to the government, which misinterprets the role of private sector beliefs. In
particular, in place of the expecations-augmented Phillips curve, the government mistak-
enly believes in a Keynesian short term Phillips curve8.

(2.3) ut = γ0 + γ1yt

This misspecification injects parameter drift into the government’s approximating model,
arising from the evolving beliefs of the private sector. The government responds to this
drift by using a discounted recursive least squares algorithm to update the coefficient of
its model. Letting γ = (γ0, γ1)T we have

(2.4) γ̂t+1 = γ̂t + aR−1
t φtet, Rt+1 = Rt + a

(
φtφ

T
t − Rt

)
, t ≥ 0,

where the regression vector is φt = (1, yt)T, the innovation is et = ut− γ̂0t− γ̂1tyt, and a is
the gain sequence. Some form of discounting is critical since one hopes that the estimates

8This specification error is subtle in a sense made precise by Sargent [35]: given any historical data on
yt and ut, the two models (2.1) and (2.3) are observationally equivalent



6 IN-KOO CHO AND KENNETH KASA

will approximate the current best model in the parameterized model class in a changing
environment. The target inflation rate is selected by using the perceived model in (2.3) to
solve the so-called Phelps problem,

min
xt

E[u2
t + y2

t ]

The solution gives the target inflation rate as a function of the government’s model,
parametrized by γ̂t. In this example, we invoke Sargent’s “Fed Watcher” assumption,
meaning that the private sector knows the government’s inflation target:

xe
t = xt.

This allows us to focus on the behavior of the government, and can be replaced by a much
milder assumption. Note that the distribution of yt is affected by three elements: (1) the
government’s model γ̂t, (2) the state observed by the government, and (3) any relevant
states the government overlooks (in this case, the private sector’s expectation). Let Xt be
the observed state and Zt be any state which the government is not aware of, or simply,
fails to include in (2.3).9 We can write

(2.5) yt = br(γ̂t, Xt, Zt).

Following Sargent [37], we can calculate the Kydland and Prescott outcome, which corre-
sponds to the Nash equilibrium or the self-confirming equilibrium where

(2.6) γe = (γe
0, γ

e
1) = (u∗(1 + θ2),−θ)

and the government sets the inflation target as

xt = θu∗.

Another important outcome is the Ramsey outcome which corresponds to the Friedman
rule where

γr = (γr
0, γ

r
1) = (u∗, 0)

and the government is committed to
x = 0.

One can show that as a → 0, the sample path induced by the recursive learning dynamics
can be approximated by a trajectory induced by an ordinary differential equation (ODE)

γ̇ = ϕ(γ)

which has (2.6) as a unique stable stationary point. By “approximated”, we mean the
sample paths induced by the two dynamics are close in the topology of weak convergence
as the gain a → 0 in (2.4).

A simulation of a typical sample path of {yt} based on these specifications is shown
in Figure 1. Although this is a highly stylized model, the overall dynamics capture the
nonlinear aspect of post WWII U.S. inflation, i.e, persistent increases followed by sharp
decreases. The simulation also suggests that it might be dangerous to conclude that U.S.

9We interpret the missing state varaibles Zt broadly. Suppose the governement becomes aware of the
fact that realized inflation is affected by expected inflation, but does not correctly specify the functional
form for the private sector’s expectation formation process. In this case, Zt would capture the gap between
the true expectations of the private sector and the expectations calculated by the government according
to its misspecified model.
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Figure 1. The right panel is the moving average of monthly C.P.I. in-
flation (all items), and the left panel is simulated inflation based on the
recursive learning model.

inflation has been conquered, despite the fact that inflation has been under control for
the past 25 years [37].10 That is, Figure 1 reveals the need to consider large deviation
properties when evaluating the long run performance of policies [37]. With occasional
excursions away from the self-confirming equilibrium, the overall average inflation rate is
significantly lower than the self-confirming equilibrium rate.

While recursive learning models offer an elegant explanation of these complex dynamics,
this approach has been subject to criticism since the original work of Bray [3]. Learning
models are motivated by misgivings about the model specification assumptions of the
Rational Expecations Hypothesis: even if agents do not know the exact model, they
at least know it up to some finite dimensional parametric class, and moreover, they all
have the same model. Learning models allow agents to entertain diverse and approximate
models, and to update their models in light of new evidence. Still, it is rather discomforting
to assume that agents use the same misspecified model over time, without even a drop of
suspicion about the parametric validity of the model. Once the modeler endows him with
a parametric model, the agent is only allowed to update the parameters to fit the data.11

As noted in the Introduction, this is particularly disturbing in this constant gain example,
because the data on inflation indicates that the underlying state may not be stationary.
In this case, smart agents may decide to look for a new parametric model.

A natural question is whether key qualitative and quantitative features of the learning
dynamics continue to hold if the model is subject to specification tests prior to its use for
decision making. We now compare two distinct settings: (1) The conventional least squares
learning model just discussed, and (2) An alternative model in which the decision maker
continually tests the “validity” of his model. One might expect the resulting validation
dynamics to be very different from the dynamics found in the conventional model. In fact,
the reverse is true, which provides a powerful response to the above criticism of recursive
learning models.

2.2. Model validation. The key step to formalizing the idea of model validation is to
formulate a method that gives the government some sense of the reliability of the current
model based on the current estimate γ̂t. In this example, we impose two restrictions in
order to illuminate the key ideas.

10Further details along with a formal analysis can be found in [10].
11It should be noted that there are small literatures devoted to relaxing this assumption. See, e.g., Chen

and White’s [7] work on nonparametric recursive learning, and Brock and Hommes [6] work on forecast
model selection.
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A1. vi,t ∼ N(0, σ2
i ), and the policy maker knows the correct distribution.

A2. the policy maker’s model is confined to the parametric class (2.3).
These assumptions greatly simplify the computation of the test statistics. Because the

policy maker knows the distribution, we side-step a potentially important source of model
uncertainty.12 We shall return to distributional uncertainty after we present the main
results. The second assumption delineates the class of models of the government, which
is the class of linear regression models with 2 fixed explanatory variables. In principle,
the number of explanatory variables could be endogenously determined through a model
selection process.

Let Mt be the test statistics computed from the data. While one can consider different
kinds of specification tests, we opt for the relative entropy criterion for two reasons. First,
for a broad class of models, a threshold relative entropy test is optimal in the sense of
Neyman-Pearson [43, 17]. In fact, relative entropy and likelihood ratio tests are widely
used as specification tests (e.g.,[41]). Second, relative entropy is intimately linked to the
Kullback-Leibler information criterion for model selection. This enables us to formulate
the testing and selection of models in a unified framework.

Since we restrict our focus to linear Gaussian models, Mt can be completely represented
by the sample mean µ̂t and the sample covariance matrix Σ̂t, which can be estimated
recursively as

µ̂t+1 = µ̂t + ag

([
ut

yt

]
− µ̂t

)

Σ̂t+1 = Σ̂t + at

([[
ut

yt

]
− µ̂t

] [
[ut yt] − µ̂T

t

]
− Σ̂t

)

where [·]T is the transpose of [·].
Suppose that the government’s model is γ̃k = (γ̃0,k, γ̃1,k). Let Mγ̃k

be the probability
distribution over (ut, yt) when the government takes an action based on γ̃k. Define the
relative entropy between the model and the data as

I(Mt‖Mγ̃k
) =

∫
dMt

dMγ̃k

dMt.

Let µγ̃k
and Σγ̃k

be the mean and the covariance matrix of Mγ̃k
. If both models have

Gaussian distribution, we then have

I(Mt‖Mγ̃k
) =

1
2

(
− log

|Σ̂t|
|Σγ̃k

|
+ trace

(
Σ−1

γ̃k
Σ̂t

)
− 2 + (µ̂t − µγ̃k

)TΣ−1
γ̃k

(µ̂t − µγ̃k
)

)

At the beginning of period t, the government has model γ̃k, characterized by an esti-
mated short term Phillips curve

ut = γ̃0,k + γ̃1,kyt

It then puts γ̃k to the test:

(2.7) H0: (ut, yt) is generated by Mγ̃k
.

12This issue is addressed in [33, 34].
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The government validates γ̃k if and only if

I(Mt‖Mγ̃k
) ≤ ρ

for a fixed threshold ρ > 0. If H0 is accepted, the government uses the short term Phillips
curve to set the inflation target in period t. If γ̃k is rejected, then the government builds
a new reference model γ̃k+1 by solving

min
γ̃

I(Mt‖Mγ̃).

Within the confines of linear Gaussian models, γ̃k+1 is precisely the maximum likelihood
estimator, which can be calculated using recursive least squares. Then, the government
chooses the inflation target in period t based on γ̃k+1. We refer to the resulting dynamics
of γ̃k and yt as the validation dynamics.

2.3. Simulations and Observations. Figure 2 reports typical sample paths from two
simulations when the threshold for the specification test is ρ = 0.0015, which in this case
is quite stringent. Not surprisingly, when the threshold is relatively large, the validation
dynamics can differ markedly from the learning dynamics, since the parameters under
the validation dynamics are evolving much more slowly than under the recursive learn-
ing dynamics. However, as Figure 2 reveals, as the government runs a more stringent
specification test, the two sample paths become virtually identical.
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Figure 2. Typical sample paths of inflation with more stringent specifi-
cation tests. The left panel reports the sample path from the validation
dynamics, and the right panel depicts the sample path generated by the
recursive learning dynamics

We shall formally demonstrate that as the government runs a increasingly tight valida-
tion test by reducing the threshold ρ > 0, the large deviations properties of the validation
dynamics converge to those of the learning dynamics. This asymptotic equivalence pro-
vides a new behavioral foundation for recursive learning dynamics.

Validation tests, especially those based on relative entropy, can detect discrepancies
between the reference model and the data even in the tails of the distribution. However,
maximum likelihood or least squares estimators choose models that fit the data near
the center of the empirical distribution. Even if the short term Phillips curve reveals
discrepancies from the data in the tails of the distribution, the best fitting model remains
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the short term Phillips curve until the state of the economy reaches the self-confirming
equilibrium. U.S. data suggests this occurred in early 1980’s. The resulting policies exhibit
inertia along the convergent path. Even when the short term Phillips curve is rejected by
the specification test, the government may appear to cling to the same model with only
slightly different parameters, pursuing the same high inflation policy. However, once the
economy reaches the self-confirming equilibrium, rejections of the reference model become
unlikely events. Thus, conditioned on the rejection, the new reference model can differ
significantly from the status quo model, which explains the drastic policy changes that
take place around the self-confirming equilibrium.

3. A General Framework

3.1. Recursive Learning. Let (X, Z) ∈ X × Z ⊂ Rm × Rn−m be a state vector, where
X is a vector of observable variables, and Z represents variables which the decision maker
does not observe, or simply does not include in his model for any reason. To simplify
exposition, assume that X is compact.13 Let P be the set of all possible models available
to the decision maker. We assume that P is the set of all linear models defined over the
elements of X , including lags of X up to ` periods. In this paper, we assume that ` is
exogenously given so that we can parameterize a model by a vector β of coefficients in
Rm(`+1). This permits us to represent a model as a vector autoregression:

(3.8)
∑̀

`=0

L`βtXt = ξt

where L is the lag operator
L`βtXt = βt−`Xt−`

and ξt is the regression residual. Let β be the profile of all regression coefficients.
Given βt, the decision maker takes an action br(βt, Xt) ∈ X , which results in an outcome

profile (yt, zt) ∈ X×Z in period t from which only yt is observed by the decision maker. We
assume that br(·) obtains by solving an optimization problem. Based on yt, the decision
maker modifies the regression coefficient βt according to a recursive formula:

(3.9) βt+1 = βt + aΨ(βt, Xt, Zt)

for a > 0, which is the gain sequence. Note that the right hand side includes Zt, which
the decision maker is not aware of. Although Zt is not observed, it affects the evolution
of βt because yt is influenced by Zt. Let

(3.10) β̇ = Ψ(β)

be the associated ordinary differential equation for (3.9):

Ψ(β) = lim
T→∞

1
T

E

[
T∑

t=1

Ψ(βt, Xt, Zt) | β1 = β, X1 = x, Z1 = z

]
.

We make a number of assumptions to ensure that (3.10) is a reasonable approximation
of the sample paths induced by (3.9) as a → 0.

13The case where X is unbounded can be handled if the probability distribution of X has sufficiently
thin tails.



LEARNING AND MODEL VALIDATION 11

Assumption 3.1. (1) If ∃K ⊂ Rm which is convex and compact so that βt+1 6∈ K,
then there exists a projection facility that pushes βt+1 back into the interior of K.
Along the boundary of K, the gradient vector of (3.10) is pointing to interior of
K.

(2) Ψ(β) is a continuously differentiable function, and ∃βe in the interior of K such
that Ψ(βe) = 0. βe is a locally stable in the sense of Lyapunov.

(3) Given β ∈ Rm, the probability distribution induced by (3.8) is i.i.d over time with
a full support over X, and the decision maker knows the distribution of ξt.

(4) ∃M > 0 such that

(3.11) E [exp〈α, Ψ(β, X, Z))〉]≤ exp |α|M ∀α ∈ Rm.

Under Assumption 3.1, the set of sample paths induces by (3.9) converges to the trajec-
tory of (3.10) weakly, as a → 0 and t → ∞: ∃ε′ > 0 such that ∀β1 ∈ Nε′(βe), ∀ε ∈ (0, ε′),

lim
t→∞

lim
a→∞

P (|βt − βe| ≤ ε) = 1.

See Dupuis and Kushner [18] for a formal proof. At βe, the beliefs of the decision maker
are confirmed, even if the decision maker’s model is not properly specified. Thus, we call
βe the self-confirming equilibrium [37].

The third condition implies that the innovation in each period is i.i.d. for a given
perception of the decision maker. We can easily expand the model to cover the case where
the innovation term evolves according to an ARMA process. Note that as βt changes
in response to the sequence of observations, the regression residual need not remain i.i.d.
The assumption that the decision maker knows the correct distribution ξt differentiates our
exercise from the robust decision making problem analyzed in [33, 34]. After presenting
the main result, we shall explore the consequences of dropping this assumption so that
the decision maker entertains more general forms of model uncertainty.

While we are intentionally avoiding distributional uncertainty, the decision maker is still
exposed to two kinds of model misspecification. First, his model may be under-specified,
as he is not aware of Z. Second, and more importantly, his model may not capture the
complex interaction between the evolution of his model and the evolution of the state
variables. The second misspecification differentiates the analysis of this paper from the
econometric literature on specification testing [41], where the data generating mechanism
is exogenously given.

Condition (4) is commonly known as Cramer’s condition, which essentially implies the
existence of the moment generating function of Ψ(β, X, Z). This is a standard condition
to ensure that the distribution of Ψ(β, X, Z) does not have excessively thick tails.

Because we need to investigate the large deviation properties of (3.9), we need additional
notation. Define the H-functional as
(3.12)

H(α, β, t) = lim sup
τ→0

lim sup
a→0

τ

a
log E


exp〈α,

dτ/ae∑

k=1

Ψ(βt+k, Xt+k, Zt+k))〉 | βt = β,Ht


 ,
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where Ht is the sigma algebra generated by information at t. The Legendre transform of
the H-functional is defined as

(3.13) L(β, ζ, t) = sup
α

[〈α, ζ〉 − H(α, β, t)]

and the action functional is then defined as

(3.14) S(β, T, φ) =
∫ T

0
L(φ̇, φ, t)dt

where φ(0) = β and φ is absolutely continuous; otherwise, S(β, T, φ) = ∞. The action
functional captures the ‘cost’, in probabilistic terms, of any given path. Less likely paths
are assigned higher costs.

Dupuis and Kushner [18] show that if H is α-differentiable at α = 0 then (3.9) satisfies
the large deviation upper bound:14

(3.15) lim
a→0

a logP (β ∈ A | β(0) = βe) ≤ − sup
t

inf
At

S(φ(0), t, φ) = −S∗ < 0

where
At = {φ | φ(0) = βe, ∃t, φ(t) 6∈ Nδ(βe)}

and the equality holds along the dominant escape path out of Nδ(βe). In general, calcu-
lating the large deviation rate function, S∗, is a challenging calculus of variations problem.
However, Williams [42] shows that in Linear-Quadratic/Gaussian settings the action func-
tional simplifies to the following quadratic form:

(3.16) S(β, T, φ) =
∫ T

0
[φ̇ − Ψ̄(φ)]′Q†[φ̇ − Ψ̄(φ)]dt φ(0) = β

where the weighting matrix Q contains information on the likelihood, or ‘cost’, of depar-
tures from the mean dynamics. For example, at a given value of β, the instantaneous
escape direction is just given by the eigenvector associated with the smallest eigenvalue of
Q†. The full dynamic path can be obtained by solving a set of matrix Lyapunov equations.

3.2. Validation Dynamics. Consider a decision maker who is aware of possible model
misspecification, and therefore runs a specification test before using the model to guide his
decision. Because the objective of this process is in a certain sense to validate his current
model, we call the induced dynamics of the regression coefficients and the observed state
variables the validation dynamics. This alternative behavior is an abstraction of the casual
observation that policy makers search for better models by routinely running specification
tests and selecting a best possible model for a given set of available data. Instead of
focusing on a specific testing method, we shall consider a class of rules that satisfy fairly
common properties.

As in the recursive learning models, t = 1, 2, . . . represents “calendar” time. We call
the model the decision maker uses to guide policy a reference model. Let γk ∈ Rm be the
k-th reference model. Because the same reference model can be used over many periods,
typically k ≤ t.

14By duality, the α-differentiability condition can be replaced by the condition that there exists a unique
ζ∗ satisfying L(β, ζ∗, t) = 0.
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We assume that the reference model has the same m parameters as the recursive learning
model, because the reference model is also subject to possible misspecification. If γk is
validated, the decision maker chooses an action and yt = br(γk, Xt, Zt) ∈ X is realized in
period t.

To be validated, the model parametrized by γk must pass a relative entropy specification
test. To illustrate the validation process, it is more convenient to represent a model
by a probability distribution on X induced by γk. Because of the feedback feature, γk

influences the underlying probability distribution, in particular, of X ∈ X. Let Mγk
be

the probability distribution induced by γk. The causality here is very important. Unless
γk is a self-confirming equilibrium, γk need not be the best fit model for the distribution
Mγk

.
The test statistic is constructed from the empirical distribution Mt:

(3.17) Mt(A) = (1 − a)
t∑

`=tk

at−`+11X`∈A

where tk is the first point in time when the present reference model γk is implemented. If
the reference model is replaced, then the decision maker should discard old data, because
they are generated under different regimes. However, even if one fixes tk = 1 ∀k, the same
analysis goes through.

We use relative entropy to define the discrepancy between the two probability distri-
butions, which requires the existence of the Radon-Nikodym derivative. To this end, we
need to “smooth” out the empirical distribution so that the test statistic has full support
over X. Let M̂t be the smoothed empirical distribution: M̂t is atomless and the support
of M̂t is X and

(3.18) M̂t −Mt → 0

with probability 1 as t → ∞. We intentionally remain vague about the specific details
of the smoothing method which might depend on the characteristics of the assumed X
distribution. For example, in the Gaussian case it suffices to estimate recursively the first
two moments from the data to build M̂t.

Define

Ia
t,k = I(M̂t‖Mγk

) =
∫

log
dM̂t

dMγk

dM̂t

whenever dM̂t
dMγk

is well defined. Otherwise,

I(M̂t‖Mγk
) = ∞.

as the relative entropy between the smoothed empirical distribution and the reference
model. Clearly, (3.18) implies that Ia

t,k is a consistent estimator of the relative entropy:
∀a, k, Ia

t,k − I(Mt‖Mγk
) → 0 with probability 1.

Because the empirical distribution is constructed recursively after a new reference model
is implemented, it is reasonable to assume that Ia

t,k can be approximated by a deterministic
process.
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Assumption 3.2. As a → 0, {Ia
t,k} can be approximated by a trajectory of the determin-

istic path induced by
˙It,k = ϕ(It,k)

where ϕ is continuous. Let tk be the first period when the k-th reference model is adopted.
Then, ∀k, ∀τ > 0,

lim
a→0

E






tk+dτ/ae∑

t=tk

Ia
t,k −

∫ τ

0
ϕ(Is,k)ds




2

| Ia
tk ,k = I0,k


 = 0

We can now describe formally the validation process. Let γ1 = γ ∈ Rm be the initial
reference model, and ρ1 = 0 be the initial reference value. Fix ρ > 0, k ≥ 1 and t ≥ 1.
Given reference model γk in period t, test statistics Ia

t,k, a reference value ρk, and threshold
ρ > 0, the decision maker uses γk to choose an action in period t if and only if

(3.19) Ia
t,k ≤ ρ + ρk.

If Ia
t,k > ρ + ρk, the decision maker discards γk and choose γk+1 by solving

(3.20) ρk+1 = min
γ

I(M̂a
t,k‖Mγ)

and if there exist multiple solutions, the decision maker chooses the one with the fewest
parameters.

Ma
t,k is absolutely continuous with respect to Mγ . The minimized value provides the

reference value ρk+1 for γk+1, which is in fact the lowest relative entropy possible. Es-
sentially, the decision maker is constantly searching for a “better” model in the sense of
reducing relative entropy.

If m = n and the model is properly specified in a statistical sense, then (3.19) is just
a likelihood ratio test, and (3.20) describes maximum likelihood estimation. In contrast
to standard statistical testing problems, the notion of a “true model” is changing over
time here. Thus, it is not unusual for the decision maker to reject a misspecified model
and replace it by another misspecified model. Thus, our selection process is close to what
Vuong [41] proposes. Yet, the alternative hypothesis is not well specified in our case, while
the null hypothesis is that the reference model is an accurate description of the state. In
this sense, our testing procedure is the non-robust version of the universal testing method
[43, 33, 34].

In case of the Gaussian perturbations, as illustrated in section 2, M̂t is induced by a
maximum likelihood estimator. Thus, once the reference model is rejected, the decision
maker can borrow the maximum likelihood estimator from M̂t to construct γk+1. In this
case, ρk+1 = 0. In general, if we restrict m � n, then ρk is typically bounded away from
0. In a certain sense, ρk > 0 is the penalty the decision maker pays for using a restricted
class of models.

For later reference, let us define the H-functional for the validation dynamics:
(3.21)

Hρ(α, γ, t) = lim sup
τ→0

lim sup
a→0

τ

a
logE


exp〈α,

dτ/ae−1∑

k′=0

Ψ(γk, Xt+k′ , Zt+k′)〉 | γt = γ,Ht


 ,
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and similarly, we can define the mean dynamics for the validation dynamics as

γ̇ = Ψρ(γ, x, z)

where

Ψρ(γ, x, z) = lim
T→∞

1
T

E

[
T∑

t=1

Ψ(γk, Xt, Zt) | γ1 = γ, X1 = x, Z1 = z

]

where γk evolves according to (3.19) and (3.20).

4. Results

We shall now prove that the sample path properties of the validation dynamics converge
to those of the learning dynamics as the testing threshold goes to zero. As pointed out in
section 2, it is not enough to prove that the trajectories of the mean dynamics are close.
We must also show that the large deviation properties get close as ρ → 0.

It is instructive to first examine the convergence of the mean dynamics. This implies that
if the initial model is not a self-confirming equilibrium, the recursive learning dynamics
and the validation dynamics push the model along the same trajectory.

Proposition 4.1. ∀γ where Ψ(γ) 6= 0.

lim
ρ→0

Ψ(γ)− Ψρ(γ) = 0.

Proof. The basic idea of the proof is simple. If γ is not a self-confirming equilibrium, then
the reference model is rejected in finite time with probability one, because the decision
maker’s action changes the underlying probability distribution. For small a > 0, the
interval that a reference model survives converges to a deterministic time. That time
interval shrinks as the decision maker runs a tighter specification test: ρ → 0. Thus, the
reference model is updated frequently as in the recursive learning model.

To formalize this intuition, recall that the evolution of the test statistic Ia
t,k converges

to a deterministic process

İt,k = ϕ(It,k).

∀It,k, it takes τk,ρ amount of time to get rejected.
Fix τ > 0 and consider

E

dτ/ae∑

t=1

aΨ(γk, Xt, Zt)

with γ1 = γ. Let T a
k be the random time when the k-th reference model is rejected. Since

the test statistics converges to a deterministic process, we know ∃ζk > 0 such that

a(T a
k+1 − T a

k ) → ζk
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as a → 0. Thus,

Ea

dτ/ae∑

t=1

Ψ(γk, Xt, Zt) = E
K∑

k=1

a

T a
k+1∑

t=T a
k +1

Ψ(γk, Xt, Zt)

= E




K∑

k=1

a(T a
k+1 − T a

k )


ET a

k

T a
k+1∑

t=T a
k +1

1
T a

k+1 − T a
k

Ψ(γk, Xt, Zt)




 .

As a → 0,

ET a
k

T a
k+1∑

t=T a
k +1

1
T a

k+1 − T a
k

Ψ(γk, Xt, Zt) → Ψ(γk, Xtk , Ztk)

and
a(T a

k+1 − T a
k ) → ζk

with probability 1. Thus,

E

dτ/ae∑

t=1

aΨ(γk, Xt, Zt) → E
K∑

k=1

ζkΨ(γk, Xtk , Ztk).

As ρ → 0, the right hand side is an average of Ψ(γk, Xtk , Ztk). As τ → 0, we obtain
(3.10). Q.E.D.

However, this logic does not apply if γ is the self-confirming equilibrium, because the
mean dynamics around the self-confirming equilibrium vanish. Around the self-confirming
equilibrium, we need to compare probability distributions of unlikely events, which are
governed by large deviation properties. While the analysis of large deviations in principle
requires us to minimize the action functional, Kushner [27] proves that if two H-functionals
converge uniformly, then so do the large deviation properties, such as escape paths and
expected escape times.

Theorem 4.2. If Ψ(γ) = 0, then

lim
ρ→0

Hρ(α, γ, t)− H(α, γ, t) = 0 ∀α, ∀t.

Proof. Note that
H(α, γ, t) = logE exp〈α, Ψ(γ, X,Z)〉.

Fix τ > 0. Because Ψ(γ) = 0, the reference model is the self-confirming equilibrium, and
therefore, rejection is an unlikely event when a → 0. By (3.15), characterize the bound
for the probability: ∀τ > 0,

P (∀T a
k , aT a

k ≥ τ | γ = βe) ≥ 1 − e−S∗/a.

Because the rejection time is random, it is necessary to examine two separate cases.

Case 1. ∀T a
k , aT a

k ≥ τ
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In this case, which occurs with probability at least 1− e−S∗/a, the initial reference model
is not rejected. Thus, throughout dτ/ae periods, the decision maker continues to take the
same action. Thus, the H functional in this case is

lim
τ→0

lim
a→0

logE


exp〈α,

dτ/ae∑

k′=1

Ψ(γ, Xt+k′, Zt+k′)〉 | Ht, ∀T a
k , aT a

k ≥ τ




= log E exp〈α, Ψ(γ, X,Z)〉= H(α, γ, t).

Case 2. ∃T a
k : aT a

k < τ

This is a small probability event, but also is the case where γk is changing. As a result, we
have little idea about the size of the forecasting error, because γk is selected to minimize
the Kullback-Leibler distance rather than the forecasting error. Here, we have to use the
rate function in combination with the fact that we can choose τ > 0 arbitrarily small
before letting a → ∞. Although we have little idea about the forecasting error, (3.11) in
Assumption 3.1 implies that ∃M > 0 such that

E [exp〈α, Ψ(β, X, Z))〉]≤ exp |α|M.

Thus,

lim
τ→0

lim
a→0

logE


exp〈α,

dτ/ae∑

k′=1

Ψ(γ, Xt+k′, Zt+k′)〉 | γ1 = γ,Ht, (∃T a
k : aT a

k < τ)


P (∃T a

k : aT a
k < τ)

≤ lim
τ→0

lim
a→0

log
[
exp

(
|α|M(τ + a) − S∗

a

)]
.

where the inequality uses both the first part of Assumption 3.1 and the large deviations
rate function in (3.15). Choose τ > 0 sufficiently small that

τ <
S∗

2|α|M .

Then,
lim sup

a→0
|α|M(τ + a) − S∗ < 0.

Thus, the right hand size converges to 0 as a → 0.

Combining the two cases, we conclude that the first case dominates in determining the
value of Hρ(α, γ, t), which is precisely H(α, γ, t). Thus, the H-functional of the validation
dynamics converges uniformly to that of the recursive learning dynamics. Q.E.D.

5. Discussion and Extensions

The previous analysis is quite general, and can be extended in a number of directions.
In this section, we briefly discuss two that are likely to be important in applications. First,
we show that lagged variables and two-sided learning can be incorporated into the analysis.
Second, we comment on how the recent work of Meyn et al on robust hypothesis testing
could be used to relax our assumption that agents know the true error distribution. We
also speculate that this might lead to an alternative method of calibrating robustness.
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5.1. Lagged variables and two-sided learning. In a companion paper (Cho and Kasa
[8]), we argue that model validation dynamics might be a contributing factor in observed
financial crises. The analytical framework is similar to the one used here, but in order to
fit some important features of observed crises, we had to relax two assumptions. First, in
order to generate real effects from crises, we needed to relax the ‘Fed watcher’ assumption.
In this case, both the government and the private sector must learn. Second, to match
observed persistence in the real effects, we needed to add a lag in the output equation.
We use the well known third-generation crisis model of Aghion, Bacchetta, and Banerjee
[1] to do this.

Consider a policy maker who wants to control the exchange rate, st, and output, yt,
to achieve some objective. This objective could reflect some well defined notion of social
welfare, or alternatively, as we assume, be an ad hoc quadratic loss function:

(5.22) V = min
{st}

Eg
0

∞∑

t=0

δt[λ(yt − y∗)2 + (st − s∗)2]

where Eg denotes expectations based on the government’s beliefs. Output and the ex-
change rate are related to each other by the following dynamic ‘expectations-augmented
Phillips curve’:

(5.23) yt = ȳ(1− α) + αyt−1 + θ(st − Ep
t−1st) + σ1ε1t ε1t ∼ N(0, 1)

where Ep denotes expectations based on the private sector’s beliefs. Note that with Ra-
tional Expectations (and common information sets), Ep = Eg, and they both use the
true objective probability distribution. Here we do not impose the Rational Expectations
Hypothesis. Instead, we assume the policy maker must learn about the relationship be-
tween the exchange rate and output by witnessing the response of output to his sequence
of exchange rate choices. Likewise, the private sector must learn about the government’s
exchange rate policy, using the observed histories of output and the exchange rate and
a guess about the functional form of the government’s policy function.15 In contrast to
Bayesian learning, we do not allow for any experimentation or strategic interaction in
these learning problems. Both sides learn, but purely in a passive, retrospective way.16

The government’s approximating model is assumed to take the following form:

(5.24) yt = β0 + β1yt−1 + β2st + u1t

As before, this imputes a subtle form of specification error to the government. Whereas
in reality it is only unanticipated devaluations that matter, the government mistakenly
believes that the exchange rate by itself matters. As a result, the evolving beliefs of the
private sector inject ‘parameter drift’ into the government’s approximating model.

15In [8] we show that under certain conditions the large devations properties of the model are governed
soley by the beliefs of the government, even when the private sector’s beliefs are adaptive.

16Kreps [26] provides arguments in favor of this approach to learning. He calls it ‘anticipated utility’.
Cogley and Sargent [14] show in the context of a standard permanent income model that anticipated utility
and Bayesian learning produce very similar outcomes. However, they also caution that the two learning
strategies can depart significantly when agents are highly risk averse.
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The government solves the optimization problem in (5.22) given its perceived model in
(5.24). This produces the following policy function

(5.25) sp
t = g0(β) + g1(β)yt−1

where β = (β0, β1, β2), and g0(·) and g1(·) are differentiable functions of β. Following Sar-
gent and CWS, assume that the actual exchange rate is equal to the planned exchange rate,
s
p
t , plus an i.i.d. shock, which captures random implementation errors or high frequency

money demand shocks. Thus, the market exchange rate is,

(5.26) st = sp
t + σ2ε2t ε2 ∼ N(0, 1)

In this model the only action the private sector takes is to forecast the exchange rate.
It does this using an econometric model. Assume that its model is correctly specified, in
the sense that it is consistent with actual government behavior:

(5.27) st = γ0 + γ1yt−1 + u2t

Note that with CWS’s Fed watcher assumption we would have γ0 = g0(β) and γ1 = g1(β).
Substituting (5.25)-(5.27) into (5.23) then delivers the actual law of motion as a function

of the beliefs of the government and private sector:

(5.28) yt = ȳ(1 − α) − θγ0 + (α − θγ1)yt−1 + θst + σ1ε1t

where st is given by (5.26). Because of model misspecification, agents’ beliefs will not con-
verge to a Rational Expectations Equilibrium. Instead, they converge to a self-confirming
equilibrium, defined to be a situation where agents no longer have an incentive to revise
their models. In [8] we show this model has a unique self-confirming equilibrium, and that
it is E-stable if 0 < α < 1.

As before, we assume agents update their beliefs using constant-gain stochastic approx-
imation algorithms. The only difference is that now, with two-sided learning, we must
specify two gain parameters. While it might be interesting to explore the effects of dif-
ferential learning rates, for most of our analysis we assume the gain parameter of the
government equals the gain parameter of the private sector.

Figure 3 reports representative sample paths from this model. The key parameter values
are as follows: (1) ap = ag = .04, which implies a half-life of data relevance of about 17
time periods, (2) θ = −0.3, which reflects our assumption that adverse balance sheet effects
dominate liquidity effects, so that unanticipated devaluations are contractionary (see [8]
for details), (3) λ = 1.5, which implies that output fluctuations are more costly than
exchange rate fluctuations, (4) ȳ = 1.0 and y∗ = 1.2, which reflects the usual assumption
in these models that the target output level exceeds the natural rate, and (5) σ2

1 = .0003
and σ2

2 = .0001, which implies that real shocks are more volatile than nominal shocks.
Three main features jump out at you in these simulations. First, at least in a qualitative

sense, the exchange rate paths resemble the observed exchange rate histories of many crisis
prone countries. There are prolonged periods of gradual appreciation, followed by rare but
recurrent crisis episodes, where the exchange rate depreciates sharply. In this particular
case, they occur about once every 1000 periods, i.e., about once every 4-5 years if the time
unit is a day, or about once every 20 years if the time unit is a week. Increasing the gain
parameters or the shock variances increases the frequency of crises. Second, crises cause
recessions, with output typically falling by about 10% during a crisis. Of course, this is
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Figure 3. Example Simulation of Dynamic Model: ag = ap = .04

not a coicidence. Generating contractionary devaluations is the raison d’etre of the third-
generation crisis literature. Here it is entirely driven by our assumption that θ is negative.
Finally, the third feature to notice is that crises are intimately connected to the evolving
beliefs of the government. The two plots in the left-hand side of Figure 3 depict the paths
of the coefficient estimates. The up-and-down pattern of the exchange rate coefficient
estimate mirrors the up-and-down pattern of the exchange rate. What’s happening here
is that the government is vacilating between Sargent’s [35] two observationally equivalent
ways of interpreting the data. Crises occur when the government confuses the natural
rate properties of the model with the apparent absence of balance sheet effects. In [8] we
provide a more detailed account of these dynamics.

For our purposes here, it is more useful to illustrate how the validation dynamics of this
model converge to the recursive learning dynamics. To do this, we simulated the model 30
times (each one consisting of T = 3000 time periods) for two different values of the relative
entropy threshold, ρ. Figures 4 and 5 depict a representative outcome when ρ = .08. The
top row of Figure 4 reports values of relative entropy and a (0, 1) indicator variable for
model rejection. Vertical lines represent a rejection. The middle row shows the paths of
output and the exchange rate for the validation dynamics, and the bottom row does the
same thing for the learning dynamics.

For this particular run, the average time between model rejections is 34 periods. How-
ever, notice that during an escape rejections arrive more frequently. This can also be seen
in Figure 5, which reports the paths of the coefficient estimates for the same simulation.
The top row contains the learning dynamics and the bottom row contains the validation
dynamics.

Notice that while the model is converging to the self-confirming equilibrium there can
be prolonged periods without model revision. However, once a self-confirming equilibrium
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Figure 4. Representative Sample Paths of the Validation and Learning
Dynamics: ρ = .08

is rejected, and an escape is ignited, model rejections pile up and the coefficient estimates
move rapidly toward their (distorted) natural rate values.

Although Figures 4 and 5 are interesting, they provide no information on the conver-
gence of the validation dynamics to the learning dynamics. For that we need to compare
simulations for alternative values of ρ. Also, we need to recognize that there is going to
be some sampling variability. Larger ρ values can sometimes produce closer alignment
between validation and testing dynamics. We need to make sure we don’t get unlucky (or
lucky, for that matter). Hence, Figues 6 and 7 compare the distributions of outcomes for
different values of testing threshold ρ.

In particular, for each of the 30 simulations we computed the L2 distance between the
exchange rate paths induced by the model validation dynamics and the recursive learning
dynamics. That is, if smv(t) denotes the model validation path and srl(t) denotes the
recursive learning path, then we compute the discrete analog of:

(5.29) D =
(∫ 3000

0
(smv(t) − srl(t))2dt

)1/2

Note that this is actually a weaker sense of convergence than our theorem predicts, since
it does not restrict tail discrepancies. Nonetheless, it does give some sense of sample path
convergence.
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Figure 5. Sample Paths of the Coefficient Estimates: ρ = .08

Figure 6 reports smoothed histograms for ρ = .03 and ρ = .08.17 Although not dramatic,
Figure 6 depicts a clear sense of convergence. A smaller value of ρ causes the exchange
rate paths to become more aligned and the distribution of L2 distances to shift left.

What lies behind this convergence is a more rapid rate of model revision. Figure 7
reports model rejection rates for the same set of simulations. For each of the 30 runs we
computed the average time to rejection by dividing 3000 by the total number of rejections.
As discussed earlier, this is a bit misleading, since rejection rates are not constant over
time, i.e., they occur more frequently during escapes and less frequently while the model
is in the neighborhood of the self-confirming equilibrium. Once again, we smoothed the
raw histograms with a kernel density smoother.

Figure 7 shows that when ρ = .08 the average reference model lasts for about 40 periods
before it is rejected, i.e., a little bit less than a year if the time unit is a week. When ρ
falls to .03 the average survival time drops to only about 25 periods.

5.2. Robust validation. Earlier we alluded to a debate between Sims [40] and Cogley
and Sargent [12] about the presence of regime changes in U.S. inflation data. Sims points
out that if agents fit models with homoskedastic error terms when in fact the data are
heteroskedastic, they may be fooled into inappropriately inferring that there have been

17The histograms were smoothed with matlab routine ksdensity, using the default gaussian kernel.
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breaks in the data, and as a result, inappropriately reject their models. Sims’ point is
relevant for us too. Until now we have assumed the decision maker knows the model’s
error distribution, even if he doesn’t know its parameters. What if his beliefs about
this distribution are wrong? If he ignores this possibility then he exposes himself to the
kind of error that Sims highlighted. Our goal here is not just to model policymakers
as econometricians, but to model them as good econometricians. Good econometricians
worry about robustness.

If the only thing he had to worry about was parameter estimation and distributional
uncertainty, there would be a straightforward response - use GMM rather than maximum



24 IN-KOO CHO AND KENNETH KASA

likelihood. However, the agent we model is not just an econometrician, he is a decision
maker who uses his model to devise a control policy. Moreover, this control policy influ-
ences the data-generating process.18 This means that he must make enough assumptions
about his environment that he can solve his control problem, and this necessarily exposes
him to greater specification risk than if he just needed to estimate parameters.

Our approach to this problem is to blend the recent literature on robust control and
filtering (Hansen and Sargent [22]) with the recent literature on robust inference in moment
condition models (Kitamura and Stutzer [25] and Kitamura and Otsu [24]). We do this
by building on the work of Pandit [33] and Pandit and Meyn [34]. As in the econometric
literature on information-theoretic GMM and empirical likelihood, we define models by
parameterized moment conditions. However, for us, these moment conditions do not come
from economic theory; they define a permitted class of model perturbations, within which
Hansen and Sargent’s ‘evil agent’ can select a model to subvert the agent’s model validation
and control efforts. The more moment conditions there are, the less freedom the evil agent
has, and hence, the less robust will be the outcome.

An important by-product of a robust model validation approach is that it endogenously
delivers a ‘robustified’ reference model. Existing work on robust control is silent about
where the robustness-seeking agent’s reference model comes from. It only considers per-
turbations to a given reference model. In addition, due to the links between KLIC and
Type I and Type II error rates, our approach endogenously generates detection errors.
Current work on robustness specifies these errors exogenously, as a device to calibrate
‘reasonable’ amounts of robustness. (See Anderson, Hansen, and Sargent [2]). Instead,
our approach exogenously specifies a set of moment conditions.

So let’s now drop the assumption that the decision maker knows the exact distribution
of ξt so that the decision maker faces some form of model uncertainty. In this case, it
is natural for the decision maker to pursue some form of robustness in the validation
and decision making process. We formulate the robust validation process following the
framework of [33, 34]. It will be more convenient to represent the regression equation in
the form of (3.8). Let φ be the marginal distribution of X . If the decision maker knows
the distribution of ξt in (3.8), he can calculate the probability distribution

∑̀

`=0

Xt−`βt−`.

However, we now assume the decision maker has only partial information about the distri-
bution. Instead of the exact distribution, the decision maker knows only a few moments.
For example, consider the following moment-constrained set of parameterized models

P(β) =
{
φ | EφXβ = 0, and Eφ(Xβ)2 = σ2

ξ

}

where σ2
ξ = Eξ2

t . In this case, the decision maker does not know the exact distribution
of the regression disturbance. He only knows the first two moments. The number of
restrictions imposed on the moment class can be interpreted either as an expression of the
decision maker’s bounded rationality or as an expression of his preference for robustness.

18Remember, however, that in keeping with our assumption of bounded rationality, we assume the
agent ignores this feedback.



LEARNING AND MODEL VALIDATION 25

If he knows the correct distribution of ξ, he must know every moment of ξ, and therefore,
the moment class is subject to an infinite number of constraints. The finiteness of the
constraints can be interpreted as a bound on his capacity to process information, which
exposes him to model uncertainty.

For ρ1 > 0 and a probability distribution φ on X, define

Qρ1(φ) =
{
φ′ | I(φ′‖φ) < ρ1

}

and
Qρ1(P) =

⋃

φ∈P
Qρ1(φ).

For a small ρ1 > 0, we can interpret Qρ1(φ) as the class of models which are difficult to
differentiate from φ. Similarly, Qρ1(P) is the class of models that are difficult to distinguish
from models in P.

The robust validation process can now be defined as follows. Let φk be the probability
distribution over X induced by the present reference model parameterized by γk. Given a
“smooth” empirical distribution M̂t, define

L(M̂t, γk) = inf
φ∈P(γk)

I(M̂t‖φ)

as the “worst case” relative entropy over P(γk). If

L(M̂t, γk) < ρ2,

then the decision maker uses γk to solve

(5.30) sup
ut

inf
φ∈P(γk)

Eφ(1 − δ)
∞∑

k′=1

δk′−1U(ut+k′ , Xt+k′)

where U(·) is the one period payoff, and ut = (ut, ut+1, . . .) is the sequence of controls. If

L(M̂t, γk) ≥ ρ2,

then γk is discarded, and a new reference model γk+1 is constructed by solving

sup
γ

inf
φ∈P(γ)

I(M̂t‖φ).

With γk+1 in place of γk, the decision maker solves (5.30).

6. Concluding Remarks

This paper has attempted to model macroeconomic policymakers as econometricians.
We’ve done this by combining recent work in both macroeconomics and econometrics.
From macroeconomics, we’ve borrowed from the work of Sargent [36, 37] on boundedly
rational learning dynamics. From econometrics, we’ve borrowed from recent work on
robust hypothesis testing [43, 33, 34] and the analysis of misspecified models [41, 21]. As
it turns out, this produces a rather difficult, and as yet unconsummated, marriage.

From a macroeconomic standpoint, it is difficult because we abandon the Rational Ex-
pectations Hypothesis, thereby putting ourselves into the ‘wilderness of bounded rational-
ity’. We do this not because we like to analyze difficult and ill-posed problems, but simply
because of the casual observation that, as econometricians, macroeconomic policymakers
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do not spend their time refining estimates of a known model, but instead spend most of
their time searching for new and better models. Of course, it is not necessary to abandon
Rational Expectations and traditional Bayesian decision theory when confronting model
uncertainty. (See, e.g., Brock, Durlauf, and West’s [5] work on Bayesian model averaging).
However, we think there are good reasons to explore alternative approaches. (See, e.g.,
Hansen and Sargent [22], Kreps [26], and Bray and Kreps [4]).

The marriage between macroeconomics and econometrics is difficult from an econo-
metric standpoint because, presumably, policymakers have some influence over the data-
generating processes they are attempting to learn about. The econometric analysis of
misspecified models with endogenously generated data is truly uncharted territory.

We make progress on this problem by relating it to a problem that is relatively well
understood, namely, the dynamics of constant gain recursive learning algorithms. We
prove that as the government employs an increasingly stringent specification test, the
dynamics generated by a process of testing and model revision, which we call validation
dynamics, converge in a very strong way to the dynamics generated by recursive learning
models. This is a useful connection to make, because it enables us to apply the results
of Williams [42] and Cho, Williams, and Sargent [10] on escape dynamics to help us
understand a wide range of markov-switching macroeconomic dynamics. Looking at it
from the other side, a second payoff from making this connection is that it provides a
more secure behavioral foundation for recursive learning models.

Although we feel this paper takes a significant step forward in understanding the in-
terplay between macroeconomics and econometrics, there are certainly many loose ends
and unexplored avenues remaining. Perhaps the most promising one is to follow-up on the
connections between robust validation, robust control, and robust inference in moment
constrained models that were briefly outlined in section 5.2. We are actively pursuing this
in ongoing work [9].
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