Final Project Presentation

Analysis of Applications Through IP VPN

www.sfu.ca/~leetonyl/Ensc427Group12.html

<table>
<thead>
<tr>
<th>Group 12</th>
<th>Lee, Tony</th>
<th>301111050</th>
<th>leetonyl@sfu.ca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nguyen, Anthony</td>
<td>301110184</td>
<td>anthony@sfu.ca</td>
</tr>
<tr>
<td></td>
<td>Truong, Henson</td>
<td>301114646</td>
<td>hensont@sfu.ca</td>
</tr>
</tbody>
</table>
Overview

- Introduction
- Related Works
- Background Information
- OPNET Simulation
- Results
- Conclusion
- Future work
- References
Introduction

Goal
• Analyze the performance of applications through a VPN connection

Motivation
• Corporations deploy VPNs to secure access to their servers and we want to determine trade-offs in using a VPN
Overview

- Introduction
- Related Works
- Background Information
- OPNET Simulation
- Results
- Conclusion
- Future work
- References
Related Works

- Spring 2012 Group 2
 - Analyzed the security of VPN and firewall

- Spring 2012 Group 12
 - Performance of VPN under heavy network load
Overview

• Introduction
• Related Works
• Background Information
• OPNET Simulation
• Results
• Conclusion
• Future work
• References
What is Virtual Private Network (VPN)?

• A private network that uses a public network as a pathway to connect remote sites or users together

• Uses Tunneling - encapsulation of packet in another packet before it is transported over the Internet

• Provides end to end security - encrypt packet when being sent out and decrypt packet upon arrival
Establishing a VPN Connection

• To establish a VPN connection, the client creates a tunnel spanning across the Internet and firewall, to the VPN server
• The firewall only allows the packets from the VPN client through

• Composed of 3 components:
 ➢ Client
 ➢ Firewall
 ➢ VPN Server
Two Kinds of VPN

• Remote Access
 o Connection from mobile location to a central resource
 o E.g. Individual connection to a office

• Site to site
 o Connection from a permanent location to a central resource
 o E.g. Offices to other offices

• Our project uses Remote Access
Overview

• Introduction
• Related Works
• Background Information
• **OPNET Simulation**
• Results
• Conclusion
• Future work
• References
Simulation

● Multiple clients accessing a central server
● Applications
 ○ Database
 ○ File Transfer Protocol (FTP)
 ○ Email
 ○ HyperText Transfer Protocol (HTTP)
 ○ Remote Login

● Compare response time between no VPN vs VPN
● Compare response time between clients of varying distances
Simulation: Topology #1

- Host Server: Vancouver
- Multiple Clients: Toronto
- PPP DS1 links connecting clients to router and router to IP cloud
Simulation: Topology #2

- Host Server: Vancouver
- Multiple Clients: London, England
- PPP DS1 links connecting clients to router and router to IP cloud
Simulation: DDOS Scenario

- Additional attacker clients in the Internet
- Attacker client profiles
 - heavy applications
- Server access
 - Unrestricted vs. VPN only
Overview

• Introduction
• Related Works
• Background Information
• OPNET Simulation
• Results
• Conclusion
• Future work
• References
Results: Database Response Time

- **Response Time:**
 - Time elapsed between sending a request and receiving the response packet
 - 25ms longer to London
 - London: 0.7ms VPN delay
 - Toronto: 0.7ms VPN delay
Results: Email Download Response Time

- Download Response Time:
 - Time elapsed between sending request for email and receiving emails from email server
- 80ms longer to London
- London: 3ms VPN delay
- Toronto: 3ms VPN delay
Results: FTP Download Response Time

- **Download Response Time:**
 - Time elapsed between sending a request and receiving the response packet
 - 80ms longer to London
 - London: 2ms VPN delay
 - Toronto: 2ms VPN delay
Results: HTTP Page Response Time

- **Page Response Time:**
 - Time required to retrieve the entire page with all the objects
- 80ms longer to London
- London: 2ms VPN delay
- Toronto: 2ms VPN delay
Results: Remote Login Response Time

- **Response Time:**
 - Time elapsed between sending a request and receiving the response packet
 - 30ms longer to London
 - London: 1ms VPN delay
 - Toronto: 1ms VPN delay
Results: DDOS - Server Performance Load

- Server Load:
 - Rate at which requests for any application arrives at the server
Overview

• Introduction
• Related Works
• Background Information
• OPNET Simulation
• Results
• Conclusion
• Future work
• References
Conclusion

• VPN introduces an increase delay in response
 o OK for Database, Email, FTP, HTTP
 o Bad for Remote Login
 ■ real time
 ■ user experience

For DDOS scenario
• Server protection from DDOS attacks
 o Only authorized external clients via VPN

• VPN provides security in exchange for application delay
Overview

• Introduction
• Related Works
• Background Information
• OPNET Simulation
• Results
• Conclusion
• Future work
• References
Future work

• Implementing a scenario where wireless networks are involved (e.g. WiMAX) because many users work out in the field
• Simulating a more realistic scenario
 o more clients and central servers
• Incorporating VoIP and video conferencing through a VPN
References

