
#### **Student Name:** LA0

# ENSC 220 Lab Test #1



- (1) Record the black box code.
- (2) Set the power supply to ± 12 V, 30 mA current limit.
- (3) Wire-up a voltage divider for an input signal.
- (4) Connect the appropriate power and input voltage.
- (5) Measure input voltage, open-circuit output voltage, input current and short-circuit output current.
- (6) Compute R1, R2 and R3.

Supply Voltages when the black box is powered

| V <sub>cc</sub> | VEE |
|-----------------|-----|
|                 |     |

## Measurements

| V(input) | l(input) | Open Circuit Output<br>Voltage | Short Circuit Output<br>Current |
|----------|----------|--------------------------------|---------------------------------|
| V        | mA       | V                              | mA                              |

# Computed values

| R1 | R2 | R3 |
|----|----|----|
|    |    |    |

If your computed resistor value is greater than  $1000\Omega$ , present that value in KQ. If not present it in  $\Omega$ 

| if your computed resistor value is greater than 1000s2, present that value in ksz. In not present it in sz. |    |    |  |
|-------------------------------------------------------------------------------------------------------------|----|----|--|
| R1                                                                                                          | R2 | R3 |  |
| Ω                                                                                                           | Ω  | Ω  |  |

# For this Lab Test: Do not reset or power-OFF the Power Supply

Use the back of this page to show your calculations

| For TA/Instructor use only |         |            |  |
|----------------------------|---------|------------|--|
| I-L (L)                    | I-L (R) | DMM Probes |  |
|                            |         |            |  |
|                            |         |            |  |

### Student Name: LA<sub>0</sub>