
LAO Student Name:

ENSC 220 Lab Test #2

Black Box Code #			Bench #	
------------------	--	--	---------	--

Objective: Find **R**, **L** and **C** values inside the black-box.

Method:

- 1. Record the code of your black box (above).
- 2. Record the value of the external resistor you are using for the experiment.
- 3. Apply a sinusoidal signal input to the circuit.
- 4. Determine the resonant frequency F_0 and also record the V_{in} and $V_{out} P_0$.
- 5. Determine the lower cutoff frequency F_L and upper cutoff frequency F_H and record.
- 6. Compute the bandwidth
- 7. Calculate the R, L, C and present it in the units indicated.

F ₀	V _{in}	V_{out}
Hz	V	V

FL	F _H	R _{EXT}
Hz	Hz	Ω

Black box R	Black box L	Black box C
Ω	μН	pF

$$\omega_0 = \frac{1}{\sqrt{LC}} \qquad \omega_H - \omega_L = \beta = \frac{R}{L} (Bandwidth)$$

Record any and all calculations on the back of this page Remember ω = $2\pi f$

LAO Student Name: