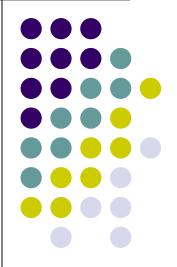

Chapter 5 Peer-to-Peer Protocols and Data Link Layer


TCP Reliable Stream Service & Flow Control

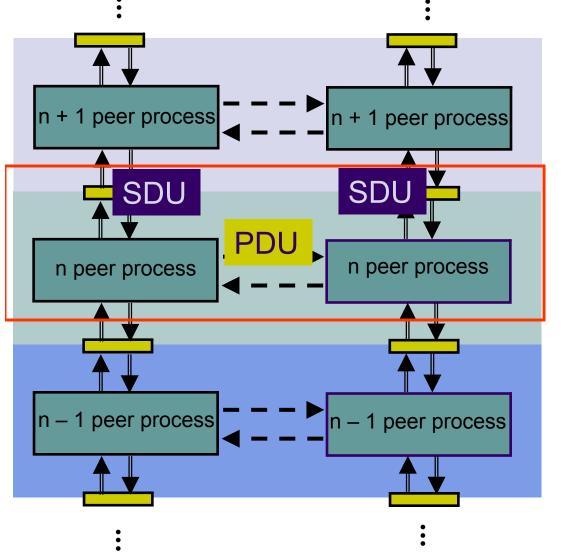
Alberto Leon-Garcio

Chapter 5 Peer-to-Peer Protocols and Data Link Layer

PART II: Data Link Controls Framing Point-to-Point Protocol High-Level Data Link Control Link Sharing Using Statistical Multiplexing

Chapter Overview

- Peer-to-Peer protocols: many protocols involve the interaction between two peers
 - Service Models are discussed & examples given
 - Detailed discussion of ARQ provides example of development of peer-to-peer protocols
 - Flow control, TCP reliable stream, and timing recovery
- Data Link Layer
 - Framing
 - PPP & HDLC protocols
 - Statistical multiplexing for link sharing


Chapter 5 Peer-to-Peer Protocols and Data Link Layer

Alberto Leon-Garcia

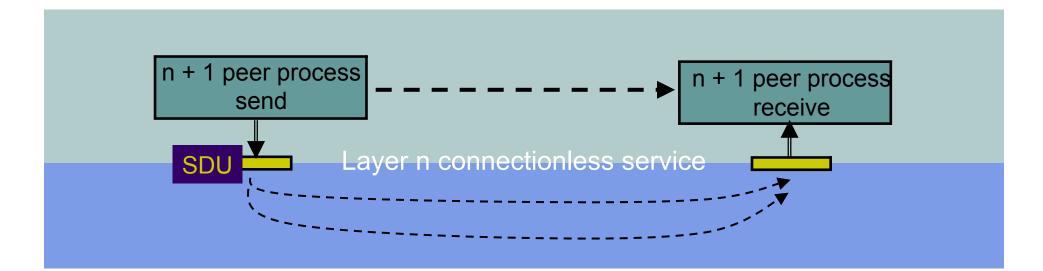
Peer-to-Peer Protocols

- Peer-to-Peer processes execute layer-n protocol to provide service to layer-(n+1)
- Layer-(n+1) peer calls layer-n and passes Service Data Units (SDUs) for transfer
- Layer-n peers exchange Protocol Data Units (PDUs) to effect transfer
- Layer-n delivers SDUs to destination layer-(n+1) peer

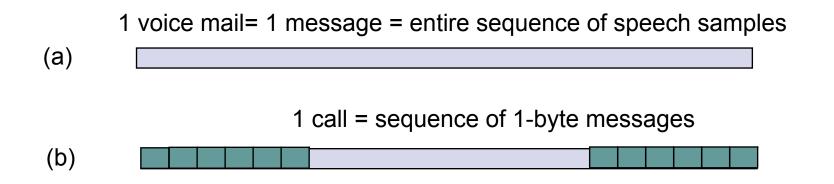
Service Models

- The service model specifies the information transfer service layer-n provides to layer-(n+1)
- The most important distinction is whether the service is:
 - Connection-oriented
 - Connectionless
- Service model possible features:
 - Arbitrary message size or structure
 - Sequencing and Reliability
 - Timing, Pacing, and Flow control
 - Multiplexing
 - Privacy, integrity, and authentication

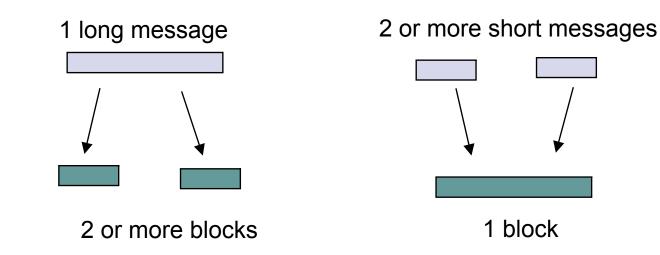
Connection-Oriented Transfer Service


- Connection Establishment
 - Connection must be established between layer-(n+1) peers
 - Layer-n protocol must: Set initial parameters, e.g. sequence numbers; and Allocate resources, e.g. buffers
- Message transfer phase
 - Exchange of SDUs
- Disconnect phase
- Example: TCP, PPP

Connectionless Transfer Service


- No Connection setup, simply send SDU
- Each message send independently
- Must provide all address information per message
- Simple & quick
- Example: UDP, IP

Message Size and Structure


- What message size and structure will a service model accept?
 - Different services impose restrictions on size & structure of data it will transfer
 - Single bit? Block of bytes? Byte stream?
 - Ex: Transfer of voice mail = 1 long message
 - Ex: Transfer of voice call = byte stream

Segmentation & Blocking

- To accommodate arbitrary message size, a layer may have to deal with messages that are too long or too short for its protocol
- Segmentation & Reassembly: a layer breaks long messages into smaller blocks and reassembles these at the destination
- Blocking & Unblocking: a layer combines small messages into bigger blocks prior to transfer

Reliability & Sequencing

- Reliability: Are messages or information stream delivered error-free and without loss or duplication?
- Sequencing: Are messages or information stream delivered in order?
- ARQ protocols combine error detection, retransmission, and sequence numbering to provide reliability & sequencing
- Examples: TCP and HDLC

Pacing and Flow Control

- Messages can be lost if receiving system does not have sufficient buffering to store arriving messages
- If destination layer-(n+1) does not retrieve its information fast enough, destination layer-n buffers may overflow
- Pacing & Flow Control provide backpressure mechanisms that control transfer according to availability of buffers at the destination
- Examples: TCP and HDLC

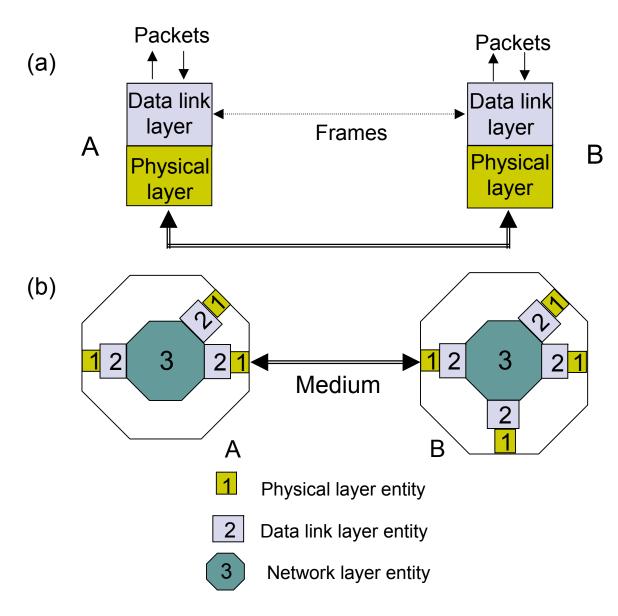
Timing

- Applications involving voice and video generate units of information that are related temporally
- Destination application must reconstruct temporal relation in voice/video units
- Network transfer introduces delay & jitter
- Timing Recovery protocols use timestamps & sequence numbering to control the delay & jitter in delivered information
- Examples: RTP & associated protocols in Voice over IP

Multiplexing

- Multiplexing enables multiple layer-(n+1) users to share a layer-n service
- A multiplexing tag is required to identify specific users at the destination
- Examples: UDP, IP

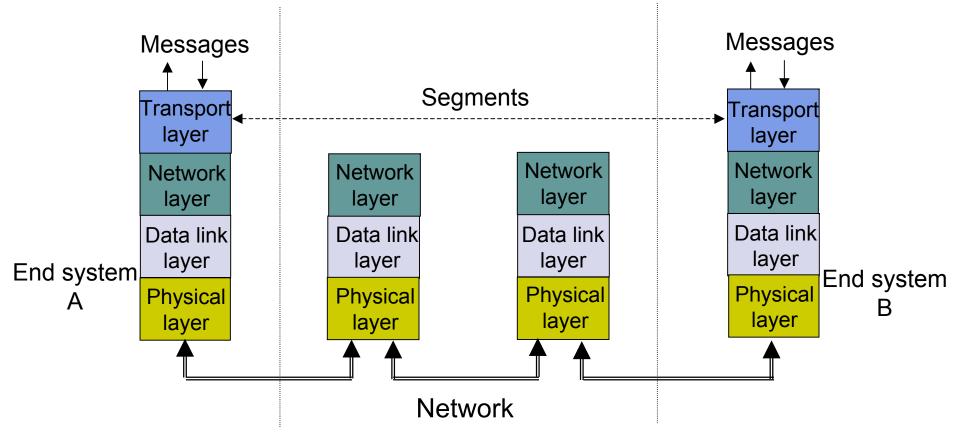
Privacy, Integrity, & Authentication


- *Privacy*: ensuring that information transferred cannot be read by others
- Integrity: ensuring that information is not altered during transfer
- Authentication: verifying that sender and/or receiver are who they claim to be
- Security protocols provide these services and are discussed in Chapter 11
- Examples: IPSec, SSL

End-to-End vs. Hop-by-Hop

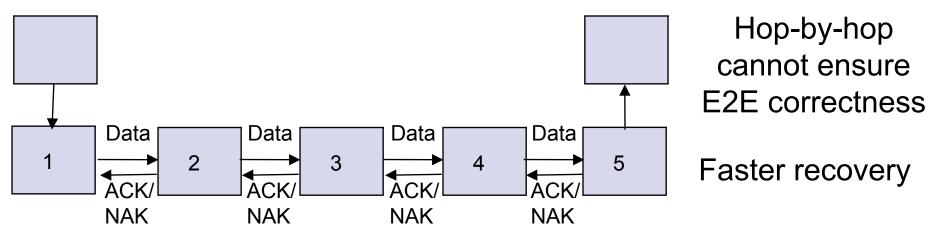
- A service feature can be provided by implementing a protocol
 - end-to-end across the network
 - across every hop in the network
- Example:
 - Perform error control at every hop in the network or only between the source and destination?
 - Perform flow control between every hop in the network or only between source & destination?
- We next consider the tradeoffs between the two approaches

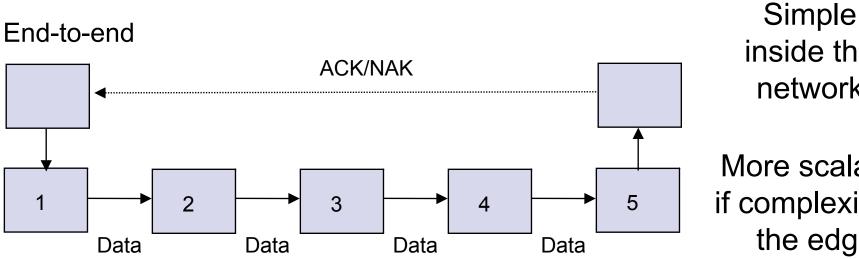
Error control in Data Link Layer



- Data Link operates over wire-like, directly-connected systems
- Frames can be corrupted or lost, but arrive in order
- Data link performs error-checking & retransmission
- Ensures error-free packet transfer between two systems

Error Control in Transport Layer

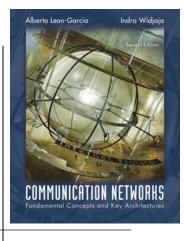

- Transport layer protocol (e.g. TCP) sends segments across network and performs end-to-end error checking & retransmission
- Underlying network is assumed to be unreliable



Segments can experience long delays, can be lost, or arrive out-of-order because packets can follow different paths across network End-to-end error control protocol more difficult 3 2 С End System End System α 2 r 3 3 2 2 2 2 2 2 Medium 2 B Α Network Network layer entity Transport layer entity

End-to-End Approach Preferred

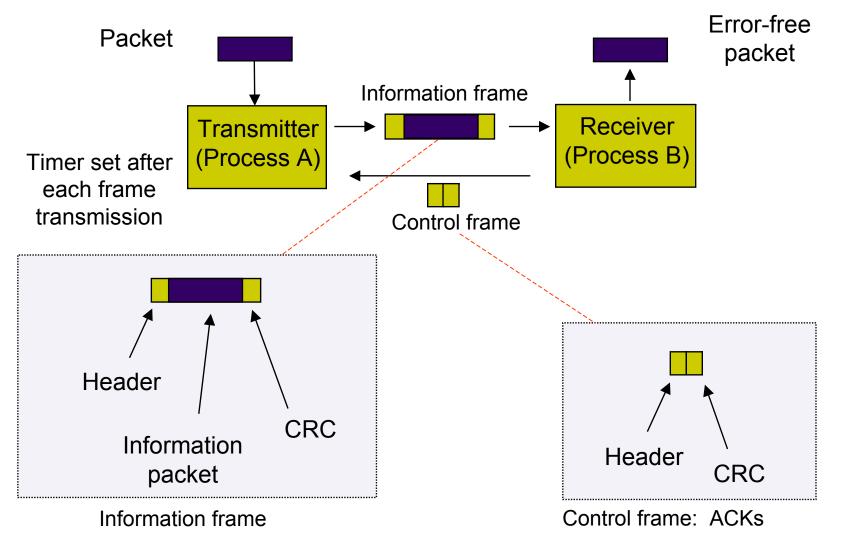
Hop-by-hop

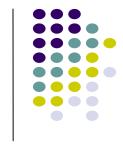


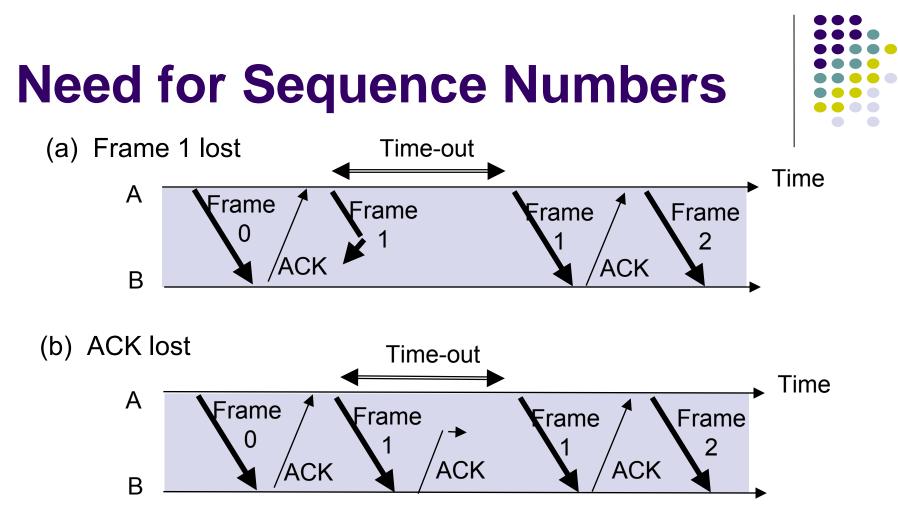
inside the network

More scalable if complexity at the edge

Chapter 5 Peer-to-Peer Protocols and Data Link Layer

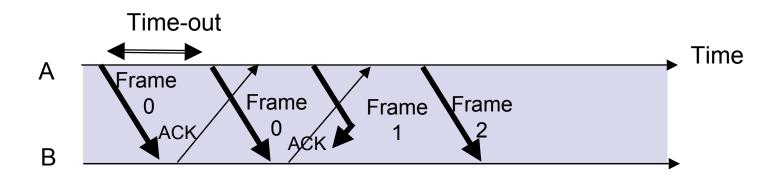

Automatic Repeat Request (ARQ)



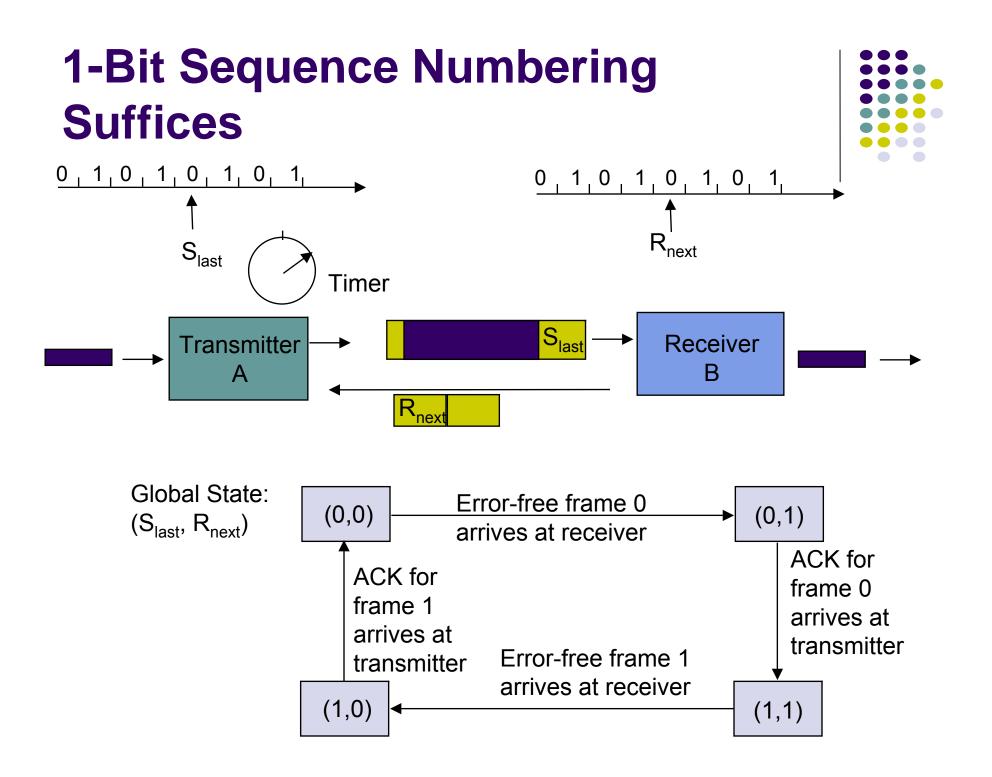

- Purpose: to ensure a sequence of information packets is delivered in order and without errors or duplications despite transmission errors & losses
- We will look at:
 - Stop-and-Wait ARQ
 - Go-Back N ARQ
 - Selective Repeat ARQ
- Basic elements of ARQ:
 - *Error-detecting code* with high error coverage
 - ACKs (positive acknowledgments
 - *NAKs* (negative acknowlegments)
 - Timeout mechanism

Stop-and-Wait ARQ

Transmit a frame, wait for ACK



- In cases (a) & (b) the transmitting station A acts the same way
- But in case (b) the receiving station B accepts frame 1 twice
- Question: How is the receiver to know the second frame is also frame 1?
- Answer: Add frame sequence number in header
- S_{last} is sequence number of most recent transmitted frame


Sequence Numbers

(c) Premature Time-out

- The transmitting station A misinterprets duplicate ACKs
- Incorrectly assumes second ACK acknowledges Frame 1
- Question: How is the receiver to know second ACK is for frame 0?
- Answer: Add frame sequence number in ACK header
- R_{next} is sequence number of next frame expected by the receiver
- Implicitly acknowledges receipt of all prior frames

Stop-and-Wait ARQ

Transmitter

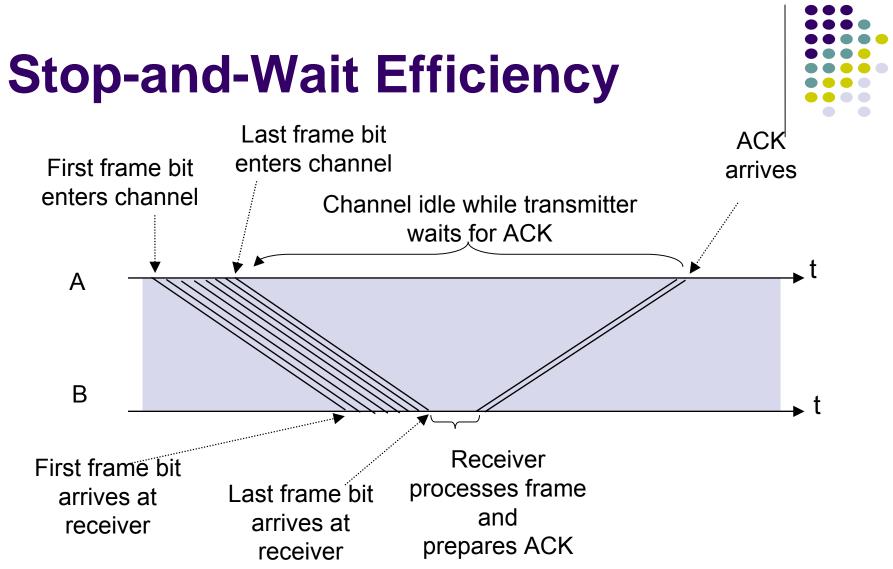
Ready state

- Await request from higher layer for packet transfer
- When request arrives, transmit frame with updated S_{last} and CRC
- Go to Wait State

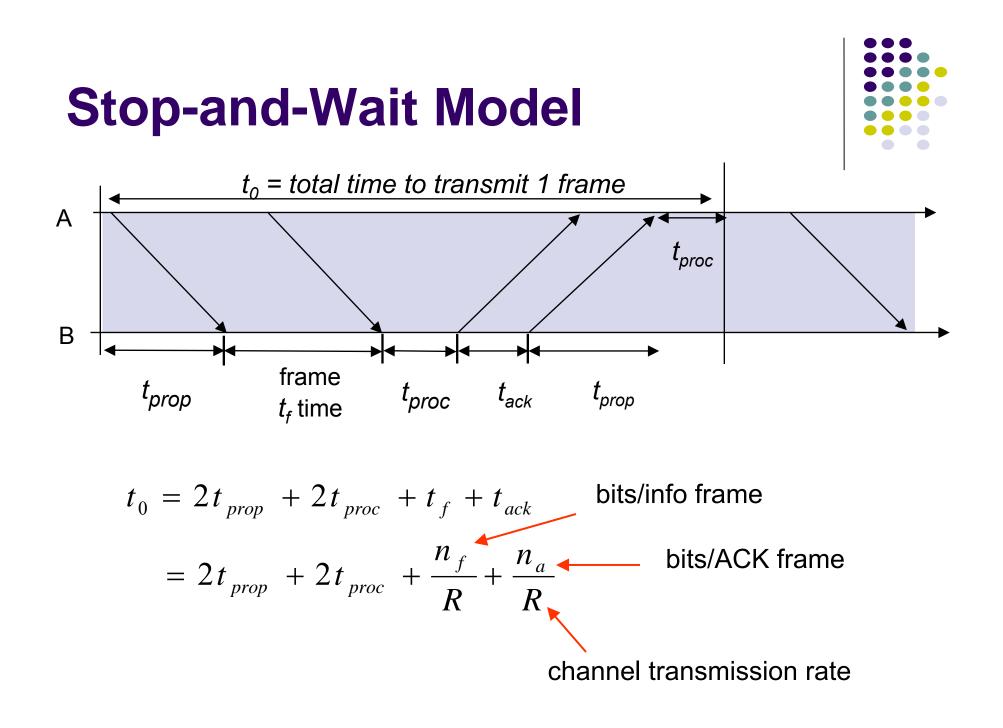
Wait state

- Wait for ACK or timer to expire; block requests from higher layer
- If timeout expires
 - retransmit frame and reset timer
- If ACK received:
 - If sequence number is incorrect or if errors detected: ignore ACK
 - If sequence number is correct (R_{next} = S_{last} +1): accept frame, go to Ready state

Receiver

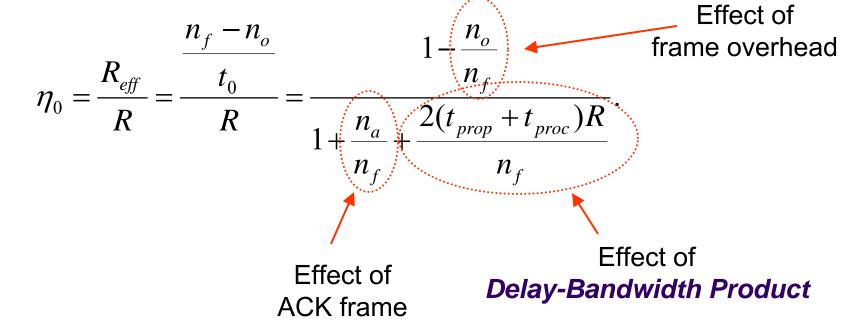

Always in Ready State

- Wait for arrival of new frame
- When frame arrives, check for errors
- If no errors detected and sequence number is correct (S_{last}=R_{next}), then
 - accept frame,
 - update R_{next},
 - send ACK frame with R_{next},
 - deliver packet to higher layer
- If no errors detected and wrong sequence number
 - discard frame
 - send ACK frame with R_{next}
- If errors detected
 - discard frame


Applications of Stop-and-Wait ARQ

- IBM Binary Synchronous Communications protocol (Bisync): character-oriented data link control
- *Xmodem*: modem file transfer protocol
- *Trivial File Transfer Protocol* (RFC 1350): simple protocol for file transfer over UDP

- 10000 bit frame @ 1 Mbps takes 10 ms to transmit
- If wait for ACK = 1 ms, then efficiency = 10/11 = 91%
- If wait for ACK = 20 ms, then efficiency =10/30 = 33%


S&W Efficiency on Error-free channel

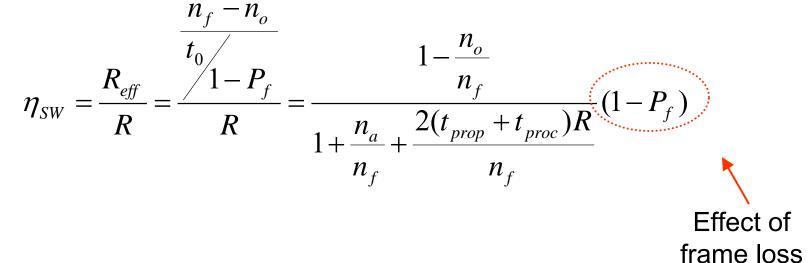
Effective transmission rate:

 $R_{eff}^{0} = \frac{\text{number of information bits delivered to destination}}{\text{total time required to deliver the information bits}} = \frac{n_f - n_o}{t_0},$

Transmission efficiency:

Example: Impact of Delay-Bandwidth Product

 n_f =1250 bytes = 10000 bits, n_a = n_o =25 bytes = 200 bits


2xDelayxBW Efficiency	1 ms	10 ms	100 ms	1 sec
	200 km	2000 km	20000 km	200000 km
1 Mbps	10 ³	104	10 ⁵	10 ⁶
	88%	49%	9%	1%
1 Gbps	10 ⁶	107	10 ⁸	10 ⁹
	1%	0.1%	0.01%	0.001%

Stop-and-Wait does not work well for very high speeds or long propagation delays

S&W Efficiency in Channel with Errors

- Let $1 P_f$ = probability frame arrives w/o errors
- Avg. # of transmissions to first correct arrival is then 1/ (1– P_f)
- "If 1-in-10 get through without error, then avg. 10 tries to success"
- Avg. Total Time per frame is then $t_0/(1 P_f)$

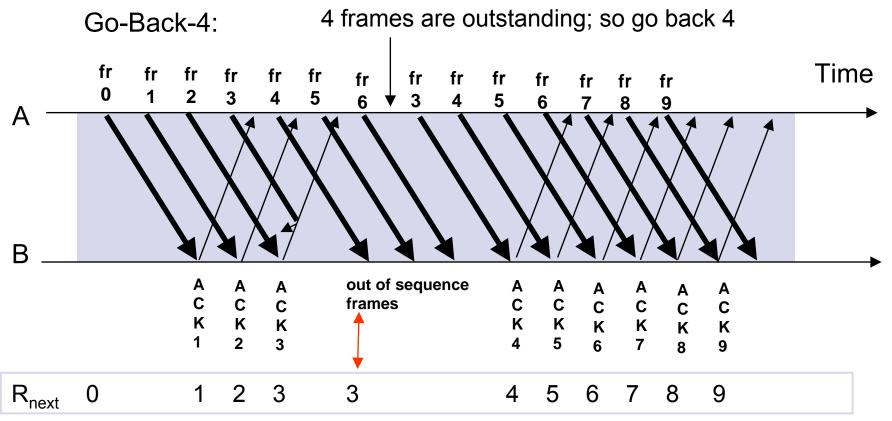
Example: Impact Bit Error Rate

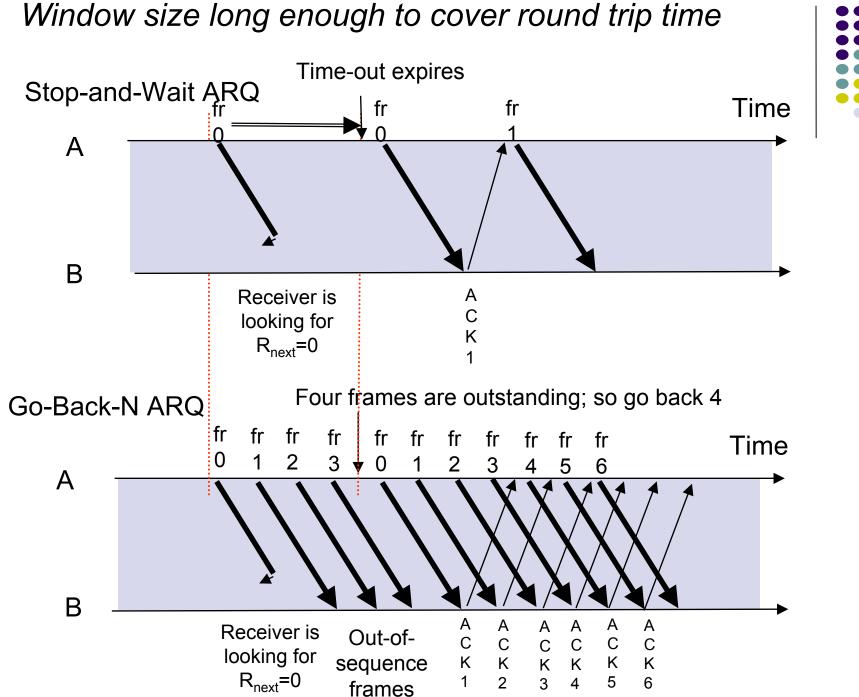
 n_f =1250 bytes = 10000 bits, n_a = n_o =25 bytes = 200 bits Find efficiency for random bit errors with p=0, 10⁻⁶, 10⁻⁵, 10⁻⁴

 $1 - P_f = (1 - p)^{n_f} \approx e^{-n_f p}$ for large n_f and small p

$1 - P_f$ Efficiency	0	10-6	10 ⁻⁵	10-4
1 Mbps	1	0.99	0.905	0.368
& 1 ms	88%	86.6%	79.2%	32.2%

Bit errors impact performance as n_fp approach 1

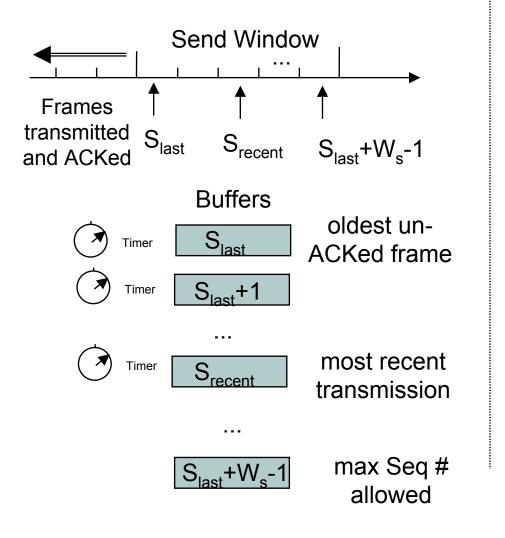

Go-Back-N


- Improve Stop-and-Wait by not waiting!
- Keep channel busy by continuing to send frames
- Allow a window of up to W_s outstanding frames
- Use *m*-bit sequence numbering
- If ACK for oldest frame arrives before window is exhausted, we can continue transmitting
- If window is exhausted, pull back and retransmit all outstanding frames
- Alternative: Use timeout

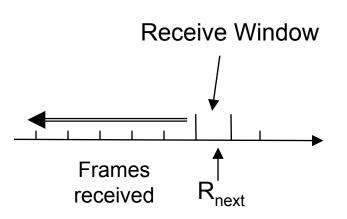
Go-Back-N ARQ

- Frame transmission are *pipelined* to keep the channel busy
- Frame with errors and subsequent out-of-sequence frames are ignored
- Transmitter is forced to go back when window of 4 is exhausted

Go-Back-N with Timeout

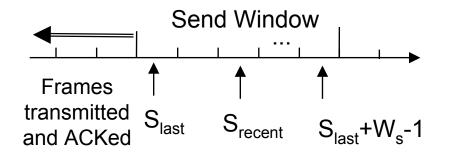


- Problem with Go-Back-N as presented:
 - If frame is lost and source does not have frame to send, then window will not be exhausted and recovery will not commence
- Use a timeout with each frame
 - When timeout expires, resend all outstanding frames


Go-Back-N Transmitter & Receiver

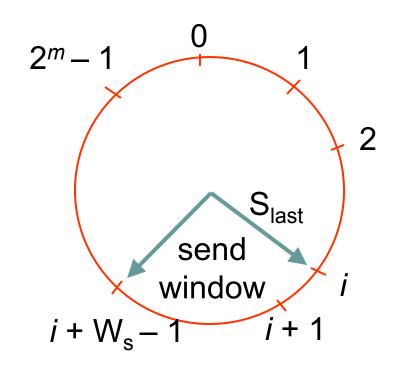
Transmitter

Receiver

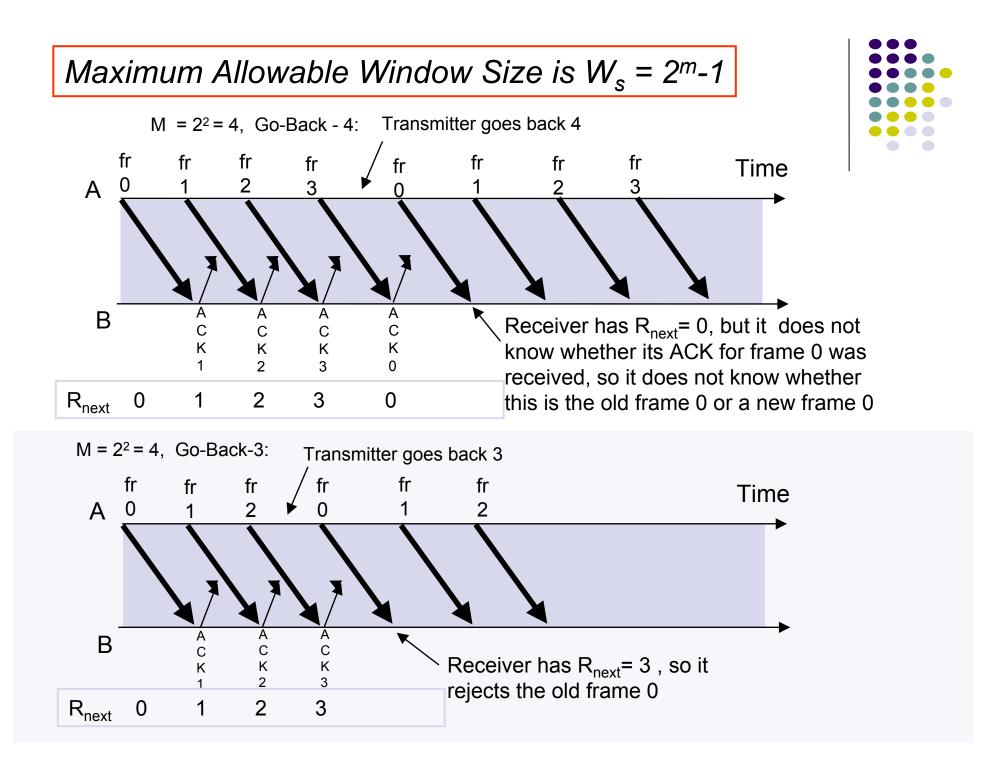


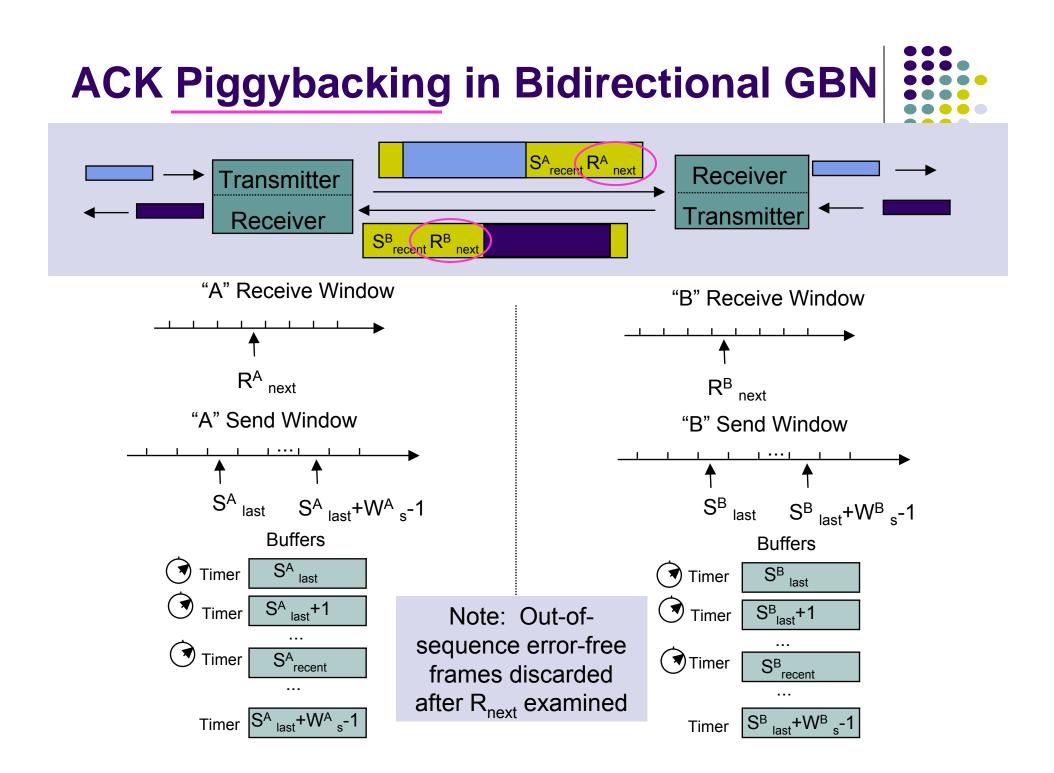
Receiver will only accept a frame that is error-free and that has sequence number R_{next}

When such frame arrives R_{next} is incremented by one, so the *receive window slides forward* by one


Sliding Window Operation

Transmitter




Transmitter waits for error-free ACK frame with sequence number S_{last}

When such ACK frame arrives, S_{last} is incremented by one, and the *send window slides forward* by one *m*-bit Sequence Numbering


Applications of Go-Back-N ARQ

- HDLC (High-Level Data Link Control): bitoriented data link control
- *V.42 modem*: error control over telephone modem links

Required Timeout & Window Size

- Timeout value should allow for:
 - Two propagation times + 1 processing time: 2 T_{prop} + T_{proc}
 - A frame that begins transmission right before our frame arrives T_f
 - Next frame carries the ACK, T_f
- W_s should be large enough to keep channel busy for T_{out}

Required Window Size for Delay-Bandwidth Product

Frame = 1250 bytes =10,000 bits, <i>R</i> = 1 Mbps					
2(t _{prop} + t _{proc})	2 x Delay x BW	Window			
1 ms	1000 bits	1			
10 ms	10,000 bits	2			
100 ms	100,000 bits	11			
1 second	1,000,000 bits	101			

Efficiency of Go-Back-N

- GBN is completely efficient, if W_s large enough to keep channel busy, and if channel is error-free
- Assume P_f frame loss probability, then time to deliver a frame is:

t_f if first frame transmission succeeds (1 − P_f)
 T_f + W_st_f/(1-P_f) if the first transmission does not succeed

$$F_{f}$$

 $t_{GBN} = t_{f}(1 - P_{f}) + P_{f}\{t_{f} + \frac{W_{s}t_{f}}{1 - P_{f}}\} = t_{f} + P_{f}\frac{W_{s}t_{f}}{1 - P_{f}}$ and

$$\eta_{GBN} = \frac{\frac{n_f - n_o}{t_{GBN}}}{R} = \frac{1 - \frac{n_o}{n_f}}{1 + (W_s - 1)P_f} (1 - P_f)$$

Delay-bandwidth product determines W_s

Example: Impact Bit Error Rate on GBN

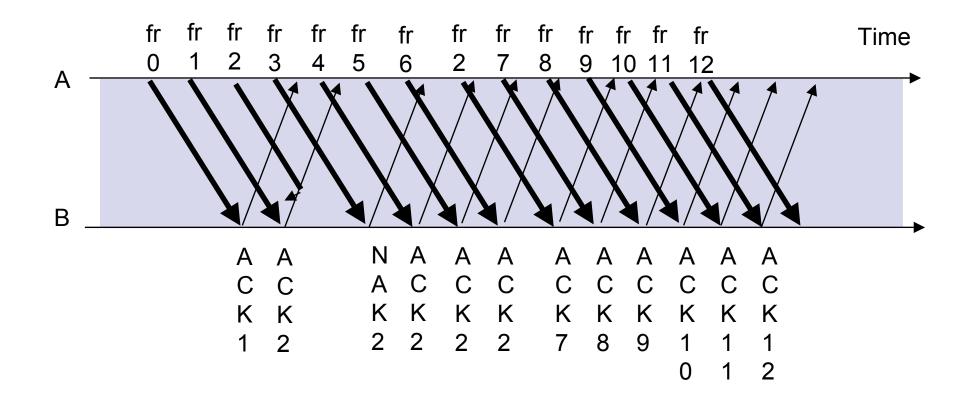
 n_f =1250 bytes = 10000 bits, n_a = n_o =25 bytes = 200 bits

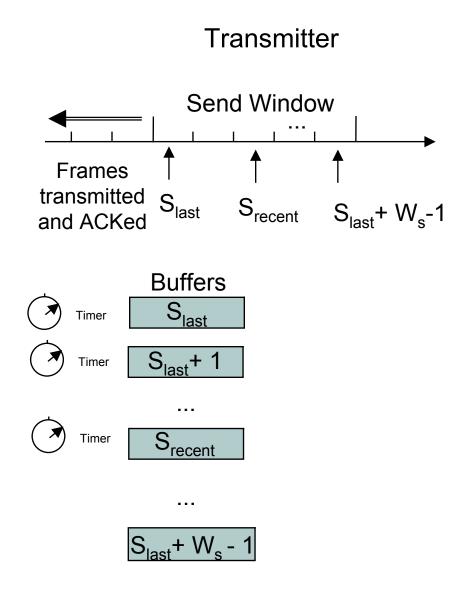
Compare S&W with GBN efficiency for random bit errors with $p = 0, 10^{-6}, 10^{-5}, 10^{-4}$ and R = 1 Mbps & 100 ms

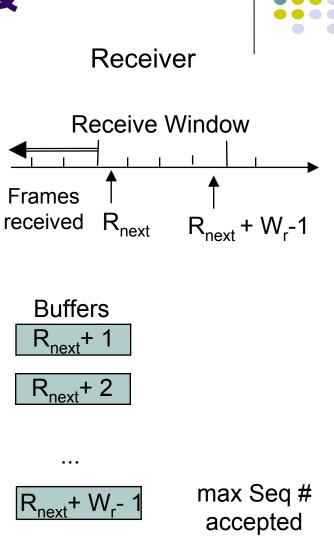
1 Mbps x 100 ms = 100000 bits = 10 frames \rightarrow Use W_s = 11

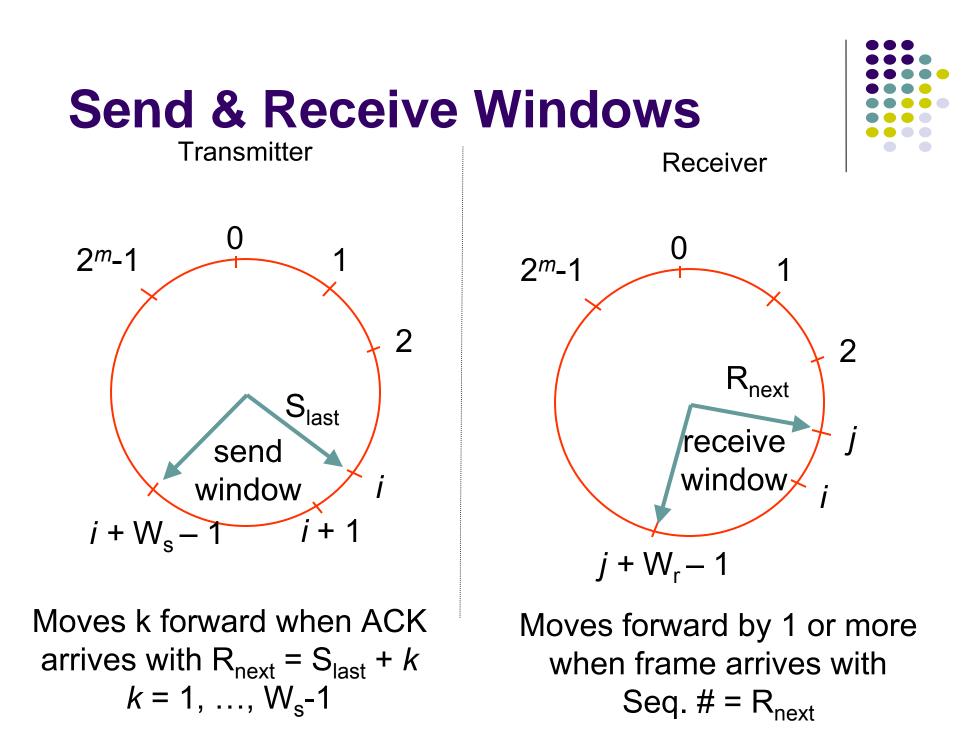
Efficiency	0	10-6	10 ⁻⁵	10-4
S&W	8.9%	8.8%	8.0%	3.3%
GBN	98%	88.2%	45.4%	4.9%

- Go-Back-N significant improvement over Stop-and-Wait for large delay-bandwidth product
- Go-Back-N becomes inefficient as error rate increases

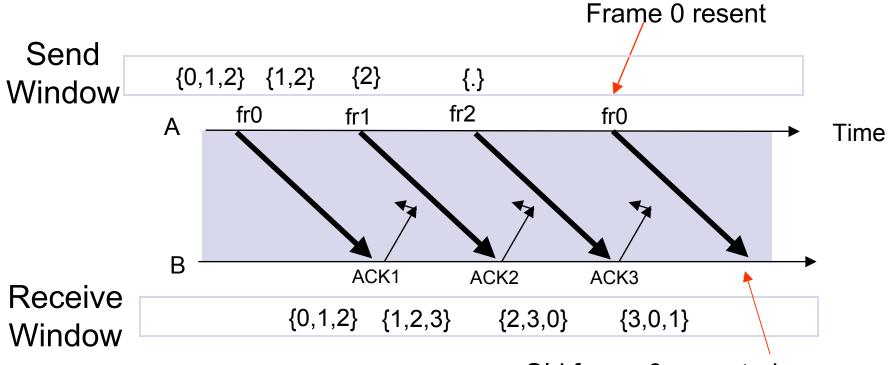

Selective Repeat ARQ


- Go-Back-N ARQ inefficient because *multiple* frames are resent when errors or losses occur
- Selective Repeat retransmits only an individual frame
 - Timeout causes individual corresponding frame to be resent
 - NAK causes retransmission of oldest un-acked frame
- Receiver maintains a *receive window* of sequence numbers that can be accepted
 - Error-free, but out-of-sequence frames with sequence numbers within the receive window are buffered
 - Arrival of frame with R_{next} causes window to slide forward by 1 or more

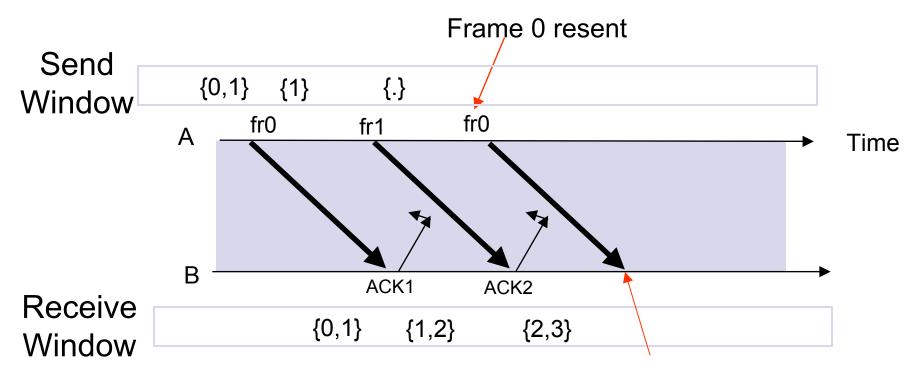

Selective Repeat ARQ



Selective Repeat ARQ



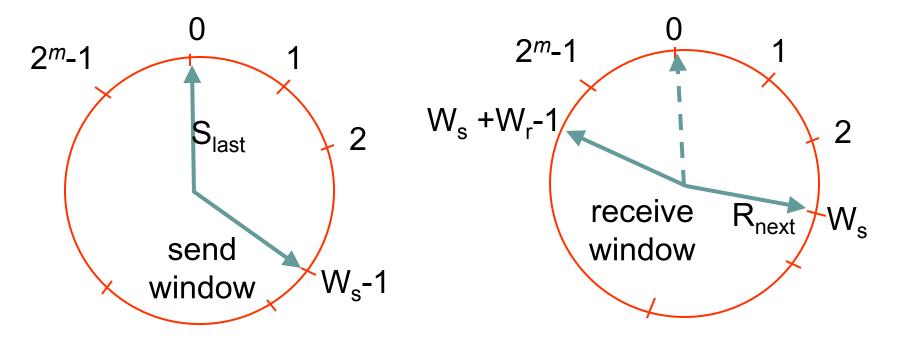
What size W_s and W_r allowed?


• Example: $M=2^2=4$, $W_s=3$, $W_r=3$

Old frame 0 accepted as a new frame because it falls in the receive window

$W_s + W_r = 2^m$ is maximum allowed

• Example: $M=2^2=4$, $W_s=2$, $W_r=2$


Old frame 0 rejected because it falls outside the receive window

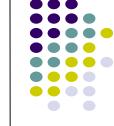
Why $W_s + W_r = 2^m$ works

- Transmitter sends frames 0 to Ws-1; send window empty
- All arrive at receiver
- All ACKs lost
- Transmitter resends frame 0

- Receiver window starts at {0, ..., W_r}
- Window slides forward to {W_s,...,W_s+W_r-1}
- Receiver rejects frame 0 because it is outside receive window

Applications of Selective Repeat ARQ

- TCP (Transmission Control Protocol): transport layer protocol uses variation of selective repeat to provide reliable stream service
- Service Specific Connection Oriented Protocol: error control for signaling messages in ATM networks


Efficiency of Selective Repeat

- Assume P_f frame loss probability, then number of transmissions required to deliver a frame is:
 - t_{f /} (1-P_f)

$$\eta_{SR} = \frac{\frac{n_f - n_o}{t_f / (1 - P_f)}}{R} = (1 - \frac{n_o}{n_f})(1 - P_f)$$

Example: Impact Bit Error Rate on Selective Repeat

 n_f =1250 bytes = 10000 bits, n_a = n_o =25 bytes = 200 bits Compare S&W, GBN & SR efficiency for random bit errors with p=0, 10⁻⁶, 10⁻⁵, 10⁻⁴ and R= 1 Mbps & 100 ms

Efficiency	0	10-6	10 ⁻⁵	10-4
S&W	8.9%	8.8%	8.0%	3.3%
GBN	98%	88.2%	45.4%	4.9%
SR	98%	97%	89%	36%

• Selective Repeat outperforms GBN and S&W, but efficiency drops as error rate increases

Comparison of ARQ Efficiencies

Assume n_a and n_o are negligible relative to n_f , and $L = 2(t_{prop}+t_{proc})R/n_f = (W_s-1)$, then

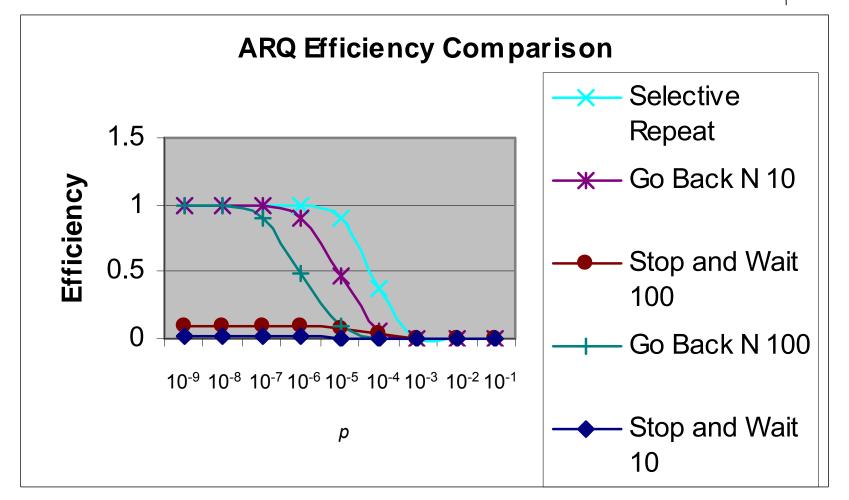
Selective-Repeat:

Stop-and-Wait:

$$\eta_{SR} = (1 - P_f)(1 - \frac{n_o}{n_f}) \approx (1 - P_f)$$

Go-Back-N:
For $P_f \approx 0$, SR & GBN same

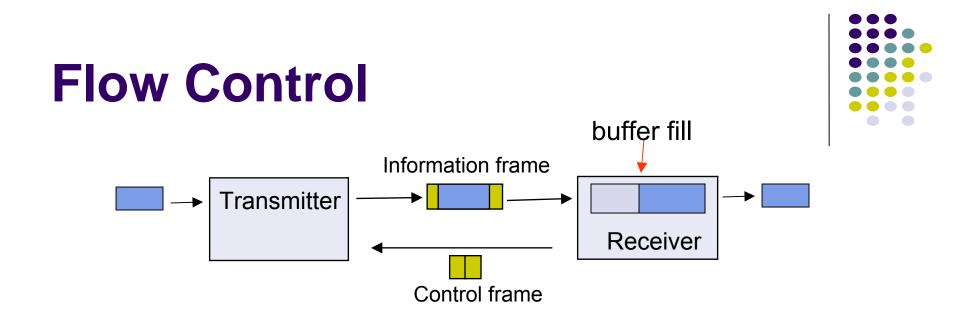
$$\eta_{GBN} = \frac{1 - P_f}{1 + (W_S - 1)P_f} = \frac{1 - P_f}{1 + LP_f}$$

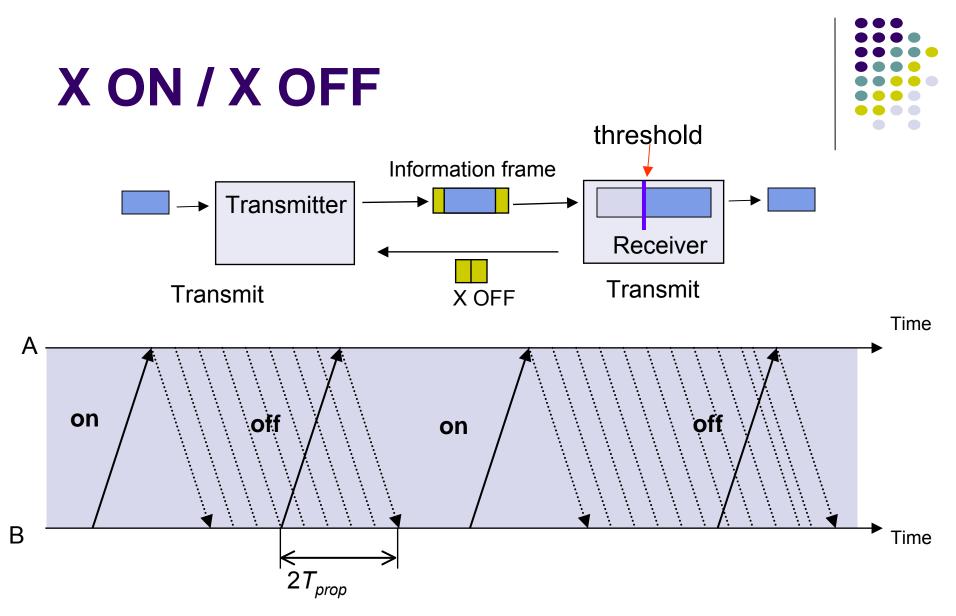

For $P_f \rightarrow 1$, GBN & SW same

$$\eta_{SW} = \frac{(1 - P_f)}{1 + \frac{n_a}{n_f} + \frac{2(t_{prop} + t_{proc})R}{n_f}} \approx \frac{1 - P_f}{1 + L}$$

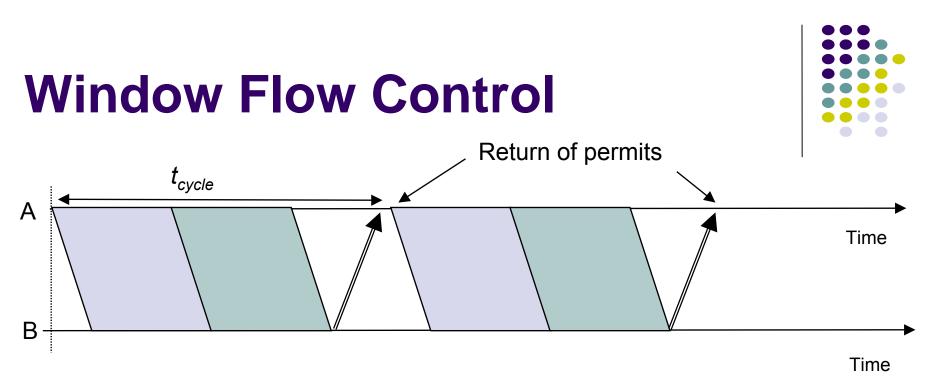
ARQ Efficiencies

Delay-Bandwidth product = 10, 100


Chapter 5 Peer-to-Peer Protocols and Data Link Layer



Alberto Leon-Garcia

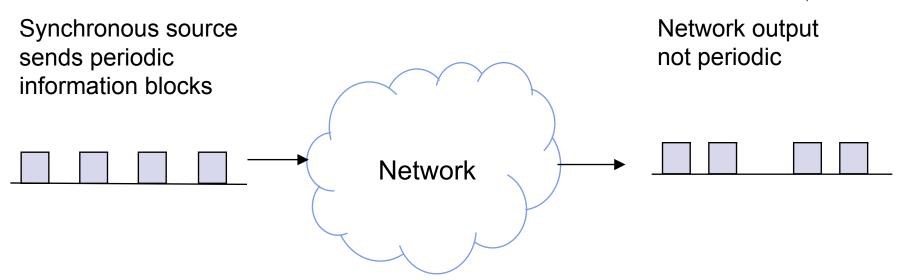

Indra Widiai

- Receiver has limited buffering to store arriving frames
- Several situations cause buffer overflow
 - Mismatch between sending rate & rate at which user can retrieve data
 - Surges in frame arrivals
- *Flow control* prevents buffer overflow by regulating rate at which source is allowed to send information

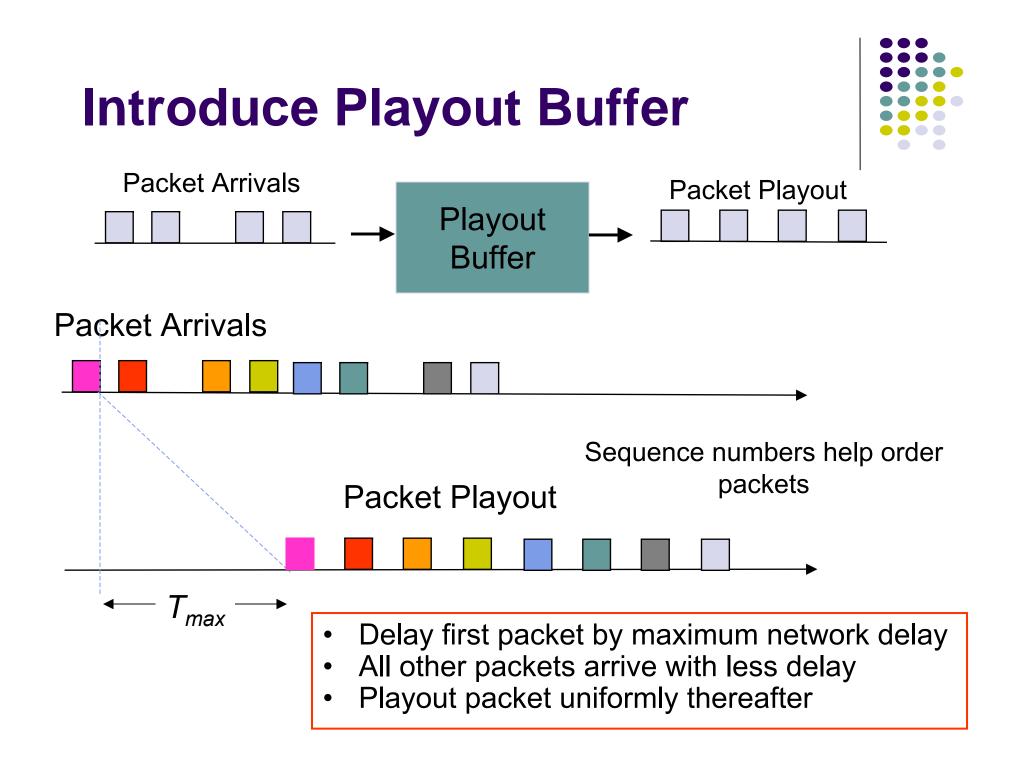
Threshold must activate OFF signal while 2 T_{prop} R bits still remain in buffer

- Sliding Window ARQ method with W_s equal to buffer available
 - Transmitter can never send more than W_s frames
- ACKs that slide window forward can be viewed as permits to transmit more
- Can also pace ACKs as shown above
 - Return permits (ACKs) at end of cycle regulates transmission rate
- Problems using sliding window for both error & flow control
 - Choice of window size
 - Interplay between transmission rate & retransmissions
 - TCP separates error & flow control

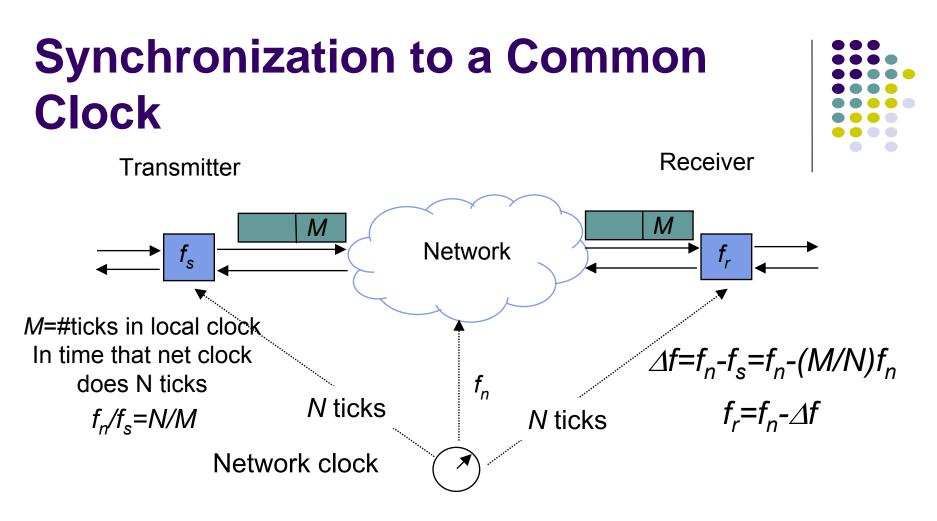
Chapter 5 Peer-to-Peer Protocols and Data Link Layer


Fundamental Concepts and Key Architectures

Alberto Leon-Garcia


Indra Widiai

Timing Recovery for Synchronous Services

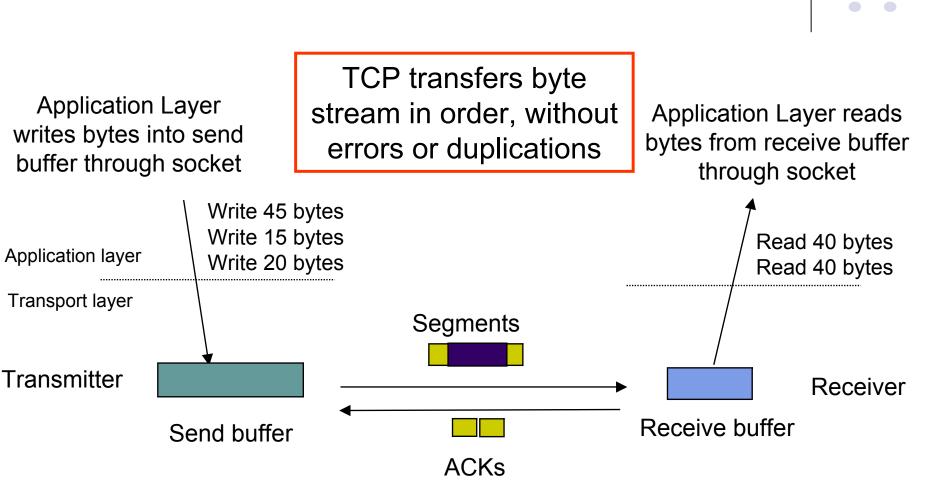

- Applications that involve voice, audio, or video can generate a synchronous information stream
- Information carried by equally-spaced fixed-length packets
- Network multiplexing & switching introduces random delays
 - Packets experience variable transfer delay
 - Jitter (variation in interpacket arrival times) also introduced
- Timing recovery re-establishes the synchronous nature of the stream

- Counter attempts to replicate transmitter clock
- Frequency of counter is adjusted according to arriving timestamps
- Jitter introduced by network causes fluctuations in buffer & in local clock

- Clock recovery simple if a common clock is available to transmitter & receiver
 - E.g. SONET network clock; Global Positioning System (GPS)
- Transmitter sends Δf of its frequency & network frequency
- Receiver adjusts network frequency by Δf
- Packet delay jitter can be removed completely

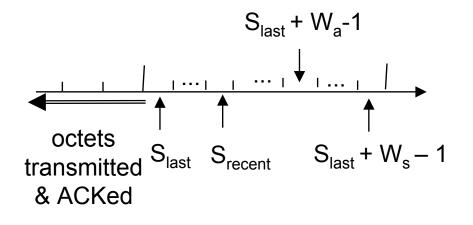
Example: Real-Time Protocol

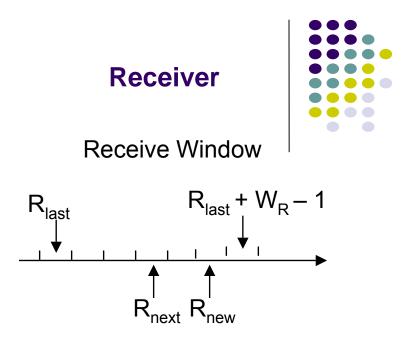
- RTP (RFC 1889) designed to support realtime applications such as voice, audio, video
- RTP provides means to carry:
 - Type of information source
 - Sequence numbers
 - Timestamps
- Actual timing recovery must be done by higher layer protocol
 - MPEG2 for video, MP3 for audio


Chapter 5 Peer-to-Peer Protocols and Data Link Layer

Alberto Leon-Garcia

TCP Reliable Stream Service

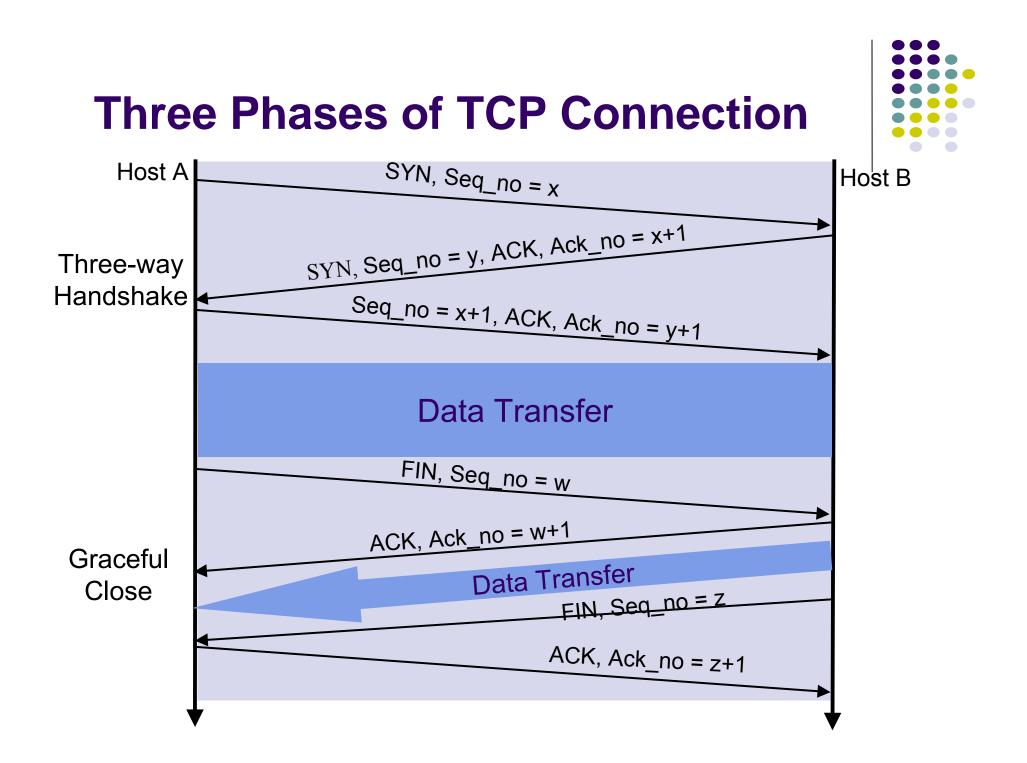

TCP ARQ Method


- TCP uses Selective Repeat ARQ
 - Transfers byte stream without preserving boundaries
- Operates over best effort service of IP
 - Packets can arrive with errors or be lost
 - Packets can arrive out-of-order
 - Packets can arrive after very long delays
 - Duplicate segments must be detected & discarded
 - Must protect against segments from previous connections
- Sequence Numbers
 - Seq. # is number of first byte in segment payload
 - Very long Seq. #s (32 bits) to deal with long delays
 - Initial sequence numbers negotiated during connection setup (to deal with very old duplicates)
 - Accept segments within a receive window

Transmitter

Send Window

 S_{last} oldest unacknowledged byte S_{recent} highest-numbered transmitted byte $S_{last}+W_a-1$ highest-numbered byte that can be transmitted $S_{last}+W_s-1$ highest-numbered byte that can be accepted from the application



 R_{last} highest-numbered byte not yet read by the application R_{next} next expected byte R_{new} highest numbered byte received correctly $R_{last}+W_R-1$ highest-numbered byte that can be accommodated in receive buffer

TCP Connections

- TCP Connection
 - One connection each way
 - Identified uniquely by Send IP Address, Send TCP Port #, Receive IP Address, Receive TCP Port #
- Connection Setup with Three-Way Handshake
 - Three-way exchange to negotiate initial Seq. #'s for connections in each direction
- Data Transfer
 - Exchange segments carrying data
- Graceful Close
 - Close each direction separately

1st Handshake: Client-Server Connection Request

File Edit Capture Display Tools Help								
No. 🗸 T		Source	Destination	Protocol	Info			
2 (3 (4 (5 (6 2 7 2 8 2 9	0.144934 0.145270 0.322432 0.323617 21.606250 21.751944 21.757136 21.757468 cernet Pro ansmission Source po	n Control Protoc rt: 2743 (2743)	ol, Src Port: 274	TELNET TCP TCP TCP TCP TCP	<pre>2743 > telnet [SYN] Seq=1839733355 Ack=0 win=31988 Len=0 telnet > 2743 [SYN, ACK] seq=1877388864 Ack=1839733356 wi 2743 > telnet [ACK] seq=183973356 Ack=1877388865 win=319 Telnet Data 7elnet Data 2743 > telnet [FIN, ACK] seq=1839733427 Ack=1877389120 wi telnet > 2743 [ACK] seq=1877389120 Ack=1839733428 win=491 telnet > 2743 [FIN, ACK] seq=1877389120 Ack=1839733428 win=491 telnet > 2743 [FIN, ACK] seq=1877389120 Ack=1839733428 win=491 telnet > 2743 [FIN, ACK] seq=1839733428 Ack=1877389121 win=317 [////////////////////////////////////</pre>			
	Sequence	on port: telnet number: 18397333 nqth: 28 bytes						
	Flags: 0x 0 .0 0 0	0002 (SYN)	t set ment: Not set	(CWR): No				
	Flags: 0x 0 .0 0 0 0	0002 (SYN) = Congestion = ECN-Echo: = Urgent: No = Acknowledg = Push: Not) = Reset: Not	Not set t set ment: Not set set	(CWR): No	-			
	Flags: 0x 0 .0 0 0 0. 0	0002 (SYN) = Congestion = ECN-Echo: = Urgent: No = Acknowledg = Push: Not 1. = Reset: Not 1. = Syn: Set .0 = Fin: Not s	Not set t set ment: Not set set	(CWR): NO	client to server			
	Flags: 0x 0 .0 00 0 0 0 0 0 0 0 0 0 0 	0002 (SYN) = Congestion = ECN-Echo: = Urgent: No = Acknowledg = Push: Not 1. = Reset: Not 1. = Syn: Set	Not set t set ment: Not set set set	(CWR): NC	SYN bit set indicates request to			
	Flags: 0x 0 .0 00 0 0 0 0 0 0 0 0 0 0 	0002 (SYN) = Congestion = ECN-Echo: = Urgent: No = Acknowledg = Push: Not 0. = Reset: Not 1. = Syn: Set .0 = Fin: Not s ze: 31988 0x2644 (correct	Not set t set ment: Not set set set	(CWR): NO	SYN bit set indicates request to establish connection from client to			

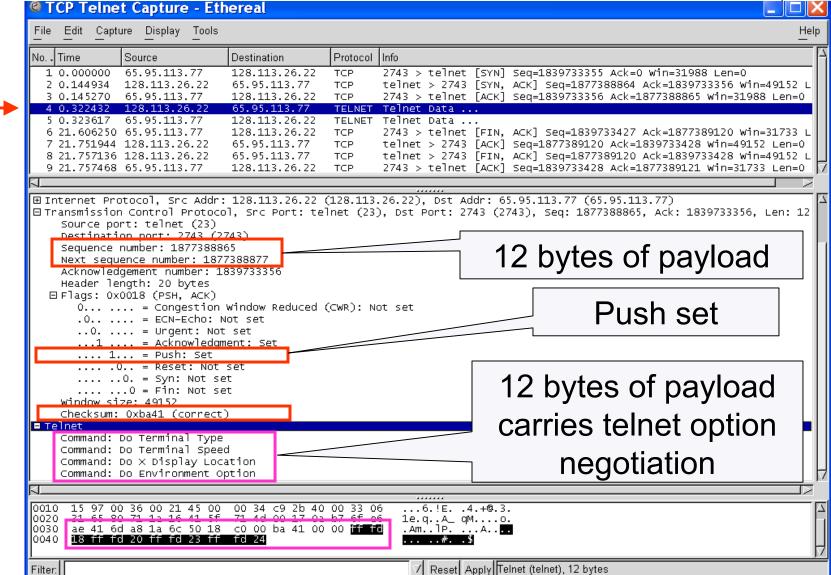
2nd Handshake: ACK from Server

File Edit Capture Display Tools Help								
lo. 🗸 Time	:	Source	Destination	Protocol	I Info			
1 0.000		65.95.113.77	128.113.26.22	TCP	2743 > telnet [SYN] Seg=1839733355 Ack=0 Win=31988 Len=0			
		128.113.26.22 65.95.113.77	65.95.113.77 128.113.26.22	TCP TCP	telnet > 2743 [SYN, ACK] Seq=1877388864 Ack=1839733356 wi 2743 > telnet [ACK] seq=1839733356 Ack=1877388865 win=319			
4 0.322		128.113.26.22	65.95.113.77		Telnet Data			
5 0.323		65.95.113.77	128.113.26.22	TELNET	Telnet Data			
		65.95.113.77	128.113.26.22	TCP	2743 > telnet [FIN, ACK] seq=1839733427 Ack=1877389120 wi			
		128.113.26.22 128.113.26.22	65.95.113.77 65.95.113.77	TCP TCP	telnet > 2743 [ACK] seq=1877389120 Ack=1839733428 win=491 telnet > 2743 [FIN, ACK] seq=1877389120 Ack=1839733428 wi			
		65.95.113.77	128.113.26.22	TCP	2743 > telnet [ACK] seq=1839733428 Ack=1877389121 Win=317 🗸			
Transmi	ssion	Control Protoc	ol, Src Port: te	lnet (23)	3.26.22), Dst Addr: 65.95.113.77 (65.95.113.77) △			
Dest Sequ Ackn Head ⊡ Flag 0.	inatio ence n owledg er len s: 0x0 0	= ECN-Echo: = Urgent: No	864 839733356 Window Reduced Not set t set		3), Dst Port: 2743 (2743), Seq: 1877388864, Ack: 1839733356 ACK Seq. # = Init. Seq. # + 1			
Dest Segu Ackn Head D Flag 0. 	inatio ence n owledg er len s: 0x0 0 0 	<pre>in port: 2743 (2 jumber: 18773888 jement number: 1 igth: 24 bytes i012 (SYN, ACK) = Congestion = ECN-Echo: 1 = Urgent: Not = Acknowledg = Push: Not 1. = Syn: Set</pre>	Window Reduced Not set t set ment: Set set		ACK Seq. # =			
Dest Segu Ackn Head D Flag 0. Wind Chec	inatio ence n owledg er len s: 0x0 0	<pre>in port: 2743 (2 jumber: 18773888 jement number: 1 igth: 24 bytes i012 (SYN, ACK) = Congestion = Urgent: Noi = Urgent: Noi = Reset: Noi = Syn: Set = Fin: Not s te: 49152 0xd9d8 (correct</pre>	Window Reduced Not set set set set set		ACK Seq. # = Init. Seq. # + 1 ACK bit set acknowledges connection request; Client-			
Dest Segu Ackn Head D Flag 0. Wind Chec	inatio ence n owledg er len s: 0x0 0	<pre>in port: 2743 (2 jumber: 18773888 jement number: 1 igth: 24 bytes i012 (SYN, ACK) = Congestion = ECN-Echo: 1 = Urgent: Noi = Acknowledg = Reset: Not 1. = Syn: Set .0 = Fin: Not si :e: 49152</pre>	Window Reduced Not set set set set set		ACK Seq. # = Init. Seq. # + 1 ACK bit set acknowledges connection request; Client-			
Dest Segu Ackn Head D Flag 0. wind Chec E Opti	inatio ence n owledg er len s: 0x0 0	<pre>in port: 2743 (2 jumber: 18773888 jement number: 1 igth: 24 bytes i012 (SYN, ACK) = Congestion = Urgent: Noi = Urgent: Noi = Reset: Noi = Syn: Set = Fin: Not s te: 49152 0xd9d8 (correct</pre>	364 .839733356 window Reduced Not set set set set set 1a 40 1d 17 88	(CWR): N	ACK Seq. # = Init. Seq. # + 1 ACK bit set acknowledges connection request; Client- to-Server connection			

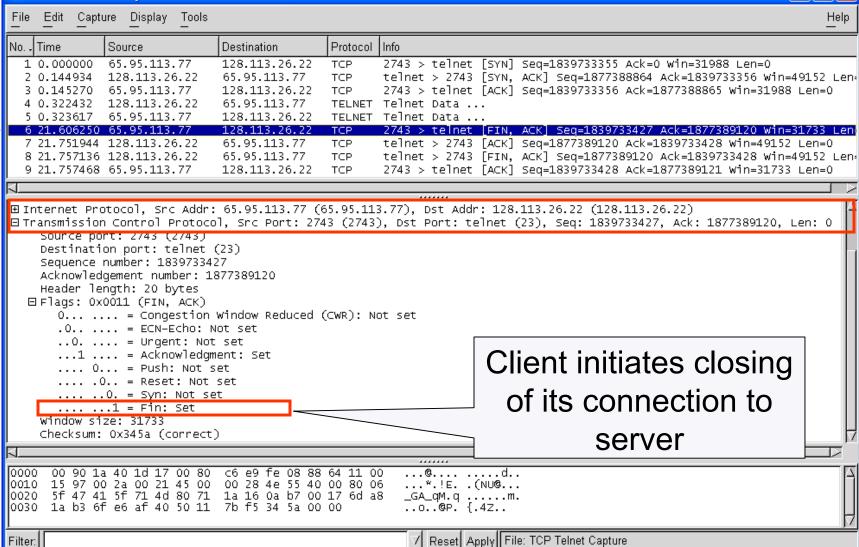
2nd Handshake: Server-Client Connection Request

Contended TCP Telnet Capture - Et	hereal		
<u>File Edit Capture Display Tools</u>		<u>H</u> elp	
No. Time Source	Destination Protocol	ol Info	
1 0.000000 65.95.113.77	128.113.26.22 TCP	2743 > telnet [SYN] Seq=1839733355 Ack=0 Win=31988 Len=0	
2 0.144934 128.113.26.22	65.95.113.77 TCP	telnet > 2743 [SYN, ACK] seq=1877388864 Ack=1839733356 wi	
3 0.145270 65.95.113.77 4 0.322432 128.113.26.22	128.113.26.22 TCP 65.95.113.77 TELNET	2743 > telnet [ACK] seq=1839733356 Ack=1877388865 Win=319 T Telnet Data	
5 0.323617 65.95.113.77		T Telnet Data	
6 21.606250 65.95.113.77	128.113.26.22 TCP	2743 > telnet [FIN, ACK] seq=1839733427 Ack=1877389120 Wi	
7 21.751944 128.113.26.22 8 21.757136 128.113.26.22	65.95.113.77 ТСР 65.95.113.77 ТСР	telnet > 2743 [ACK] seq=1877389120 Ack=1839733428 Win=491 telnet > 2743 [FIN, ACK] seq=1877389120 Ack=1839733428 Wi	
9 21.757468 65.95.113.77	128.113.26.22 TCP	2743 > telnet [ACK] seq=1839733428 Ack=1877389121 Win=317 7	
1			
∃Internet Protocol, Src Addr	: 128.113.26.22 (128.113	L3.26.22). Dst Addr: 65.95.113.77 (65.95.113.77)	
∃Transmission Control Protoc	ol, Src Port: telnet (23	23) Dst Port: 2743 (2743), Seq: 1877388864, Ack: 1839733356	
Source port: telnet (23)			
Destination port: 2743 (Sequence number: 1877388			
Acknowledgement number: :			
Header length: 24 bytes ⊡Flaqs: 0x0012 (SYN, ACK)		Initial Seq. # from	
	Window Reduced (CWR): N	Not set	
.0 = ECN-Echo:		Not set server to client	
1 = Acknowledg 0 = Push: Not			
	set	SYN bit set indicates request	
1. = Syn: Set 0 = Fin: Not s	at	establish connection from ser	vor
Window size: 49152	e.		VEI
Checksum: 0xd9d8 (correc	:)	to client	
⊞options: (4 bvtes)			
0000 00 80 c6 e9 fe 08 00 90 0010 15 97 00 2e 00 21 45 00		06!E@.3.	
0020 31 7c 80 71 1a 16 41 5f		e6 1 .qA_ qMo.	
0030 ae 40 6d a8 1a 6c 60 12 0040 05 b4			
Filter:		Reset Apply File: TCP Telnet Capture	

3rd Handshake: ACK from Client

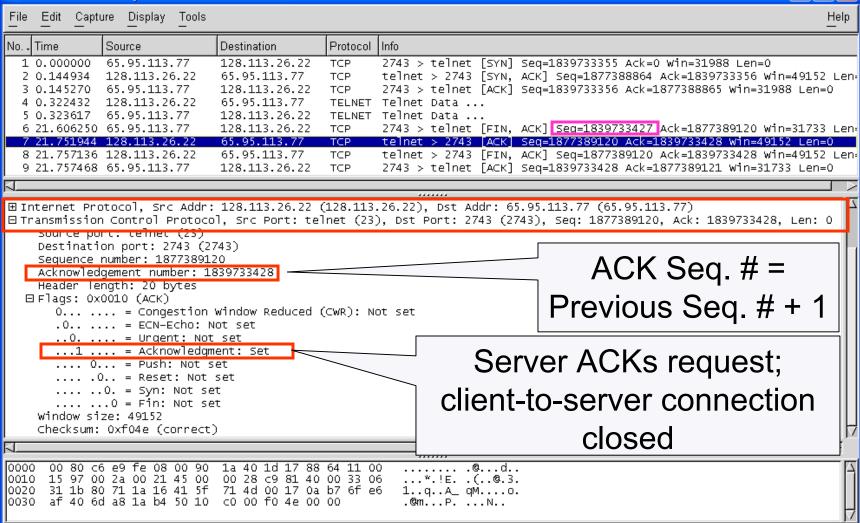

Contract Capture - Ethereal										
<u>File Edit Capture</u>										
No Time S	ource	Destination	Protocol	Info						
	5.95.113.77 28.113.26.22	128.113.26.22 65.95.113.77	TCP TCP	2743 > telnet [SYN] seq=1839733355 Ack=0 win=31988 Len=0 telnet > 2743 [SYN, ACK] seq=1877388864 Ack=1839733356 win=491						
3 0.145270 6		128.113.26.22	TCP	2743 > telnet [ACK] Seq=1839733356 ACK=1877388865 Win=31988 Le						
	28.113.26.22	65.95.113.77	TELNET	Telnet Data						
5 0.323617 6 6 21.606250 6	5.95.113.77	128.113.26.22 128.113.26.22		Telnet Data						
7 21.751944 1		65.95.113.77	TCP TCP	2743 > telnet [FIN, ACK] seq=1839733427 Ack=1877389120 win=317 telnet > 2743 [ACK] seq=1877389120 Ack=1839733428 win=49152 Le						
8 21.757136 1		65.95.113.77	TCP	telnet > 2743 [FIN, ACK] Seq=1877389120 Ack=1839733428 Win=491						
9 21.757468 6	5.95.113.77	128.113.26.22	TCP	2743 > telnet [ACK] Seq=1839733428 Ack=1877389121 win=31733 Le 📝						
<u>م</u>										
Source port Destination Sequence nu Acknowledge Header leng B Flags: 0x00 0 .0. .0. 0. 0. 0. 	: 2743 (2743) port: telnet (mber: 183973335 ment number: 18 th: 20 bytes 10 (ACK) = Congestion V = ECN-Echo: Not = Urgent: Not = Acknowledgm = Push: Not set = Syn: Not set	23) 6 777388865 window Reduced (ot set set ent: Set et set		ACK bit set acknowledges						
Window size	0 = Fin: Not set : 31988 x34a2 (correct)			connection request;						
0000 00 90 1a 4 0010 15 97 00 2 0020 5f 6c 41	40 1d 17 00 80 2a 00 21 45 00 5f 71 4d 80 71	c6 e9 fe 08 88 00 28 4e 30 40 1a 16 0a b7 00	64 11 00 00 80 00							
0020 57 6C 41 5 0030 1a 6C 6f 6	e6 ae 41 50 10	7c f4 34 a2 00	00	directions established						
Filter:				Reset Apply File: TCP Telnet Capture						

TCP Data Exchange


- Application Layers write bytes into buffers
- TCP sender forms segments
 - When bytes exceed threshold or timer expires
 - Upon PUSH command from applications
 - Consecutive bytes from buffer inserted in payload
 - Sequence # & ACK # inserted in header
 - Checksum calculated and included in header
- TCP receiver
 - Performs selective repeat ARQ functions
 - Writes error-free, in-sequence bytes to receive buffer

Data Transfer: Server-to-Client Segment

Graceful Close: Client-to-Server Connection


TCP Telnet Capture - Ethereal

Graceful Close: Client-to-Server Connection

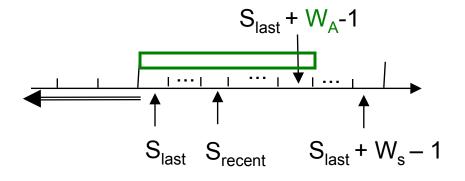
CP Telnet Capture - Ethereal

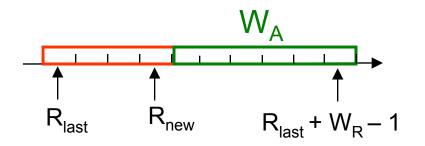
Filter:

Reset Apply File: TCP Telnet Capture

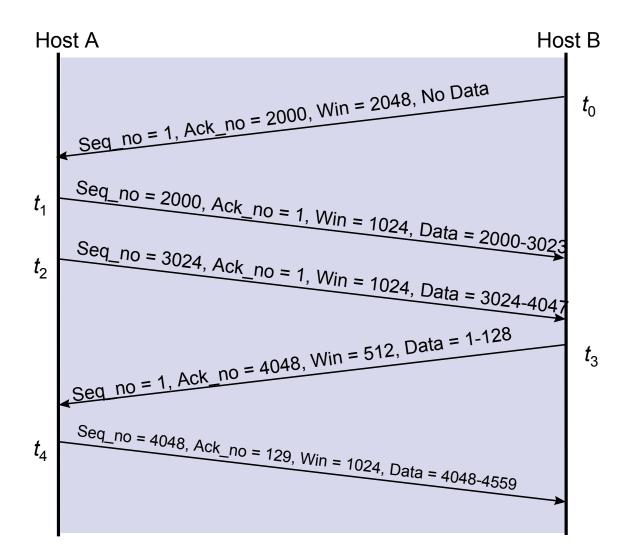
Flow Control

- TCP receiver controls rate at which sender transmits to prevent buffer overflow
- TCP receiver advertises a window size specifying number of bytes that can be accommodated by receiver


$$W_A = W_R - (R_{new -} R_{last})$$


TCP sender obliged to keep # outstanding bytes below W_A

$$(S_{recent} - S_{last}) \leq W_A$$



TCP window flow control

TCP Retransmission Timeout

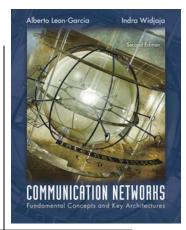
- TCP retransmits a segment after timeout period
 - Timeout too short: excessive number of retransmissions
 - Timeout too long: recovery too slow
 - Timeout depends on RTT: time from when segment is sent to when ACK is received
- Round trip time (RTT) in Internet is highly variable
 - Routes vary and can change in mid-connection
 - Traffic fluctuates
- TCP uses adaptive estimation of RTT
 - Measure RTT each time ACK received: τ_n

$$t_{RTT}(\mathsf{new}) = \alpha \ t_{RTT}(\mathsf{old}) + (1 - \alpha) \ \tau_\mathsf{n}$$

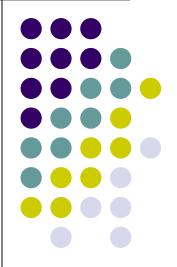
• $\alpha = 7/8$ typical

RTT Variability

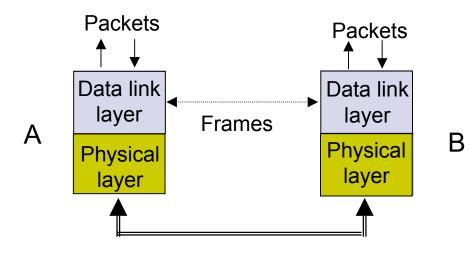
- Estimate variance σ^2 of RTT variation
- Estimate for timeout:


 $t_{out} = t_{RTT} + k \sigma_{RTT}$

- If RTT highly variable, timeout increase accordingly
- If RTT nearly constant, timeout close to RTT estimate
- Approximate estimation of deviation


$$d_{RTT}(new) = \beta d_{RTT}(old) + (1-\beta) | \tau_n - t_{RTT}|$$

$$t_{out} = t_{RTT} + 4 \ d_{RTT}$$



Chapter 5 Peer-to-Peer Protocols and Data Link Layer

PART II: Data Link Controls Framing Point-to-Point Protocol High-Level Data Link Control Link Sharing Using Statistical Multiplexing

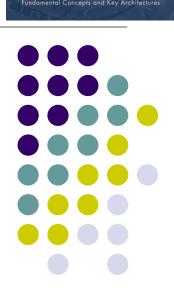
Data Link Protocols

• Directly connected, wire-like

- Losses & errors, but no out-ofsequence frames
- Applications: Direct Links; LANs; Connections across WANs

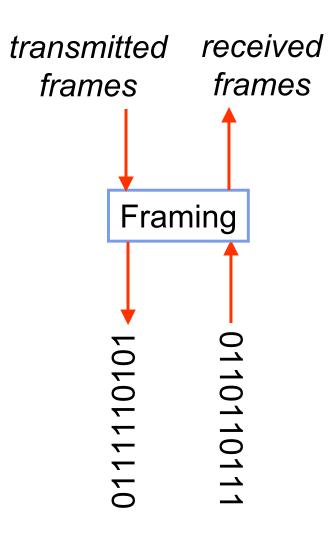
Data Links Services

- Framing
- Error control
- Flow control
- Multiplexing
- Link Maintenance
- Security: Authentication & Encryption


Examples

- PPP
- HDLC
- Ethernet LAN
- IEEE 802.11 (Wi Fi) LAN

Chapter 5 Peer-to-Peer Protocols and Data Link Layer



Alberto Leon-Garcia

Indra Widiaia

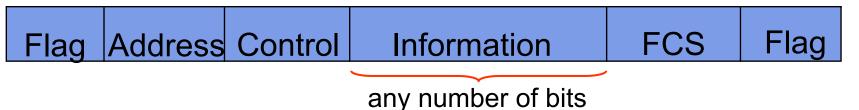
Framing

- Mapping stream of physical layer bits into frames
- Mapping frames into bit stream
- Frame boundaries can be determined using:
 - Character Counts
 - Control Characters
 - Flags
 - CRC Checks

Character-Oriented Framing

Data to be sent

A DLE B ETX DLE STX E


After stuffing and framing

DLE STX A DLE DLE B ETX DLE DLE STX E DLE ETX

- Frames consist of integer number of bytes
 - Asynchronous transmission systems using ASCII to transmit printable characters
 - Octets with HEX value <20 are nonprintable
- Special 8-bit patterns used as control characters
 - STX (start of text) = 0x02; ETX (end of text) = 0x03;
- Byte used to carry non-printable characters in frame
 - DLE (data link escape) = 0x10
 - DLE STX (DLE ETX) used to indicate beginning (end) of frame
 - Insert extra DLE in front of occurrence of DLE STX (DLE ETX) in frame
 - All DLEs occur in pairs except at frame boundaries

Framing & Bit Stuffing

HDLC frame

- Frame delineated by flag character
- HDLC uses *bit stuffing* to prevent occurrence of flag 01111110 inside the frame
- Transmitter inserts extra 0 after each consecutive five 1s *inside* the frame
- Receiver checks for five consecutive 1s
 - if next bit = 0, it is removed
 - if next two bits are 10, then flag is detected
 - If next two bits are 11, then frame has errors

Example: Bit stuffing & destuffing

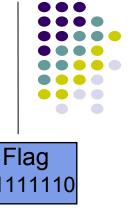
Data to be sent

(a)

011011111111100

After stuffing and framing

*01111110*011011111<u>0</u>11111<u>0</u>00*01111110*


(b) Data received

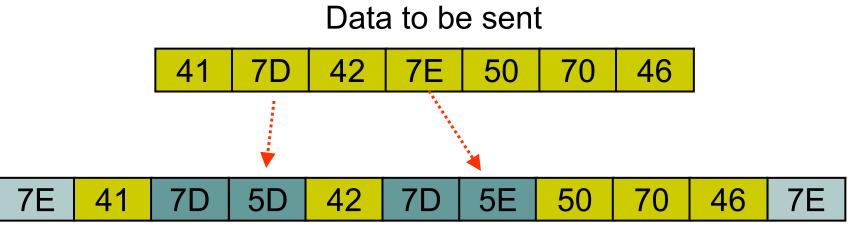
01111110000111011111011111011001111110

After destuffing and deframing

000111011111-11111-110

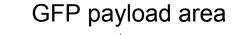
PPP Frame

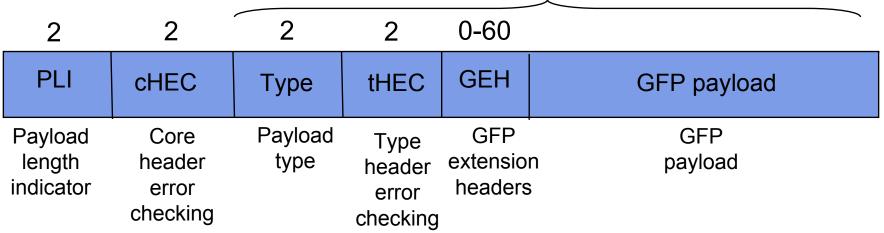
Address Control Flag Protocol Information CRC 01111110 1111111 01111110 00000011 integer # of bytes All stations are to Unnumbered Specifies what kind of packet is contained in the accept the frame payload, e.g., LCP, NCP, IP, OSI CLNP, IPX frame


- PPP uses similar frame structure as HDLC, except
 - Protocol type field
 - Payload contains an *integer* number of bytes
- PPP uses the same flag, but uses byte stuffing
- Problems with PPP byte stuffing
 - Size of frame varies unpredictably due to byte insertion
 - Malicious users can inflate bandwidth by inserting 7D & 7E

Byte-Stuffing in PPP

- PPP is character-oriented version of HDLC
- Flag is 0x7E (01111110)
- Control escape 0x7D (01111101)
- Any occurrence of flag or control escape inside of frame is replaced with 0x7D followed by

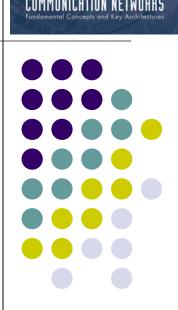

original octet XORed with 0x20 (00100000)



After stuffing and framing

Generic Framing Procedure

- GFP combines frame length indication with CRC
 - PLI indicated length of frame, then simply count characters
 - cHEC (CRC-16) protects against errors in count field (single-bit error correction + error detection)
- GFP designed to operate over octet-synchronous physical layers (e.g. SONET)
 - Frame-mapped mode for variable-length payloads: Ethernet
 - Transparent mode carries fixed-length payload: storage devices


GFP Synchronization & Scrambling

- Synchronization in three-states
 - *Hunt state*: examine 4-bytes to see if CRC ok
 - If no, move forward by one-byte
 - If yes, move to pre-sync state
 - *Pre-sync state*: tentative PLI indicates next frame
 - If N successful frame detections, move to sync state
 - If no match, go to hunt state
 - Sync state: normal state
 - Validate PLI/cHEC, extract payload, go to next frame
 - Use single-error correction
 - Go to hunt state if non-correctable error
- Scrambling
 - Payload is scrambled to prevent malicious users from inserting long strings of 0s which cause SONET equipment to lose bit clock synchronization (as discussed in line code section)

Chapter 5 Peer-to-Peer Protocols and Data Link Layer

Point-to-Point Protocol

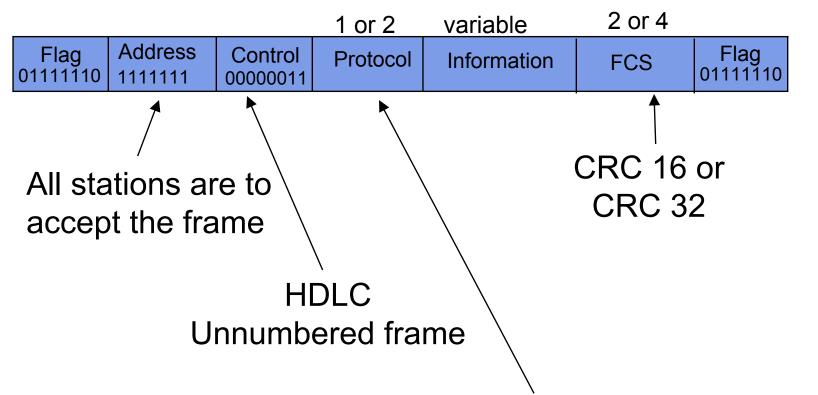
Alberto Leon-Garcia

Indra Widia

PPP: Point-to-Point Protocol

- Data link protocol for point-to-point lines in Internet
 - Router-router; dial-up to router
- 1. Provides Framing and Error Detection
 - Character-oriented HDLC-like frame structure
- 2. Link Control Protocol
 - Bringing up, testing, bringing down lines; negotiating options
 - *Authentication*: key capability in ISP access
- 3. A family of *Network Control Protocols* specific to different network layer protocols
 - IP, OSI network layer, IPX (Novell), Appletalk

PPP Applications

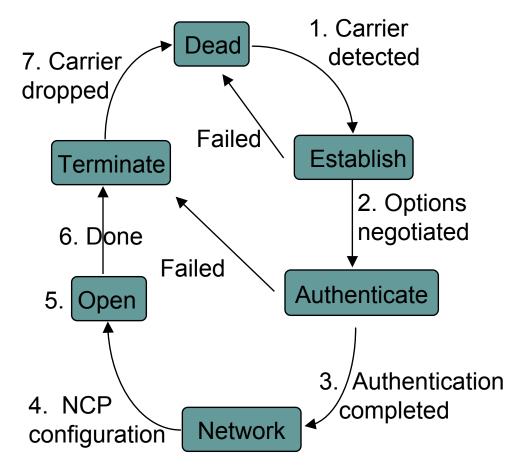


PPP used in many point-to-point applications

- Telephone Modem Links 30 kbps
- Packet over SONET 600 Mbps to 10 Gbps
 IP→PPP→SONET
- PPP is also used over shared links such as Ethernet to provide LCP, NCP, and authentication features
 - PPP over Ethernet (RFC 2516)
 - Used over DSL

PPP Frame Format

- PPP can support multiple network protocols simultaneously
- Specifies what kind of packet is contained in the payload
 e.g. LCP, NCP, IP, OSI CLNP, IPX...


PPP Example

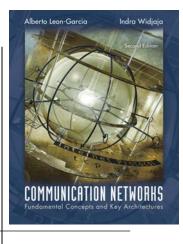
File Edit Capture Display Tools Help									
o. 🗸 Time	Source		Destination	Protocol	Info				
1 0.000000	10.0.0.6		207.38.64.53	HTTP	GET /taisnpd/				
2 0.000000	10.0.0.6		207.38.64.53	TCP		I, АСК] Seq=778940			
3 0.000000			207.38.64.53	TCP		<pre>I] Seq=1032757018</pre>	Ack=0 W		
4 0.000000			207.38.64.53	HTTP	GET /taisnpd/				
5 0.000000	207.193.25.		207.38.64.53	TCP		I, ACK] Seq=778940			
6 0.010000	207.193.25.		207.38.64.53	TCP		<pre>I] Seq=1032757018</pre>			
7 0.110000	207.38.64.5		207.193.25.12] Seq=4013566122			
8 0.110000 9 0.110000	207.38.64.5		10.0.0.6 207.193.25.12	TCP TCP] Seq=4013566122			
10 0.110000			10.0.0.6	ТСР] Seq=4013566122] Seq=4013566122			
10 0.110000	207.38.04.3	-	10.0.0.0	ICP	00 × 1245 [KSI] SEd=4013100122	ACK=0 W		
							\rightarrow		
Frame 4 (207	les et e e le sur sur d'a	no 207 but							
⊢rame 4 (38/	bytes on wh	re, 387 byu	es captured)						
		re, 387 byl	es captured)						
Point-to-Poi	nt Protocol	re, 387 byt	tes captured)						
Point-to-Poi Address: (nt Protocol Xff	re, 387 byt	es captured)						
Point-to-Poi Address: (Control: (nt Protocol Xff X03		es captured)						
Point-to-Poi Address: (Control: (Protocol:	nt Protocol Exff Ex03 Multilink (0		es captured)						
Point-to-Poi Address: (Control: (Protocol: PPP Multilin	nt Protocol Exff Ex03 Multilink (0 K Protocol		es captured)						
Point-to-Poi Address: (Control: (Protocol: PPP Multilin Point-to-Poi	nt Protocol 0xff Multilink (0 k Protocol nt Protocol)x003d)		193.25.12). Dst	Addr: 207.38.64	. 53 (207. 38. 64. 53)		
Point-to-Poi Address: (Control: (Protocol: PPP Multilin Point-to-Poi Internet Pro	nt Protocol Exff Multilink (0 k Protocol nt Protocol tocol, Src A)x003d) ddr: 207.19	93.25.12 (207.)			.53 (207.38.64.53 78939907. Ack:40			
Point-to-Poi Address: (Control: (Protocol: PPP Multilin Point-to-Poi Internet Pro Transmission	nt Protocol 0xff 0x03 Multilink (0 k Protocol nt Protocol tocol, Src A Control Pro	0x003d) ddr: 207.19 tocol, src	93.25.12 (207.)			.53 (207.38.64.53 78939907, Ack: 40			
Point-to-Poi Address: (Control: (Protocol: PPP Multilin Point-to-Poi Internet Pro Transmission	nt Protocol 0xff 0x03 Multilink (0 k Protocol nt Protocol tocol, Src A Control Pro	0x003d) ddr: 207.19 tocol, src	93.25.12 (207.)						
Point-to-Poi Address: (Control: (Protocol: PPP Multilin Point-to-Poi Internet Pro Transmission	nt Protocol 0xff 0x03 Multilink (0 k Protocol nt Protocol tocol, Src A Control Pro	0x003d) ddr: 207.19 tocol, src	93.25.12 (207.)						
Point-to-Poi Address: (Control: (Protocol: PPP Multilin Point-to-Poi Internet Pro Transmission Hypertext Tr	nt Protocol 0xff 0x03 Multilink (0 k Protocol nt Protocol tocol, Src A Control Pro	0x003d) ddr: 207.19 tocol, src	93.25.12 (207.)						
Point-to-Poi Address: (Control: (Protocol: PPP Multilin Point-to-Poi Internet Pro Transmission Hypertext Tr	nt Protocol 0xff 0x03 Multilink (0 k Protocol nt Protocol tocol, Src A Control Pro	0x003d) ddr: 207.19 tocol, src	93.25.12 (207.)						
Point-to-Poi Address: (Control: (Protocol: PPP Multilin Point-to-Poi Internet Pro Transmission Hypertext Tr	nt Protocol 0xff 0x03 Multilink (0 k Protocol nt Protocol tocol, Src A Control Pro ansfer Proto	0x003d) ddr: 207.19 tocol, Src col	93.25.12 (207.) Port: 1245 (1 00 01 7a 39 5	245), Dst Port:	80 (80), Seq: 7				
Point-to-Poi Address: (Control: (Protocol: PPP Multilin Point-to-Poi Internet Pro Transmission Hypertext Tr No 00 iff 03 00 00 00 3f 06	nt Protocol 0xff 0x03 Multilink (0 k Protocol nt Protocol tocol, Src A Control Pro ansfer Proto 30 c0 00 01 09 04 cf c1	0x003d) ddr: 207.19 tocol, Src col	93.25.12 (207.) Port: 1245 (1 00 01 7a 39 5 26 40 35 04 d	245), Dst Port: 1 40≡ d 00 .?	80 (80), Seq: 7				
Point-to-Poi Address: (Control: (Protocol: PPP Multilin Point-to-Poi Internet Pro Transmission Hypertext Tr NO0 iff 03 00 00 0 3f 06 020 50 2e 6d	nt Protocol 0xff 0x03 Multilink (0 k Protocol nt Protocol tocol, Src A Control Pro ansfer Proto 30 c0 00 01 09 04 cf c1 ae 03 ef 3a	0x003d) ddr: 207.19 tocol, Src col 	03.25.12 (207.) Port: 1245 (1 00 01 7a 39 5 26 40 35 04 d 18 7d 2e 4a f	245), Dst Port: 1 40= d 00 .? 3 00 P.m:(80 (80), Seq: 7				
Control: (Protocol: PPP Multilin Point-to-Poi Internet Pro Transmission Hypertext Tr 000 if 03 00 010 00 3f 06 020 50 2e 6d 030 00 01 01	nt Protocol 0xff 0x03 Multilink (0 k Protocol nt Protocol tocol, Src A Control Pro ansfer Proto 30 c0 00 01 09 04 cf c1	0x003d) ddr: 207.19 tocol, Src col	93.25.12 (207.) Port: 1245 (1 00 01 7a 39 5 26 40 35 04 d	245), Dst Port: 1 40= d 00 .? 3 00 P.m:(5 54	80 (80), Seq: 7				

PPP Phases

Home PC to Internet Service Provider

- 1. PC calls router via modem
- 2. PC and router exchange LCP packets to negotiate PPP parameters
- 3. Check on identities
- NCP packets exchanged to configure the network layer, e.g. TCP/IP (requires IP address assignment)
- 5. Data transport, e.g. send/receive IP packets
- 6. NCP used to tear down the network layer connection (free up IP address); LCP used to shut down data link layer connection
- 7. Modem hangs up

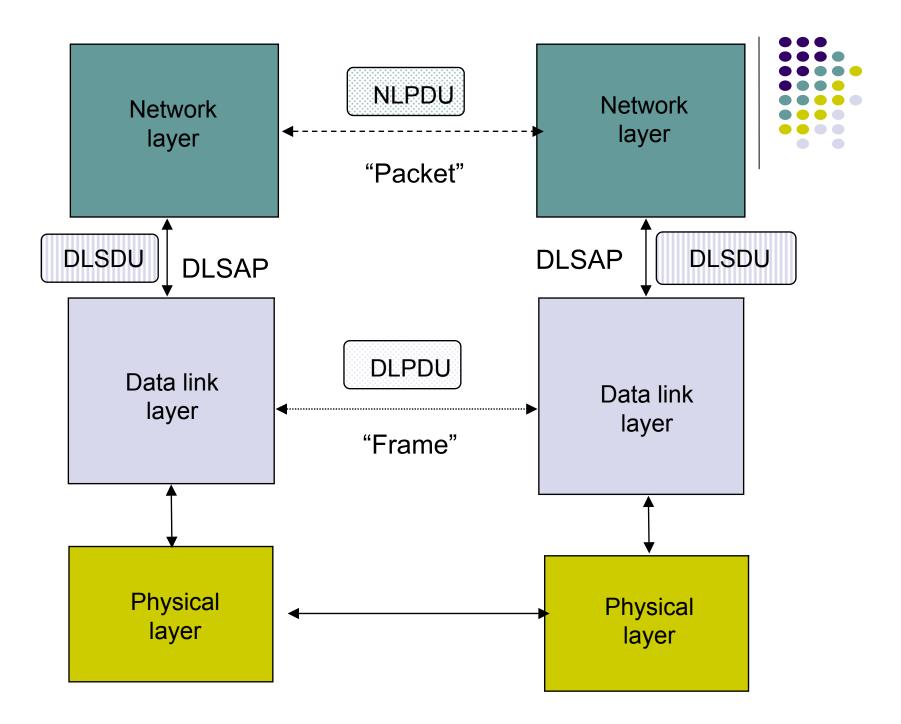
PPP Authentication


- Password Authentication Protocol
 - Initiator must send ID & password
 - Authenticator replies with authentication success/fail
 - After several attempts, LCP closes link
 - Transmitted unencrypted, susceptible to eavesdropping
- Challenge-Handshake Authentication Protocol (CHAP)
 - Initiator & authenticator share a secret key
 - Authenticator sends a challenge (random # & ID)
 - Initiator computes cryptographic checksum of random # & ID using the shared secret key
 - Authenticator also calculates cryptocgraphic checksum & compares to response
 - Authenticator can reissue challenge during session

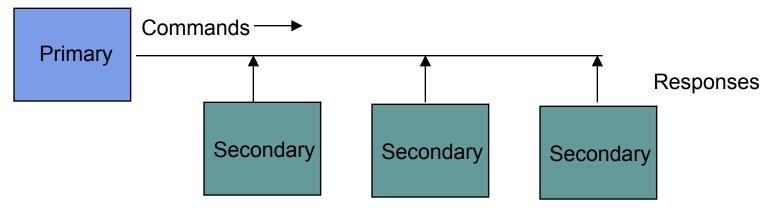
Example: PPP connection setup in dialup modem to ISP

PPP LCP and NC	P Negotiation - Ethereal				×
<u>File Edit Captu</u>	re <u>D</u> isplay <u>T</u> ools			He	q
No Time	Source	Destination	Protocol	Info	A
1 0.000000 2 2.999526	20:53:45:4e:44:00 20:53:45:4e:44:00	20:53:45:4e:44:00 20:53:45:4e:44:00	PPP LCP PPP LCP	PPP LCP Configuration Request PPP LCP Configuration Request	
3 3.130440	20:52:45:43:56:00	20:52:45:43:56:00	PPP LCP	PPP LCP Configuration Reject	
4 3.130495	20:53:45:4e:44:00 20:52:45:43:56:00	20:53:45:4e:44:00 20:52:45:43:56:00	PPP LCP PPP LCP	PPP LCP Configuration Request PPP LCP Configuration Ack	
6 5.096025	20:52:45:43:56:00	20:52:45:43:56:00	PPP LCP	PPP LCP Configuration Request	Sotup
	20:53:45:4e:44:00 20:52:45:43:56:00	20:53:45:4e:44:00 20:52:45:43:56:00	PPP LCP PPP LCP	PPP LCP Configuration Reject PPP LCP Configuration Request	Setup
	20:53:45:49:50:00	20:53:45:4e:44:00		PPP LCP Configuration Ack	
	20:53:45:4e:44:00	20:53:45:4e:44:00		PPP PAP Authenticate-Request	H PAP
12 5.423283	20:52:45:43:56:00 20:53:45:4e:44:00	20:52:45:43:56:00 20:53:45:4e:44:00		PPP PAP Authenticate-Ack PPP IPCP Configuration Request	
13 5.423390	20:53:45:4e:44:00	20:53:45:4e:44:00	PPP CCP	PPP CCP Configuration Request	
14 5.428998	20:52:45:43:56:00 20:53:45:4e:44:00	20:52:45:43:56:00 20:53:45:4e:44:00		PPP IPCP Configuration Request PPP IPCP Configuration Ack	I IP NCP
16 5.558729	20:52:45:43:56:00	20:52:45:43:56:00	PPP IPCP	PPP IPCP Configuration Reject	
	20:53:45:4e:44:00 20:52:45:43:56:00	20:53:45:4e:44:00 20:52:45:43:56:00		PPP IPCP Configuration Request PPP LCP Protocol Reject	setup
	20:52:45:43:56:00	20:52:45:43:56:00		PPP LCP Protocol Reject PPP IPCP Configuration Nak	Jocup
20 5.699938	20:53:45:4e:44:00	20:53:45:4e:44:00	PPP IPCP	PPP IPCP Configuration Request	
				>	
⊞ Frame 9 (38 ⊞ Ethernet II	bytes on wire, 38 byt	es captured) 00, Dst: 20:53:45:4e:44	• 0 0		
🛛 🗆 PPP Link Con	trol Protocol	00, 000. 20.00.40.40.44			
Code: Conf Identifier	iguration Ack (0x02)				
Length: 24					
⊟ Options: (AUAAAAAAAAA (5.51 (3.600)	D.C.D. () (0.5	->>	
	ontrol character Map: ication protocol: 4 b	0x000a0000 (DC1 (XON), vtes	DC3 (XOF	F))	
Authe Authe	entication protocol: F	assword Authentication	Protocol	(0xc023)	
	umber: 0x218ad821 l field compression				
	/control field compre	ssion			H
					12
0000 20 53 45	4e 44 00 20 53 45 4	e 44 00 c0 21 02 83	SEND. S E	ND!	
	06 00 0a 00 00 03 0 02 08 02			· · # · · ! ·	
0020 00 21 07	V2 V0 V2				
<u> </u>					
Filter:		Z Reset Apply File	e: PPP LCP a	and NCP Negotiation	

Chapter 5 Peer-to-Peer Protocols and Data Link Layer


High-Level Data Link Control

High-Level Data Link Control (HDLC)



- Bit-oriented data link control
- Derived from IBM Synchronous Data Link Control (SDLC)
- Related to Link Access Procedure Balanced (LAPB)
 - LAPD in ISDN
 - LAPM in cellular telephone signaling

HDLC Data Transfer Modes

- Normal Response Mode
 - Used in polling multidrop lines

- Asynchronous Balanced Mode
 - Used in full-duplex point-to-point links

Primary	Commands — →	Responses	Secondary
Secondary	Responses —	Commands	Primary

Mode is selected during connection establishment

HDLC Frame Format

Flag Address Control	Information	FCS	Flag
----------------------	-------------	-----	------

- Control field gives HDLC its functionality
- Codes in fields have specific meanings and uses
 - Flag: delineate frame boundaries
 - Address: identify *secondary* station (1 or more octets)
 - In ABM mode, a station can act as primary or secondary so address changes accordingly
 - Control: purpose & functions of frame (1 or 2 octets)
 - Information: contains user data; length not standardized, but implementations impose maximum
 - Frame Check Sequence: 16- or 32-bit CRC

Control Field Format

Information Frame

1	2-4	5	6-8
0	N(S)	P/F	N(R)

Supervisory Frame

1	0	S	S	P/F	N(R)
---	---	---	---	-----	------

Unnumbered Frame

1 1	M	P/F	М	М	М
-----	---	-----	---	---	---

- S: Supervisory Function Bits
- N(R): Receive Sequence Number
- N(S): Send Sequence Number

- M: Unnumbered Function Bits
- P/F: Poll/final bit used in interaction between primary and secondary

Information frames

- Each I-frame contains sequence number N(S)
- Positive ACK piggybacked
 - N(R)=Sequence number of *next* frame expected acknowledges all frames up to and including N(R)-1
- 3 or 7 bit sequence numbering
 - Maximum window sizes 7 or 127
- Poll/Final Bit
 - NRM: Primary polls station by setting P=1; Secondary sets F=1 in *last* I-frame in response
 - Primaries and secondaries always interact via paired P/F bits

Error Detection & Loss Recovery

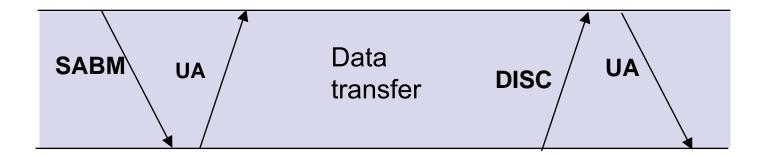
- Frames lost due to loss-of-synch or receiver buffer overflow
- Frames may undergo errors in transmission
- CRCs detect errors and such frames are treated as lost
- Recovery through ACKs, timeouts & retransmission
- Sequence numbering to identify out-of-sequence & duplicate frames
- HDLC provides for options that implement several ARQ methods

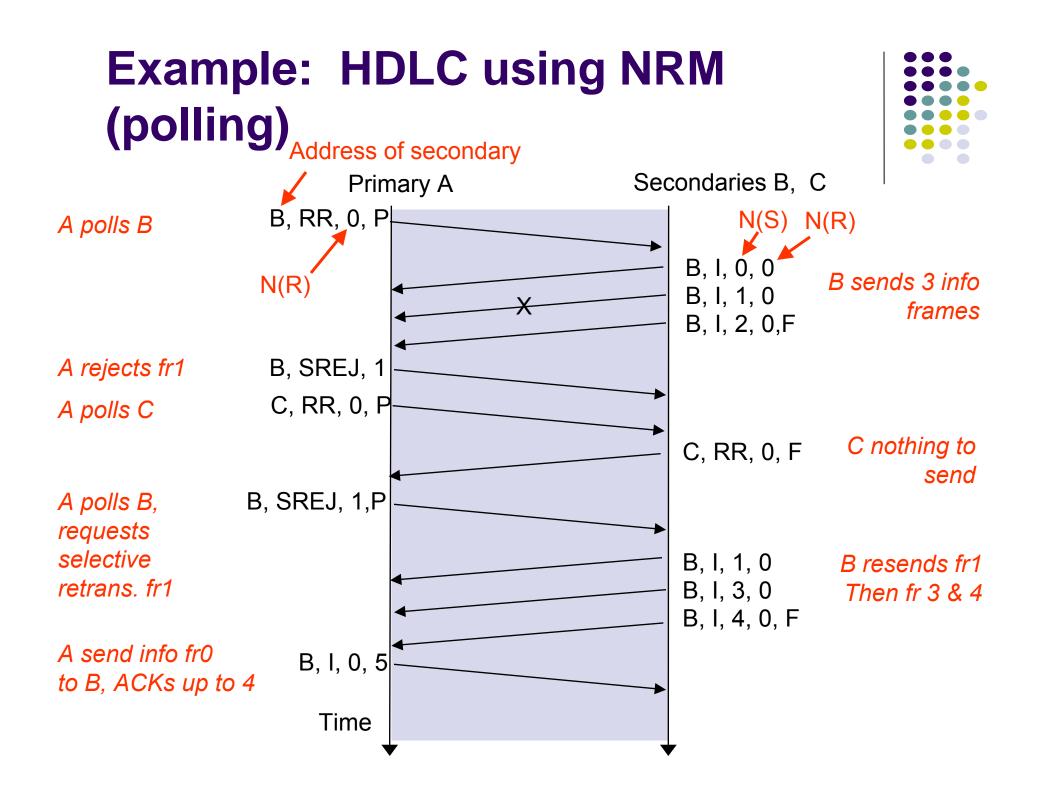
Supervisory frames

Used for error (ACK, NAK) and flow control (Don't Send):

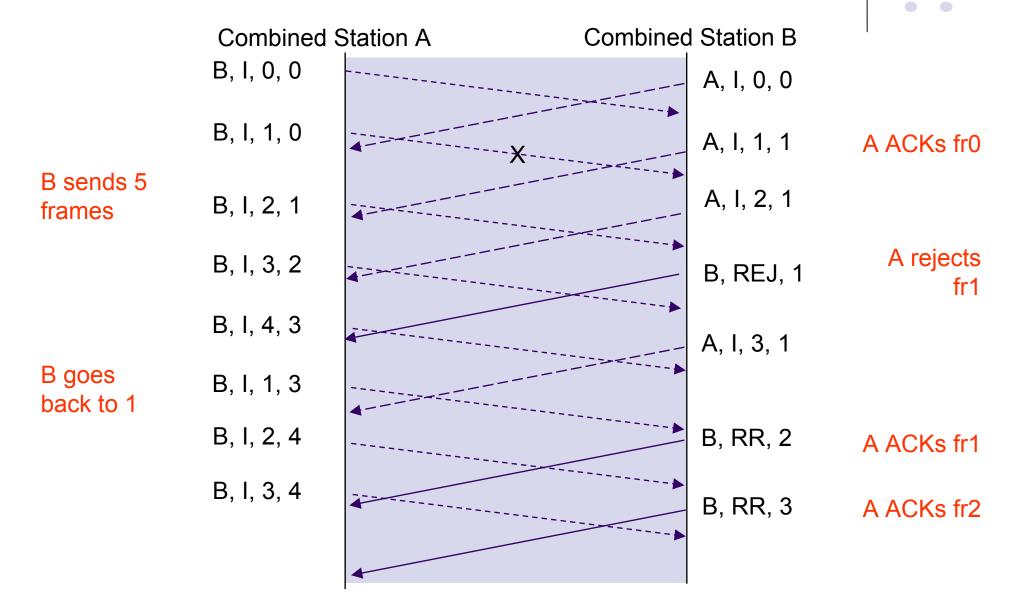
- Receive Ready (RR), SS=00
 - ACKs frames up to N(R)-1 when piggyback not available
- REJECT (REJ), SS=01
 - Negative ACK indicating N(R) is first frame not received correctly. Transmitter must resend N(R) and later frames
- Receive Not Ready (RNR), SS=10
 - ACKs frame N(R)-1 & requests that no more I-frames be sent
- Selective REJECT (SREJ), SS=11
 - Negative ACK for N(R) requesting that N(R) be selectively retransmitted

Unnumbered Frames

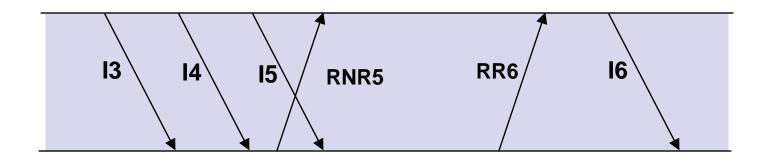


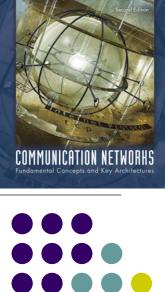

- Setting of Modes:
 - SABM: Set Asynchronous Balanced Mode
 - UA: acknowledges acceptance of mode setting commands
 - DISC: terminates logical link connectio
- Information Transfer between stations
 - UI: Unnumbered information
- Recovery used when normal error/flow control fails
 - FRMR: frame with correct FCS but impossible semantics
 - RSET: indicates sending station is resetting sequence numbers
- XID: exchange station id and characteristics

Connection Establishment & Release



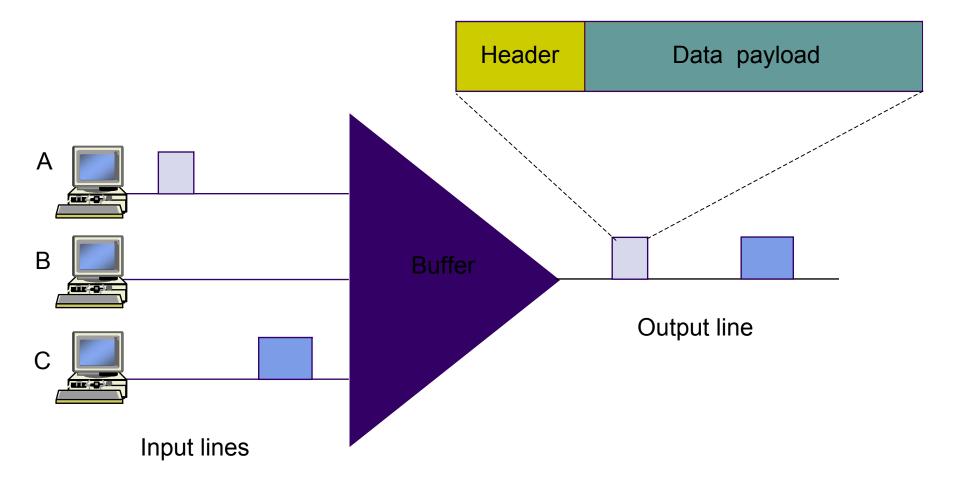
- Supervisory frames used to establish and release data link connection
- In HDLC
 - Set Asynchronous Balanced Mode (SABM)
 - Disconnect (DISC)
 - Unnumbered Acknowledgment (UA)

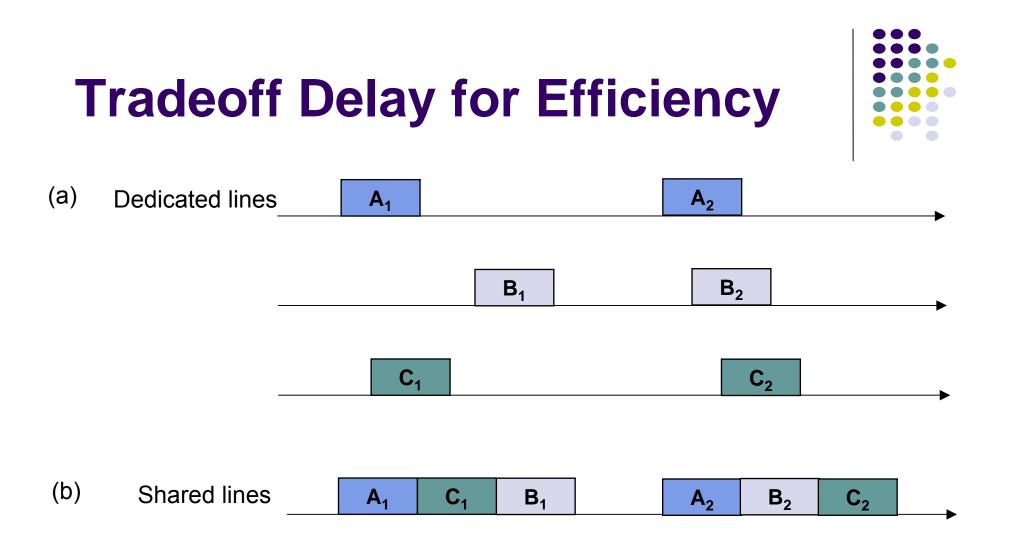

Frame Exchange using Asynchronous Balanced Mode



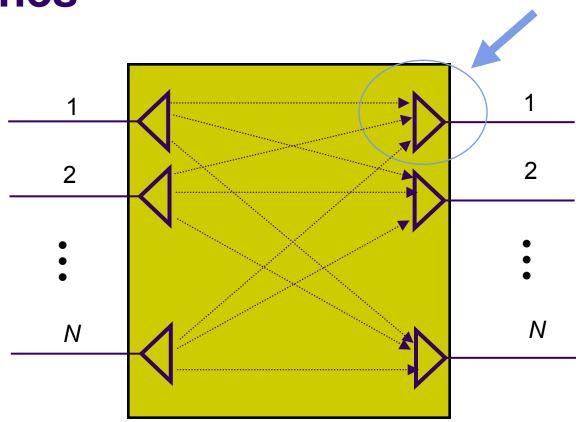
- Flow control is required to prevent transmitter from overrunning receiver buffers
- Receiver can control flow by delaying acknowledgement messages
- Receiver can also use supervisory frames to explicitly control transmitter
 - Receive Not Ready (RNR) & Receive Ready (RR)

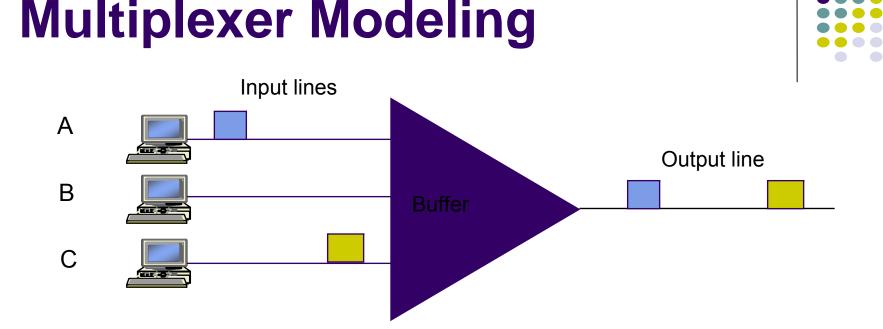
Chapter 5 Peer-to-Peer Protocols and Data Link Layer



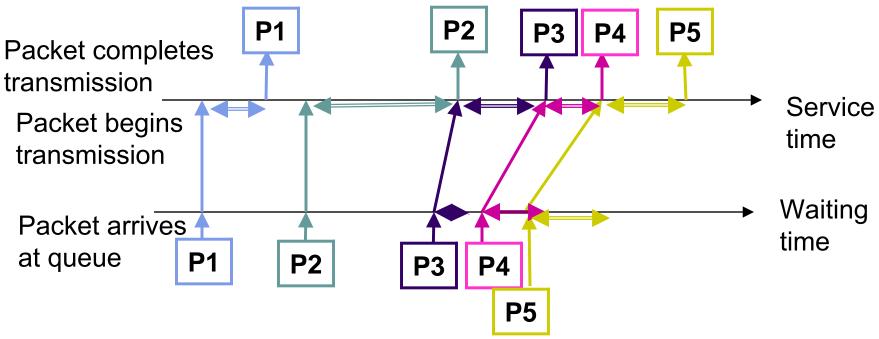

Alberto Leon-Garcia

Statistical Multiplexing

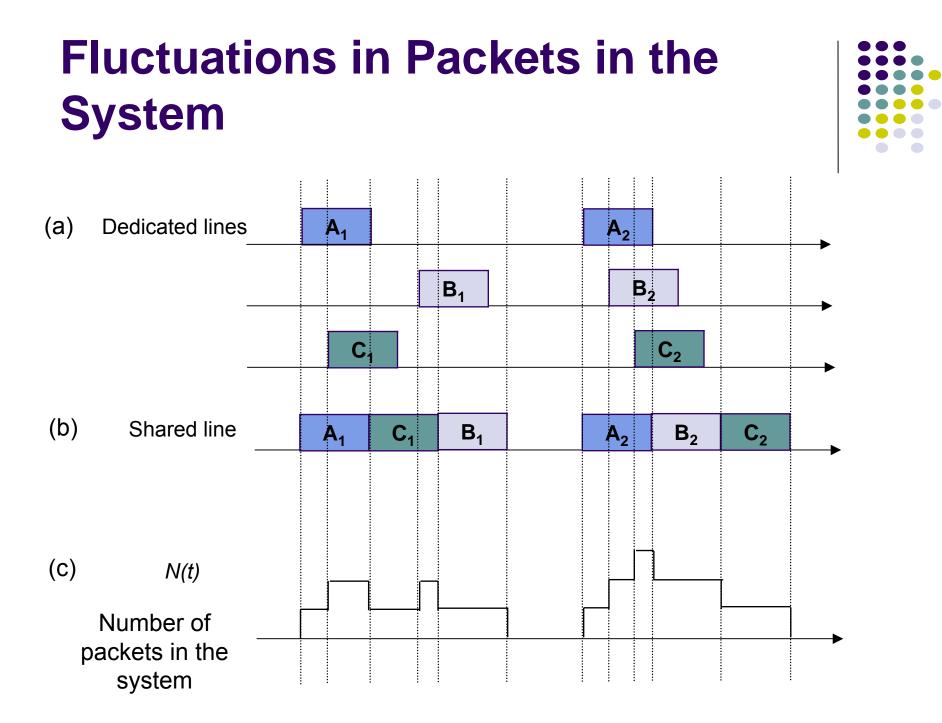

- Multiplexing concentrates bursty traffic onto a shared line
- Greater efficiency and lower cost


- Dedicated lines involve not waiting for other users, but lines are used inefficiently when user traffic is bursty
- Shared lines concentrate packets into shared line; packets buffered (delayed) when line is not immediately available

Multiplexers inherent in Packet Switches



- Packets/frames forwarded to buffer prior to transmission from switch
- Multiplexing occurs in these buffers



- Arrivals: What is the packet interarrival pattern?
- Service Time: How long are the packets?
- Service Discipline: What is order of transmission?
- Buffer Discipline: If buffer is full, which packet is dropped?
- Performance Measures:
- Delay Distribution; Packet Loss Probability; Line Utilization

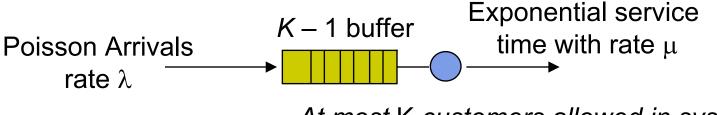
Delay = Waiting + Service Times

- Packets arrive and wait for service
- Waiting Time: from arrival instant to beginning of service
- Service Time: time to transmit packet
- Delay: total time in system = waiting time + service time

Packet Lengths & Service Times

- *R* bits per second transmission rate
- *L* = # bits in a packet
- X = L/R = time to transmit ("service") a packet
- Packet lengths are usually variable
 - Distribution of lengths \rightarrow Dist. of service times
 - Common models:
 - Constant packet length (all the same)
 - Exponential distribution
 - Internet Measured Distributions fairly constant
 - See next chart

Measure Internet Packet Distribution


100 Packets Butes 90 80 70 Cumulative Percentage 60 50 40 30 20 10 0 200 600 800 1000 1400 0 400 1200 1600 Packet Size (bytes)

- Dominated by TCP traffic (85%)
 - ~40% packets are minimum-sized 40 byte packets for TCP ACKs
 - ~15% packets are maximum-sized
 Ethernet 1500 frames
 - ~15% packets are 552
 & 576 byte packets for TCP implementations that do not use path MTU discovery
 - Mean=413 bytes
 - Stand Dev=509 bytes
 - Source: caida.org

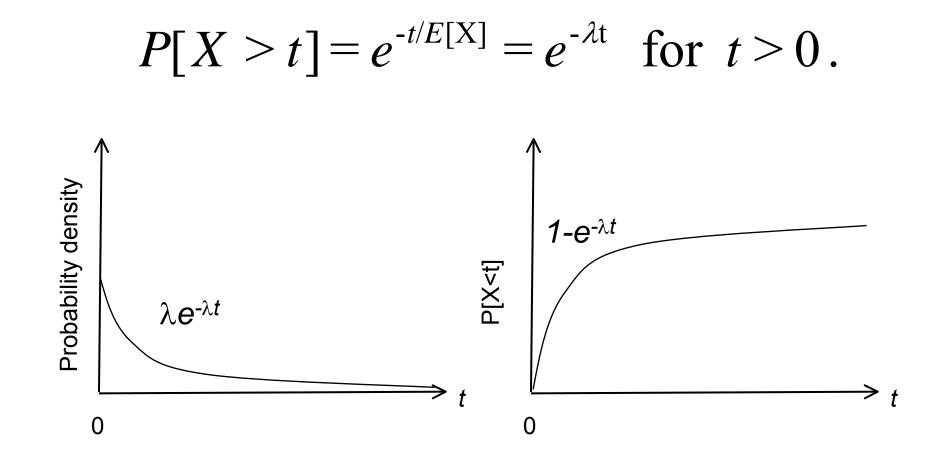
Cumulative Distribution of Packet Sizes seen at AIX from Thu May 13 19:13:46 1999 to Wed May 19 13:02:20 1999

M/M/1/K Queueing Model

At most K customers allowed in system

- 1 customer served at a time; up to K 1 can wait in queue
- Mean service time $E[X] = 1/\mu$
- Key parameter Load: $\rho = \lambda/\mu$
- When λ << μ (ρ≈0), customers arrive infrequently and usually find system empty, so delay is low and loss is unlikely
- As λ approaches $\mu~(\rho{\rightarrow}1)$, customers start bunching up and delays increase and losses occur more frequently
- When $\lambda > \mu$ ($\rho > 0$), customers arrive faster than they can be processed, so most customers find system full and those that do enter have to wait about K 1 service times

Poisson Arrivals



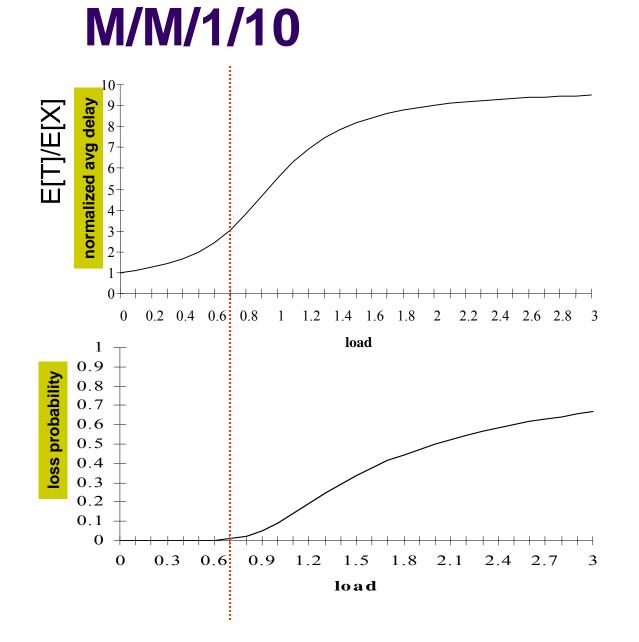
- Average Arrival Rate: λ packets per second
- Arrivals are equally-likely to occur at any point in time
- Time between consecutive arrivals is an exponential random variable with mean 1/ λ
- Number of arrivals in interval of time t is a Poisson random variable with mean λt

$$P[\text{ k arrivals in t seconds}] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

Exponential Distribution

M/M/1/K Performance Results

(From Appendix A)

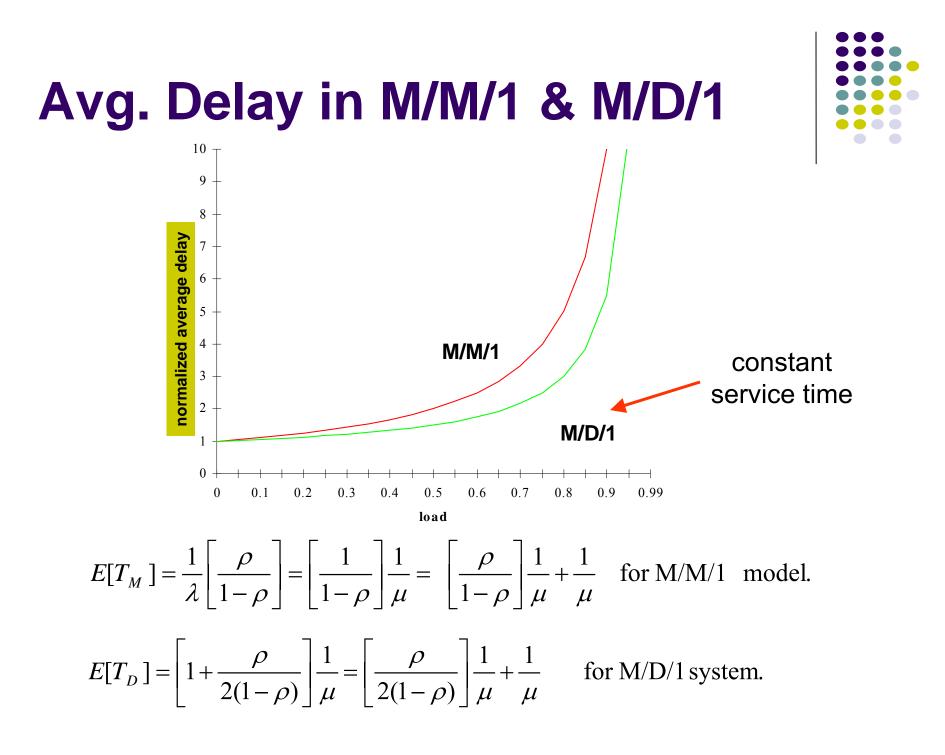

Probability of Overflow:

$$P_{loss} = \frac{(1-\rho)\rho^{K}}{1-\rho^{K+1}}$$

Average Total Packet Delay:

$$E[N] = \frac{\rho}{1-\rho} - \frac{(K+1)\rho^{K+1}}{1-\rho^{K+1}}$$

$$E[T] = \frac{E[N]}{\lambda(1 - P_K)}$$



- Maximum 10 packets allowed in system
- Minimum delay is 1 service time
- Maximum delay is 10 service times
- At 70% load delay & loss begin increasing
- What if we add more buffers?

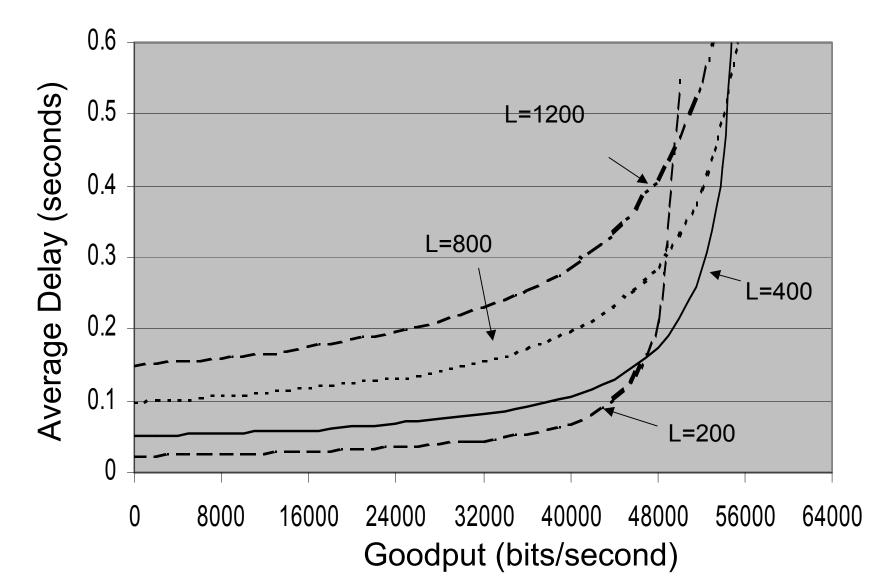
- P_b=0 since customers are never blocked
- Average Time in system E[T] = E[W] + E[X]
- When $\lambda << \mu,$ customers arrive infrequently and delays are low
- As λ approaches $\,\mu\,$ customers start bunching up and average delays increase
- When $\lambda > \mu$ customers arrive faster than they can be processed and queue grows without bound (unstable)

Effect of Scale

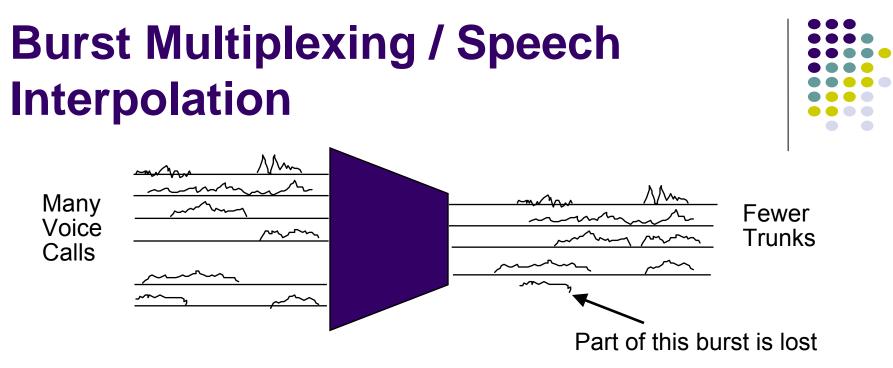
- C = 100,000 bps
- Exp. Dist. with Avg. Packet Length: 10,000 bits
- Service Time: *X*=0.1 second
- Arrival Rate: 7.5 pkts/sec
- Load: ρ=0.75
- Mean Delay:
- E[T] = 0.1/(1-.75) = 0.4 sec

- C = 10,000,000 bps
- Exp. Dist. with Avg. Packet Length: 10,000 bits
- Service Time: X=0.001 second
- Arrival Rate: 750 pkts/sec
- Load: ρ=0.75
- Mean Delay:
- *E*[*T*] = 0.001/(1-.75) = 0.004 sec

Reduction by factor of 100

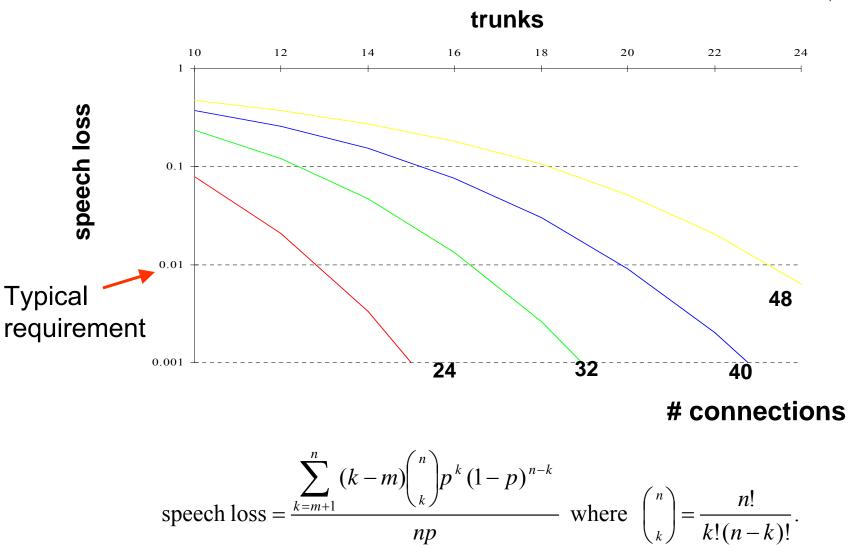

Aggregation of flows can improve Delay & Loss Performance

Example: Header overhead & Goodput



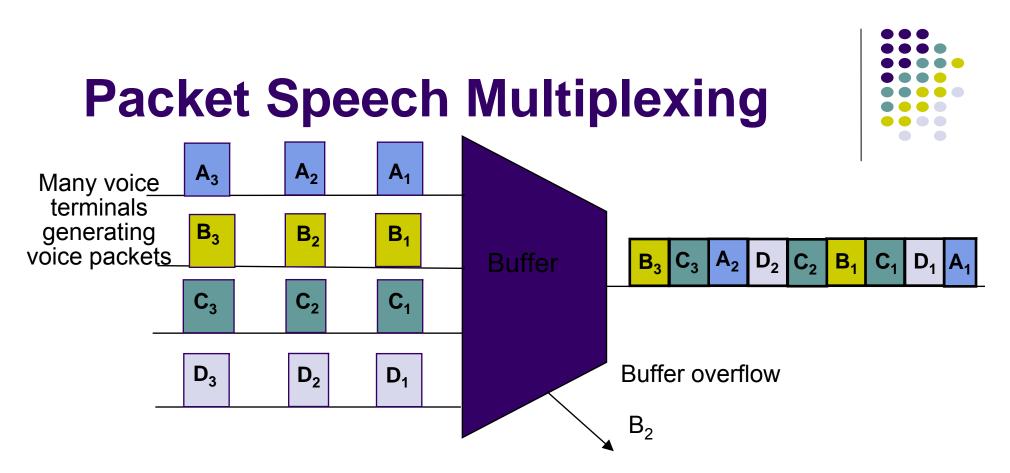
- Let R=64 kbps
- Assume IP+TCP header = 40 bytes
- Assume constant packets of total length
 - L= 200, 400, 800, 1200 bytes
- Find avg. delay vs. goodput (information transmitted excluding header overhead)
- Service rate μ = 64000/8L packets/second
- Total load $\rho = \lambda 64000/8L$
- Goodput = λ packets/sec x 8(L-40) bits/packet
- Max Goodput = (1-40/L)64000 bps

Header overhead limits maximum goodput

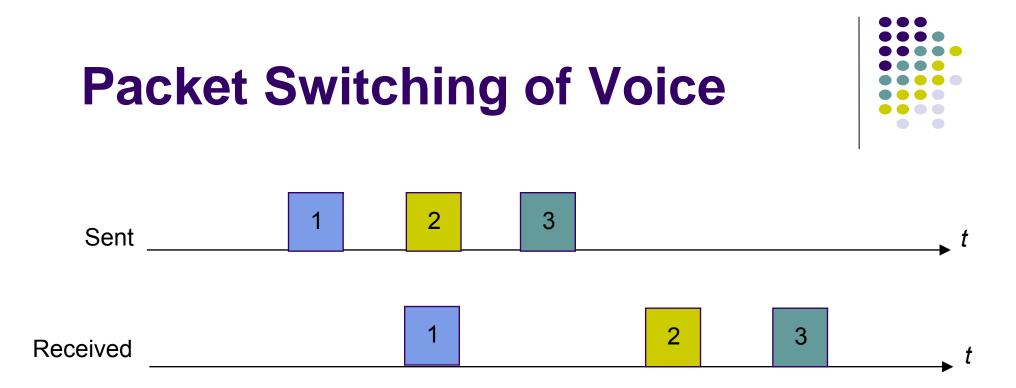


- Voice active < 40% time
- *No buffering*, on-the-fly switch bursts to available trunks
- Can handle 2 to 3 times as many calls
- Tradeoff: Trunk Utilization vs. Speech Loss
 - Fractional Speech Loss: fraction of active speech lost
- Demand Characteristics
 - Talkspurt and Silence Duration Statistics
 - Proportion of time speaker active/idle

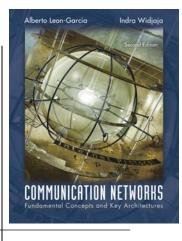
Speech Loss vs. Trunks


Effect of Scale

- Larger flows lead to better performance
- Multiplexing Gain = # speakers / # trunks


Speakers	Trunks	Multiplexing Gain	Utilization
24	13	1.85	0.74
32	16	2.00	0.80
40	20	2.00	0.80
48	23	2.09	0.83

Trunks required for 1% speech loss


- Digital speech carried by fixed-length packets
- No packets when speaker silent
- Synchronous packets when speaker active
- Buffer packets & transmit over shared high-speed line
- Tradeoffs: Utilization vs. Delay/Jitter & Loss

- Packetization delay: time for speech samples to fill a packet
- Jitter: variable inter-packet arrivals at destination
- Playback strategies required to compensate for jitter/loss
 - Flexible delay inserted to produce fixed end-to-end delay
 - Need buffer overflow/underflow countermeasures
 - Need clock recovery algorithm

Chapter 5 Peer-to-Peer Protocols and Data Link Layer

ARQ Efficiency Calculations

Stop & Wait Performance

1 successful transmission $E[t_{total}] = t_{0} + \sum_{i=1}^{\infty} (i - 1) t_{out} P[n_{t} = i]$ $= t_{0} + \sum_{i=1}^{\infty} (i - 1) t_{out} (1 - P_{f})^{i-1} P_{f}$ $= t_{0} + \frac{t_{out} P_{f}}{1 - P_{f}} = t_{0} \frac{1}{1 - P_{f}}.$

Efficiency:

$$\eta_{SW} = \frac{\frac{n_f - n_o}{E[t_{total}]}}{R} = (1 - P_f) \frac{1 - \frac{n_o}{n_f}}{1 + \frac{n_a}{n_f} + \frac{2(t_{prop} + t_{proc})R}{n_f}} = (1 - P_f) \eta_0.$$

Go-Back-N Performance

1 successful transmission i-1 unsuccessful transmissions $E[t_{total}] = t_f + \sum_{i=1}^{\infty} (i-1)W_s t_f P[n_t = i]$ $= t_f + W_s t_f \sum_{i=1}^{\infty} (i-1)(1-P_f)^{i-1}P_f$ $= t_f + \frac{W_s t_f P_f}{1-P_f} = t_f \frac{1+(W_s-1)P_f}{1-P_f}.$

Efficiency:

$$\eta_{GBN} = \frac{\frac{n_f - n_o}{E[t_{total}]}}{R} = (1 - P_f) \frac{1 - \frac{n_o}{n_f}}{1 + (W_s - 1)P_f}.$$