
Chapter 5
Peer-to-Peer Protocols

and Data Link Layer
PART I: Peer-to-Peer Protocols

Peer-to-Peer Protocols and Service Models
ARQ Protocols and Reliable Data Transfer

Flow Control
Timing Recovery

TCP Reliable Stream Service & Flow Control

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

PART II: Data Link Controls
Framing

Point-to-Point Protocol
High-Level Data Link Control

Link Sharing Using Statistical Multiplexing

Chapter Overview
Peer-to-Peer protocols: many protocols involve the
interaction between two peers

Service Models are discussed & examples given
Detailed discussion of ARQ provides example of
development of peer-to-peer protocols
Flow control, TCP reliable stream, and timing recovery

Data Link Layer
Framing
PPP & HDLC protocols
Statistical multiplexing for link sharing

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

Peer-to-Peer Protocols and
Service Models

n – 1 peer process n – 1 peer process

n peer process n peer process

n + 1 peer process n + 1 peer process

Peer-to-Peer Protocols
Peer-to-Peer processes
execute layer-n protocol
to provide service to
layer-(n+1)

Layer-(n+1) peer calls
layer-n and passes
Service Data Units
(SDUs) for transfer

Layer-n peers exchange
Protocol Data Units
(PDUs) to effect transfer

Layer-n delivers SDUs to
destination layer-(n+1)
peer

SDU SDU
PDU

Service Models
The service model specifies the information transfer
service layer-n provides to layer-(n+1)
The most important distinction is whether the service
is:

Connection-oriented
Connectionless

Service model possible features:
Arbitrary message size or structure
Sequencing and Reliability
Timing, Pacing, and Flow control
Multiplexing
Privacy, integrity, and authentication

Connection Establishment
Connection must be established between layer-(n+1) peers
Layer-n protocol must: Set initial parameters, e.g. sequence
numbers; and Allocate resources, e.g. buffers

Message transfer phase
Exchange of SDUs

Disconnect phase
Example: TCP, PPP

Connection-Oriented Transfer
Service

n + 1 peer process
send

n + 1 peer process
receive

Layer n connection-oriented serviceSDU SDU

No Connection setup, simply send SDU
Each message send independently
Must provide all address information per message
Simple & quick
Example: UDP, IP

Connectionless Transfer Service

n + 1 peer process
send

n + 1 peer process
receive

SDU Layer n connectionless service

Message Size and Structure

What message size and structure will a
service model accept?

Different services impose restrictions on size &
structure of data it will transfer
Single bit? Block of bytes? Byte stream?
Ex: Transfer of voice mail = 1 long message
Ex: Transfer of voice call = byte stream

1 voice mail= 1 message = entire sequence of speech samples
(a)

1 call = sequence of 1-byte messages
(b)

1 long message

2 or more blocks

2 or more short messages

1 block

Segmentation & Blocking
To accommodate arbitrary message size, a layer may
have to deal with messages that are too long or too
short for its protocol
Segmentation & Reassembly: a layer breaks long
messages into smaller blocks and reassembles these
at the destination
Blocking & Unblocking: a layer combines small
messages into bigger blocks prior to transfer

Reliability & Sequencing

Reliability: Are messages or information
stream delivered error-free and without loss
or duplication?
Sequencing: Are messages or information
stream delivered in order?
ARQ protocols combine error detection,
retransmission, and sequence numbering to
provide reliability & sequencing
Examples: TCP and HDLC

Pacing and Flow Control
Messages can be lost if receiving system
does not have sufficient buffering to store
arriving messages
If destination layer-(n+1) does not retrieve its
information fast enough, destination layer-n
buffers may overflow
Pacing & Flow Control provide backpressure
mechanisms that control transfer according to
availability of buffers at the destination
Examples: TCP and HDLC

Timing
Applications involving voice and video generate
units of information that are related temporally
Destination application must reconstruct temporal
relation in voice/video units
Network transfer introduces delay & jitter
Timing Recovery protocols use timestamps &
sequence numbering to control the delay & jitter in
delivered information
Examples: RTP & associated protocols in Voice
over IP

Multiplexing

Multiplexing enables multiple layer-(n+1)
users to share a layer-n service
A multiplexing tag is required to identify
specific users at the destination
Examples: UDP, IP

Privacy, Integrity, &
Authentication

Privacy: ensuring that information transferred
cannot be read by others
Integrity: ensuring that information is not
altered during transfer
Authentication: verifying that sender and/or
receiver are who they claim to be
Security protocols provide these services and
are discussed in Chapter 11
Examples: IPSec, SSL

End-to-End vs. Hop-by-Hop
A service feature can be provided by implementing a
protocol

end-to-end across the network
across every hop in the network

Example:
Perform error control at every hop in the network or only
between the source and destination?
Perform flow control between every hop in the network or
only between source & destination?

We next consider the tradeoffs between the two
approaches

1

2

Physical layer entity

Data link layer entity

3 Network layer entity

(a)
Data link

layer

Physical
layer

Physical
layer

Data link
layer

A B

Packets Packets

Frames

3 2 11 2
2

1

3 2 11 2
2

1

2
1

Medium

A B

(b)

Error control in Data Link Layer
Data Link operates
over wire-like,
directly-connected
systems
Frames can be
corrupted or lost, but
arrive in order
Data link performs
error-checking &
retransmission
Ensures error-free
packet transfer
between two systems

Physical
layer

Data link
layer

Physical
layer

Data link
layerEnd system

A

Network
layer

Network
layer

Physical
layer

Data link
layer

Network
layer

Physical
layer

Data link
layer

Network
layer

Transport
layer

Transport
layer

Messages Messages

Segments

End system
B

Network

Error Control in Transport Layer
Transport layer protocol (e.g. TCP) sends segments across
network and performs end-to-end error checking &
retransmission
Underlying network is assumed to be unreliable

1

13 3 21 2
2

3 2 11 2
2

1

2
1

Medium

A B

3 2 11 2
2

1
C 2

1

2
1

2 14 1 2 3 4

End System
α End System

β

Network

3 Network layer entity

Transport layer entity4

Segments can experience long delays, can be lost, or
arrive out-of-order because packets can follow different
paths across network
End-to-end error control protocol more difficult

End-to-End Approach Preferred

1 2 5

Data

ACK/NAK
End-to-end

More scalable
if complexity at

the edge

Simple
inside the
network

Hop-by-hop
cannot ensure

E2E correctness

1 2 5
Data

ACK/
NAK

Hop-by-hop

3
Data

ACK/
NAK

4
Data

ACK/
NAK

Data

ACK/
NAK

3

Data

4

Data Data

Faster recovery

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

ARQ Protocols and Reliable
Data Transfer

Purpose: to ensure a sequence of information
packets is delivered in order and without errors or
duplications despite transmission errors & losses
We will look at:

Stop-and-Wait ARQ
Go-Back N ARQ
Selective Repeat ARQ

Basic elements of ARQ:
Error-detecting code with high error coverage
ACKs (positive acknowledgments
NAKs (negative acknowlegments)
Timeout mechanism

Automatic Repeat Request (ARQ)

CRC
Information

packet

Header

Information frame Control frame: ACKs

CRC
Header

Packet Error-free
packet

Information frame

Control frame

Transmitter
(Process A)

Receiver
(Process B)

Stop-and-Wait ARQ

Timer set after
each frame

transmission

Transmit a frame, wait for ACK

In cases (a) & (b) the transmitting station A acts the same way
But in case (b) the receiving station B accepts frame 1 twice
Question: How is the receiver to know the second frame is also frame 1?
Answer: Add frame sequence number in header
Slast is sequence number of most recent transmitted frame

Need for Sequence Numbers
(a) Frame 1 lost

A

B

Frame
0

Frame
1

ACK

Frame
1

ACK

Time
Time-out

Frame
2

(b) ACK lost

A

B

Frame
0

Frame
1

ACK

Frame
1

ACK

Time
Time-out

Frame
2

ACK

Sequence Numbers

The transmitting station A misinterprets duplicate ACKs
Incorrectly assumes second ACK acknowledges Frame 1
Question: How is the receiver to know second ACK is for frame 0?
Answer: Add frame sequence number in ACK header
Rnext is sequence number of next frame expected by the receiver
Implicitly acknowledges receipt of all prior frames

(c) Premature Time-out

A

B

Frame
0 Frame

0ACK
Frame

1ACK

Time
Time-out

Frame
2

(0,0) (0,1)

(1,0) (1,1)

Global State:
(Slast, Rnext)

Error-free frame 0
arrives at receiver

ACK for
frame 0
arrives at
transmitter

ACK for
frame 1
arrives at
transmitter Error-free frame 1

arrives at receiver

Transmitter
A

Receiver
B

Slast
Rnext

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Timer

Rnext

Slast

1-Bit Sequence Numbering
Suffices

Stop-and-Wait ARQ
Transmitter
Ready state

Await request from higher layer for
packet transfer
When request arrives, transmit
frame with updated Slast and CRC
Go to Wait State

Wait state
Wait for ACK or timer to expire;
block requests from higher layer
If timeout expires

retransmit frame and reset timer
If ACK received:

If sequence number is incorrect or if
errors detected: ignore ACK
If sequence number is correct (Rnext
= Slast +1): accept frame, go to
Ready state

Receiver
Always in Ready State

Wait for arrival of new frame
When frame arrives, check for errors
If no errors detected and sequence
number is correct (Slast=Rnext), then

accept frame,
update Rnext,
send ACK frame with Rnext,
deliver packet to higher layer

If no errors detected and wrong
sequence number

discard frame
send ACK frame with Rnext

If errors detected
discard frame

Applications of Stop-and-Wait
ARQ

IBM Binary Synchronous Communications
protocol (Bisync): character-oriented data
link control
Xmodem: modem file transfer protocol
Trivial File Transfer Protocol (RFC 1350):
simple protocol for file transfer over UDP

Stop-and-Wait Efficiency

10000 bit frame @ 1 Mbps takes 10 ms to transmit
If wait for ACK = 1 ms, then efficiency = 10/11= 91%
If wait for ACK = 20 ms, then efficiency =10/30 = 33%

A

B

First frame bit
enters channel

Last frame bit
enters channel

Channel idle while transmitter
waits for ACK

Last frame bit
arrives at
receiver

Receiver
processes frame

and
prepares ACK

ACK
arrives

First frame bit
arrives at
receiver

t

t

frame
tf time

A

B

tprop tacktproc tprop

tproc

t0 = total time to transmit 1 frame

Stop-and-Wait Model

R
n

R
n

tt

ttttt

af
procprop

ackfprocprop

+++=

+++=

22

220 bits/info frame

channel transmission rate

bits/ACK frame

S&W Efficiency on Error-free
channel

.)(2
1

1
0

0

f

procprop

f

a

f

oof

eff

n
Rtt

n
n

n
n

R
t

nn

R
R

+
++

−
=

−

==η

bits for header & CRC

,
bitsn informatio edeliver th torequired timetotal

ndestinatio todelivered bitsn informatio ofnumber

0

0

t
nn

R of
eff

−
==

Effect of
frame overhead

Effect of
ACK frame

Effect of
Delay-Bandwidth Product

Effective transmission rate:

Transmission efficiency:

Example: Impact of Delay-
Bandwidth Product

nf=1250 bytes = 10000 bits, na=no=25 bytes = 200 bits

108

0.01%

105

9%

100 ms
20000 km

109

0.001%
107

0.1%
106

1%
1 Gbps

106

1%
104

49%
103

88%
1 Mbps

1 sec
200000 km

10 ms
2000 km

1 ms
200 km

2xDelayxBW
Efficiency

Stop-and-Wait does not work well for very high speeds
or long propagation delays

S&W Efficiency in Channel with
Errors

Let 1 – Pf = probability frame arrives w/o errors
Avg. # of transmissions to first correct arrival is then 1/ (1–
Pf)
“If 1-in-10 get through without error, then avg. 10 tries to
success”
Avg. Total Time per frame is then t0/(1 – Pf)

)1()(2
1

1
1

0

f

f

procprop

f

a

f

o

f

of

eff
SW P

n
Rtt

n
n

n
n

R
P

t
nn

R
R

−
+

++

−
=

−

−

==η

Effect of
frame loss

Example: Impact Bit Error Rate

nf=1250 bytes = 10000 bits, na=no=25 bytes = 200 bits
Find efficiency for random bit errors with p=0, 10-6, 10-5, 10-4

0.905
79.2%

10-5

0.368
32.2%

0.99
86.6%

1
88%

1 Mbps
& 1 ms

10-410-601 – Pf
Efficiency

pnepP f
pnn

f
ff small and largefor)1(1 −≈−=−

Bit errors impact performance as nfp approach 1

Go-Back-N
Improve Stop-and-Wait by not waiting!
Keep channel busy by continuing to send frames
Allow a window of up to Ws outstanding frames
Use m-bit sequence numbering
If ACK for oldest frame arrives before window is
exhausted, we can continue transmitting
If window is exhausted, pull back and retransmit all
outstanding frames
Alternative: Use timeout

Frame transmission are pipelined to keep the channel busy
Frame with errors and subsequent out-of-sequence frames are ignored
Transmitter is forced to go back when window of 4 is exhausted

Go-Back-N ARQ

A

B

fr
0

Timefr
1

fr
2

fr
3

fr
4

fr
5

fr
6

fr
3

A
C
K
1

out of sequence
frames

Go-Back-4: 4 frames are outstanding; so go back 4

fr
5

fr
6

fr
4

fr
7

fr
8

fr
9

A
C
K
2

A
C
K
3

A
C
K
4

A
C
K
5

A
C
K
6

A
C
K
7

A
C
K
8

A
C
K
9

Rnext 0 1 2 3 3 4 5 6 7 8 9

A

B

fr
0 Timefr

1
fr
2

fr
3

fr
0

Receiver is
looking for

Rnext=0

Out-of-
sequence

frames

Four frames are outstanding; so go back 4

fr
2

fr
3

fr
1

fr
4

fr
5

fr
6

Go-Back-N ARQ

A
C
K
1

A
C
K
2

A
C
K
3

A
C
K
4

A
C
K
5

A
C
K
6

Window size long enough to cover round trip time

A

B

Timefr
0

fr
0

Time-out expires
fr
1

A
C
K
1

Stop-and-Wait ARQ

Receiver is
looking for

Rnext=0

Go-Back-N with Timeout

Problem with Go-Back-N as presented:
If frame is lost and source does not have frame to
send, then window will not be exhausted and
recovery will not commence

Use a timeout with each frame
When timeout expires, resend all outstanding
frames

Receiver

Receive Window

Rnext

Frames
received

Receiver will only accept
a frame that is error-free and
that has sequence number Rnext

When such frame arrives Rnext is
incremented by one, so the
receive window slides forward by
one

Timer Slast

Slast+1

Srecent

Slast+Ws-1

Timer

Timer

Transmitter

...

Buffers

Slast Slast+Ws-1

...
Send Window

Srecent

Frames
transmitted
and ACKed

...

most recent
transmission

oldest un-
ACKed frame

max Seq #
allowed

Go-Back-N Transmitter & Receiver

Sliding Window Operation

Transmitter waits for error-free
ACK frame with sequence
number Slast

When such ACK frame arrives,
Slast is incremented by one, and
the send window slides forward
by one

m-bit Sequence Numbering

0
1

2

i
i + Ws – 1

2m – 1

Slast

send
window

i + 1

Transmitter

Slast Slast+Ws-1

...

Srecent

Frames
transmitted
and ACKed

Send Window

A

B

fr
0

Timefr
1

fr
2

fr
3

fr
0

fr
1

fr
2

fr
3

A
C
K
1

M = 22 = 4, Go-Back - 4:

A
C
K
0

A
C
K
2

A
C
K
3

Transmitter goes back 4

Receiver has Rnext= 0, but it does not
know whether its ACK for frame 0 was
received, so it does not know whether
this is the old frame 0 or a new frame 0

Maximum Allowable Window Size is Ws = 2m-1

Rnext 0 1 2 3 0

A

B

fr
0

Timefr
1

fr
2

fr
0

fr
1

fr
2

A
C
K
1

M = 22 = 4, Go-Back-3:

A
C
K
2

A
C
K
3

Transmitter goes back 3

Receiver has Rnext= 3 , so it
rejects the old frame 0

Rnext 0 1 2 3

RA
next

“A” Receive Window

RB
next

“B” Receive Window

SA
last SA

last+WA
s-1

...
“A” Send Window

SB
last SB

last+WB
s-1

...
“B” Send Window

Transmitter Receiver

TransmitterReceiver

SA
recent RA

next

SB
recent RB

next

SA
last

SA
last+1

SA
recent

SA
last+WA

s-1Timer

...

Buffers

...

SB
last

SB
last+1

SB
recent

SB
last+WB

s-1

...

Buffers

...
Timer

Timer

Timer

Timer

Timer

Timer

Timer

ACK Piggybacking in Bidirectional GBN

Note: Out-of-
sequence error-free
frames discarded

after Rnext examined

Applications of Go-Back-N ARQ

HDLC (High-Level Data Link Control): bit-
oriented data link control
V.42 modem: error control over telephone
modem links

Tf Tf

Tproc

TpropTprop

Tout

Required Timeout & Window Size

Timeout value should allow for:
Two propagation times + 1 processing time: 2 Tprop + Tproc

A frame that begins transmission right before our frame arrives
Tf

Next frame carries the ACK, Tf

Ws should be large enough to keep channel busy for Tout

11000 bits1 ms

1011,000,000 bits1 second

11100,000 bits100 ms

210,000 bits10 ms

Window2 x Delay x BW2(tprop + tproc)

Frame = 1250 bytes =10,000 bits, R = 1 Mbps

Required Window Size for
Delay-Bandwidth Product

Efficiency of Go-Back-N
GBN is completely efficient, if Ws large enough to keep
channel busy, and if channel is error-free
Assume Pf frame loss probability, then time to deliver a frame
is:

tf if first frame transmission succeeds (1 – Pf
)
Tf + Wstf /(1-Pf) if the first transmission does not succeed
Pf

)1(
)1(1

1

 and
1

 }
1

{)1(

f
fs

f

o

GBN

of

GBN

f

fs
ff

f

fs
ffffGBN

P
PW

n
n

R
t

nn

P
tW

Pt
P
tW

tPPtt

−
−+

−
=

−

=

−
+=

−
++−=

η

Delay-bandwidth product determines Ws

Example: Impact Bit Error Rate on
GBN

nf=1250 bytes = 10000 bits, na=no=25 bytes = 200 bits
Compare S&W with GBN efficiency for random bit errors with

p = 0, 10-6, 10-5, 10-4 and R = 1 Mbps & 100 ms
1 Mbps x 100 ms = 100000 bits = 10 frames → Use Ws = 11

3.3%8.0%8.8%8.9%S&W

45.4%

10-5

4.9%88.2%98%GBN

10-410-60Efficiency

Go-Back-N significant improvement over Stop-and-Wait for
large delay-bandwidth product
Go-Back-N becomes inefficient as error rate increases

Selective Repeat ARQ
Go-Back-N ARQ inefficient because multiple frames
are resent when errors or losses occur
Selective Repeat retransmits only an individual frame

Timeout causes individual corresponding frame to be resent
NAK causes retransmission of oldest un-acked frame

Receiver maintains a receive window of sequence
numbers that can be accepted

Error-free, but out-of-sequence frames with sequence
numbers within the receive window are buffered
Arrival of frame with Rnext causes window to slide forward by
1 or more

A

B

fr
0

Timefr
1

fr
2

fr
3

fr
4

fr
5

fr
6

fr
2

A
C
K
1

fr
8

fr
9

fr
7

fr
10

fr
11

fr
12

A
C
K
2

N
A
K
2

A
C
K
7

A
C
K
8

A
C
K
9

A
C
K
1
0

A
C
K
1
1

A
C
K
1
2

A
C
K
2

A
C
K
2

A
C
K
2

Selective Repeat ARQ

Transmitter

Buffers

Slast Slast+ Ws-1

...
Send Window

Srecent

Frames
transmitted
and ACKed

Timer Slast

Slast+ 1

Srecent

Slast+ Ws - 1

Timer

Timer

...

...

Selective Repeat ARQ

Frames
received

Receiver

Receive Window

Rnext Rnext + Wr-1

Rnext+ 1

Rnext+ 2

Rnext+ Wr- 1

...

Buffers

max Seq #
accepted

Send & Receive Windows
Transmitter Receiver

0
1

2

i
i + Ws – 1

2m-1

Slast

send
window

i + 1

Moves k forward when ACK
arrives with Rnext = Slast + k

k = 1, …, Ws-1

0
1

2

i

j + Wr – 1

2m-1

Rnext

receive
window

j

Moves forward by 1 or more
when frame arrives with

Seq. # = Rnext

What size Ws and Wr allowed?
Example: M=22=4, Ws=3, Wr=3

A

B

fr0
Time

fr1 fr2 fr0

ACK1 ACK2 ACK3

Frame 0 resent

{0,1,2} {1,2} {2} {.}
Send

Window

{0,1,2} {1,2,3}
Receive
Window {2,3,0} {3,0,1}

Old frame 0 accepted as a
new frame because it falls
in the receive window

Ws + Wr = 2m is maximum allowed

Example: M=22=4, Ws=2, Wr=2

A

B

fr0
Time

fr1 fr0

ACK1 ACK2

Frame 0 resent

{0,1} {1} {.}
Send

Window

{0,1} {1,2}
Receive
Window {2,3}

Old frame 0 rejected because it
falls outside the receive window

Why Ws + Wr = 2m works
Transmitter sends frames 0
to Ws-1; send window empty
All arrive at receiver
All ACKs lost

Window slides forward to
{Ws,…,Ws+Wr-1}

0
1

2

Ws-1

2m-1

Slast

send
window

0
1

2Ws +Wr-1

2m-1

Rnextreceive
window

Ws

Transmitter resends frame 0
Receiver rejects frame 0 because it
is outside receive window

Receiver window starts at {0, …, Wr}

Applications of Selective Repeat
ARQ

TCP (Transmission Control Protocol):
transport layer protocol uses variation of
selective repeat to provide reliable stream
service
Service Specific Connection Oriented
Protocol: error control for signaling
messages in ATM networks

Efficiency of Selective Repeat
Assume Pf frame loss probability, then number of
transmissions required to deliver a frame is:

tf / (1-Pf)

)1)(1(
)1/(

f
f

off

of

SR P
n
n

R
Pt
nn

−−=
−
−

=η

Example: Impact Bit Error Rate on
Selective Repeat

nf=1250 bytes = 10000 bits, na=no=25 bytes = 200 bits
Compare S&W, GBN & SR efficiency for random bit errors

with p=0, 10-6, 10-5, 10-4 and R= 1 Mbps & 100 ms

4.9%45.4%88.2%98%GBN

3.3%8.0%8.8%8.9%S&W

89%

10-5

36%97%98%SR

10-410-60Efficiency

Selective Repeat outperforms GBN and S&W, but
efficiency drops as error rate increases

Selective-Repeat:

Go-Back-N:

Stop-and-Wait:

L
P

n
Rtt

n
n

P f

f

procprop

f

a

f
SW +

−
≈

+
++

−
=

1
1

)(2
1

)1(
η

f

f

fS

f
GBN LP

P
PW

P
+

−
=

−+

−
=

1
1

)1(1
1

η

)1()1)(1(f
f

o
fSR P

n
nP −≈−−=η

Comparison of ARQ Efficiencies
Assume na and no are negligible relative to nf, and
L = 2(tprop+tproc)R/nf =(Ws-1), then

For Pf≈0, SR & GBN same

For Pf→1, GBN & SW same

ARQ Efficiency Comparison

0

0.5

1

1.5

-9 -8 -7 -6 -5 -4 -3 -2 -1

- LOG(p)

Ef
fic

ie
nc

y

Selective
Repeat

Go Back N 10

Stop and Wait
100

Go Back N 100

Stop and Wait
10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

p

Delay-Bandwidth product = 10, 100

ARQ Efficiencies

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

Flow Control

Flow Control

Receiver has limited buffering to store arriving
frames
Several situations cause buffer overflow

Mismatch between sending rate & rate at which user can
retrieve data
Surges in frame arrivals

Flow control prevents buffer overflow by regulating
rate at which source is allowed to send information

Information frame

Control frame

Transmitter

Receiver

buffer fill

on off offon

A

B

2Tprop

Time

Time

X ON / X OFF

Transmit Transmit

Information frame

X OFF

Transmitter

Receiver

threshold

Threshold must activate OFF signal while 2 Tprop R bits still
remain in buffer

A

B

tcycle

Return of permits

Time

Time

Window Flow Control

Sliding Window ARQ method with Ws equal to buffer available
Transmitter can never send more than Ws frames

ACKs that slide window forward can be viewed as permits to transmit
more
Can also pace ACKs as shown above

Return permits (ACKs) at end of cycle regulates transmission rate
Problems using sliding window for both error & flow control

Choice of window size
Interplay between transmission rate & retransmissions
TCP separates error & flow control

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

Timing Recovery

Network

Synchronous source
sends periodic
information blocks

Network output
not periodic

Timing Recovery for Synchronous
Services

Applications that involve voice, audio, or video can generate a
synchronous information stream
Information carried by equally-spaced fixed-length packets
Network multiplexing & switching introduces random delays

Packets experience variable transfer delay
Jitter (variation in interpacket arrival times) also introduced

Timing recovery re-establishes the synchronous nature of the stream

Introduce Playout Buffer

Playout
Buffer

Packet Arrivals Packet Playout

• Delay first packet by maximum network delay
• All other packets arrive with less delay
• Playout packet uniformly thereafter

Packet Arrivals

Packet Playout

Tmax

Sequence numbers help order
packets

Send
times

Playout
times

Arrival times

Tplayout time

Time

Receiver too
slow;

buffer fills and
overflows

Tplayout time

Time
Receiver too fast
buffer starvation

Many late
packets

Tplayout time

Time
Receiver speed
just right

Playout clock must
be synchronized to

transmitter clock

Recovered
clock

t4 t3 t2 t1
Timestamps

Add Smoothing
filter

Adjust
frequency

Counter

+

-

Buffer for information blocks

Error
signal

Playout
command

Clock Recovery

Counter attempts to replicate transmitter clock
Frequency of counter is adjusted according to arriving timestamps
Jitter introduced by network causes fluctuations in buffer & in local clock

Timestamps inserted in
packet payloads

indicate when info was
produced

Network clock

fn

Transmitter

Network

Receiver

fs fr
M M

Synchronization to a Common
Clock

Clock recovery simple if a common clock is available to transmitter &
receiver

E.g. SONET network clock; Global Positioning System (GPS)
Transmitter sends Δf of its frequency & network frequency
Receiver adjusts network frequency by Δf
Packet delay jitter can be removed completely

fr=fn-Δf

M=#ticks in local clock
In time that net clock

does N ticks
N ticks N ticksfn/fs=N/M

Δf=fn-fs=fn-(M/N)fn

Example: Real-Time Protocol

RTP (RFC 1889) designed to support real-
time applications such as voice, audio, video
RTP provides means to carry:

Type of information source
Sequence numbers
Timestamps

Actual timing recovery must be done by
higher layer protocol

MPEG2 for video, MP3 for audio

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

TCP Reliable Stream Service &
Flow Control

Send buffer

Segments

Receive buffer

Application Layer
writes bytes into send
buffer through socket

ACKs

Transmitter Receiver

TCP Reliable Stream Service

Application Layer reads
bytes from receive buffer

through socket

TCP transfers byte
stream in order, without
errors or duplications

Application layer

Transport layer

Write 45 bytes
Write 15 bytes
Write 20 bytes

Read 40 bytes
Read 40 bytes

TCP ARQ Method
• TCP uses Selective Repeat ARQ

• Transfers byte stream without preserving boundaries
• Operates over best effort service of IP

• Packets can arrive with errors or be lost
• Packets can arrive out-of-order
• Packets can arrive after very long delays
• Duplicate segments must be detected & discarded
• Must protect against segments from previous connections

• Sequence Numbers
• Seq. # is number of first byte in segment payload
• Very long Seq. #s (32 bits) to deal with long delays
• Initial sequence numbers negotiated during connection setup

(to deal with very old duplicates)
• Accept segments within a receive window

Transmitter

Slast Slast + Ws – 1

...

Send Window

Srecent
octets

transmitted
& ACKed

... ...

Slast + Wa-1

Slast oldest unacknowledged byte
Srecent highest-numbered
transmitted byte
Slast+Wa-1 highest-numbered byte
that can be transmitted
Slast+Ws-1 highest-numbered byte
that can be accepted from the
application

Receiver

Receive Window

Rnext

Rlast Rlast + WR – 1

Rlast highest-numbered byte not
yet read by the application
Rnext next expected byte
Rnew highest numbered byte
received correctly
Rlast+WR-1 highest-numbered byte
that can be accommodated in
receive buffer

Rnew

TCP Connections
TCP Connection

One connection each way
Identified uniquely by Send IP Address, Send TCP Port #,
Receive IP Address, Receive TCP Port #

Connection Setup with Three-Way Handshake
Three-way exchange to negotiate initial Seq. #’s for
connections in each direction

Data Transfer
Exchange segments carrying data

Graceful Close
Close each direction separately

Host A Host BSYN, Seq_no = x

SYN, Seq_no = y, ACK, Ack_no = x+1

Seq_no = x+1, ACK, Ack_no = y+1

Three-way
Handshake

Data Transfer

Three Phases of TCP Connection

Graceful
Close

FIN, Seq_no = w

ACK, Ack_no = w+1

Data Transfer
FIN, Seq_no = z

ACK, Ack_no = z+1

1st Handshake: Client-Server
Connection Request

SYN bit set indicates request to
establish connection from client to

server

Initial Seq. # from
client to server

2nd Handshake: ACK from Server

ACK bit set acknowledges
connection request; Client-

to-Server connection
established

ACK Seq. # =
Init. Seq. # + 1

2nd Handshake: Server-Client
Connection Request

SYN bit set indicates request to
establish connection from server

to client

Initial Seq. # from
server to client

3rd Handshake: ACK from Client

ACK bit set acknowledges
connection request;
Connections in both

directions established

ACK Seq. # =
Init. Seq. # + 1

TCP Data Exchange
Application Layers write bytes into buffers
TCP sender forms segments

When bytes exceed threshold or timer expires
Upon PUSH command from applications
Consecutive bytes from buffer inserted in payload
Sequence # & ACK # inserted in header
Checksum calculated and included in header

TCP receiver
Performs selective repeat ARQ functions
Writes error-free, in-sequence bytes to receive
buffer

Data Transfer: Server-to-Client
Segment

12 bytes of payload
carries telnet option

negotiation

Push set

12 bytes of payload

Graceful Close: Client-to-Server
Connection

Client initiates closing
of its connection to

server

Graceful Close: Client-to-Server
Connection

Server ACKs request;
client-to-server connection

closed

ACK Seq. # =
Previous Seq. # + 1

Flow Control
TCP receiver controls rate at which sender transmits to prevent
buffer overflow
TCP receiver advertises a window size specifying number of
bytes that can be accommodated by receiver

WA = WR – (Rnew – Rlast)
TCP sender obliged to keep # outstanding bytes below WA

(Srecent - Slast) ≤ WA

Receive Window

Rlast Rlast + WR – 1 Rnew

WA

Slast Slast + Ws – 1

...

Send Window

Srecent

... ...

Slast + WA-1

Host A Host B

Seq_no = 2000, Ack_no = 1, Win = 1024, Data = 2000-3023

Seq_no = 1, Ack_no = 4048, Win = 512, Data = 1-128

Seq_no = 3024, Ack_no = 1, Win = 1024, Data = 3024-4047

Seq_no = 4048, Ack_no = 129, Win = 1024, Data = 4048-4559

t1

t2

t3

t4

Seq_no = 1, Ack_no = 2000, Win = 2048, No Data
t0

TCP window flow control

TCP Retransmission Timeout
TCP retransmits a segment after timeout period

Timeout too short: excessive number of retransmissions
Timeout too long: recovery too slow
Timeout depends on RTT: time from when segment is sent to
when ACK is received

Round trip time (RTT) in Internet is highly variable
Routes vary and can change in mid-connection
Traffic fluctuates

TCP uses adaptive estimation of RTT
Measure RTT each time ACK received: τn

tRTT(new) = α tRTT(old) + (1 – α) τn

α = 7/8 typical

RTT Variability
Estimate variance σ2 of RTT variation
Estimate for timeout:

tout = tRTT + k σRTT

If RTT highly variable, timeout increase accordingly
If RTT nearly constant, timeout close to RTT estimate

Approximate estimation of deviation

dRTT(new) = β dRTT(old) + (1-β) | τn - tRTT |

tout = tRTT + 4 dRTT

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

PART II: Data Link Controls
Framing

Point-to-Point Protocol
High-Level Data Link Control

Link Sharing Using Statistical Multiplexing

Data Link Protocols

Directly connected, wire-like
Losses & errors, but no out-of-
sequence frames
Applications: Direct Links;
LANs; Connections across
WANs

Data Links Services
Framing
Error control
Flow control
Multiplexing
Link Maintenance
Security: Authentication &
Encryption

Examples
PPP
HDLC
Ethernet LAN
IEEE 802.11 (Wi Fi) LAN

Data link
layer

Physical
layer

Physical
layer

Data link
layer

A B

Packets Packets

Frames

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

Framing

Framing
Mapping stream of
physical layer bits into
frames
Mapping frames into
bit stream
Frame boundaries can
be determined using:

Character Counts
Control Characters
Flags
CRC Checks

0110110111

Framing

received
frames

01
11

11
01

01
transmitted

frames

Data to be sent
A DLE B ETX DLE STX E

After stuffing and framing

DLE DLE B ETX DLE DLE STXDLE STX A E DLE ETX

Character-Oriented Framing

Frames consist of integer number of bytes
Asynchronous transmission systems using ASCII to transmit printable
characters
Octets with HEX value <20 are nonprintable

Special 8-bit patterns used as control characters
STX (start of text) = 0x02; ETX (end of text) = 0x03;

Byte used to carry non-printable characters in frame
DLE (data link escape) = 0x10
DLE STX (DLE ETX) used to indicate beginning (end) of frame
Insert extra DLE in front of occurrence of DLE STX (DLE ETX) in frame
All DLEs occur in pairs except at frame boundaries

Framing & Bit Stuffing

Frame delineated by flag character
HDLC uses bit stuffing to prevent occurrence of flag
01111110 inside the frame
Transmitter inserts extra 0 after each consecutive
five 1s inside the frame
Receiver checks for five consecutive 1s

if next bit = 0, it is removed
if next two bits are 10, then flag is detected
If next two bits are 11, then frame has errors

Flag FlagAddress Control Information FCS

HDLC frame

any number of bits

0110111111111100

Data to be sent

After stuffing and framing

0111111001101111101111100001111110

(a)

000111011111-11111-110

Data received

After destuffing and deframing

01111110000111011111011111011001111110

(b)

Example: Bit stuffing & de-
stuffing

PPP Frame

PPP uses similar frame structure as HDLC, except
Protocol type field
Payload contains an integer number of bytes

PPP uses the same flag, but uses byte stuffing
Problems with PPP byte stuffing

Size of frame varies unpredictably due to byte insertion
Malicious users can inflate bandwidth by inserting 7D & 7E

Flag FlagAddress Control Information CRCProtocol
01111110 011111101111111 00000011

Unnumbered
frame

Specifies what kind of packet is contained in the
payload, e.g., LCP, NCP, IP, OSI CLNP, IPX

All stations are to
accept the frame

integer # of bytes

PPP is character-oriented version of HDLC
Flag is 0x7E (01111110)
Control escape 0x7D (01111101)
Any occurrence of flag or control escape inside of frame is
replaced with 0x7D followed by

original octet XORed with 0x20 (00100000)

Byte-Stuffing in PPP

Data to be sent

41 7D 42 7E 50 70 46

After stuffing and framing

5D 42 7D 5E 50 70 467E 41 7D 7E

PLI cHEC Type GEH GFP payloadtHEC

Payload
type

Payload
length

indicator

Core
header
error

checking

Type
header
error

checking

GFP
extension
headers

GFP
payload

2 2 2 2 0-60

GFP payload area

Generic Framing Procedure

GFP combines frame length indication with CRC
PLI indicated length of frame, then simply count characters
cHEC (CRC-16) protects against errors in count field (single-bit
error correction + error detection)

GFP designed to operate over octet-synchronous physical
layers (e.g. SONET)

Frame-mapped mode for variable-length payloads: Ethernet
Transparent mode carries fixed-length payload: storage devices

GFP Synchronization &
Scrambling

Synchronization in three-states
Hunt state: examine 4-bytes to see if CRC ok

If no, move forward by one-byte
If yes, move to pre-sync state

Pre-sync state: tentative PLI indicates next frame
If N successful frame detections, move to sync state
If no match, go to hunt state

Sync state: normal state
Validate PLI/cHEC, extract payload, go to next frame
Use single-error correction
Go to hunt state if non-correctable error

Scrambling
Payload is scrambled to prevent malicious users from inserting
long strings of 0s which cause SONET equipment to lose bit
clock synchronization (as discussed in line code section)

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

Point-to-Point Protocol

PPP: Point-to-Point Protocol
Data link protocol for point-to-point lines in Internet

Router-router; dial-up to router
1. Provides Framing and Error Detection

Character-oriented HDLC-like frame structure
2. Link Control Protocol

Bringing up, testing, bringing down lines; negotiating
options
Authentication: key capability in ISP access

3. A family of Network Control Protocols specific to
different network layer protocols

IP, OSI network layer, IPX (Novell), Appletalk

PPP Applications
PPP used in many point-to-point applications

Telephone Modem Links 30 kbps
Packet over SONET 600 Mbps to 10 Gbps

IP→PPP→SONET

PPP is also used over shared links such as
Ethernet to provide LCP, NCP, and
authentication features

PPP over Ethernet (RFC 2516)
Used over DSL

• PPP can support multiple network protocols simultaneously
• Specifies what kind of packet is contained in the payload

•e.g. LCP, NCP, IP, OSI CLNP, IPX...

PPP Frame Format

Flag FlagAddress Control Information FCSProtocol
01111110 011111101111111 00000011

CRC 16 or
CRC 32

1 or 2 variable 2 or 4

All stations are to
accept the frame

HDLC
Unnumbered frame

PPP Example

PPP Phases
Home PC to Internet Service

Provider
1. PC calls router via modem
2. PC and router exchange LCP

packets to negotiate PPP
parameters

3. Check on identities
4. NCP packets exchanged to

configure the network layer, e.g.
TCP/IP (requires IP address
assignment)

5. Data transport, e.g. send/receive
IP packets

6. NCP used to tear down the
network layer connection (free up
IP address); LCP used to shut
down data link layer connection

7. Modem hangs up

Dead

Establish

Authenticate

Network

Terminate

Open

Failed

Failed

1. Carrier
detected

2. Options
negotiated

3. Authentication
completed4. NCP

configuration

6. Done

7. Carrier
dropped

5.

PPP Authentication
Password Authentication Protocol

Initiator must send ID & password
Authenticator replies with authentication success/fail
After several attempts, LCP closes link
Transmitted unencrypted, susceptible to eavesdropping

Challenge-Handshake Authentication Protocol
(CHAP)

Initiator & authenticator share a secret key
Authenticator sends a challenge (random # & ID)
Initiator computes cryptographic checksum of random # &
ID using the shared secret key
Authenticator also calculates cryptocgraphic checksum &
compares to response
Authenticator can reissue challenge during session

Example: PPP connection setup
in dialup modem to ISP

LCP
Setup
PAP

IP NCP
setup

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

High-Level Data Link Control

High-Level Data Link Control
(HDLC)

Bit-oriented data link control
Derived from IBM Synchronous Data Link
Control (SDLC)
Related to Link Access Procedure Balanced
(LAPB)

LAPD in ISDN
LAPM in cellular telephone signaling

Physical
layer

Data link
layer

Data link
layer

Network
layer

DLSDU DLSDU

Network
layer

Physical
layer

DLPDU

NLPDU

“Packet”

“Frame”

DLSAP DLSAP

Normal Response Mode
Used in polling multidrop lines

Asynchronous Balanced Mode
Used in full-duplex point-to-point links

HDLC Data Transfer Modes

Primary
Commands

Responses

Secondary Secondary Secondary

Primary

Secondary

Commands Responses

Primary

Secondary

CommandsResponses

Mode is selected during connection establishment

HDLC Frame Format

Control field gives HDLC its functionality
Codes in fields have specific meanings and uses

Flag: delineate frame boundaries
Address: identify secondary station (1 or more octets)

In ABM mode, a station can act as primary or secondary so
address changes accordingly

Control: purpose & functions of frame (1 or 2 octets)
Information: contains user data; length not standardized, but
implementations impose maximum
Frame Check Sequence: 16- or 32-bit CRC

Flag FlagAddress Control Information FCS

Control Field Format

0 N(S) N(R)P/F

1 2-4 5 6-8
Information Frame

N(R)P/F

Supervisory Frame

1 0 S S

Unnumbered Frame

P/F1 1 M M M M M

S: Supervisory Function Bits
N(R): Receive Sequence Number
N(S): Send Sequence Number

M: Unnumbered Function Bits
P/F: Poll/final bit used in interaction
between primary and secondary

Information frames
Each I-frame contains sequence number N(S)
Positive ACK piggybacked

N(R)=Sequence number of next frame expected
acknowledges all frames up to and including N(R)-1

3 or 7 bit sequence numbering
Maximum window sizes 7 or 127

Poll/Final Bit
NRM: Primary polls station by setting P=1; Secondary
sets F=1 in last I-frame in response
Primaries and secondaries always interact via paired P/F
bits

Frames lost due to loss-of-synch or receiver buffer
overflow
Frames may undergo errors in transmission
CRCs detect errors and such frames are treated as
lost
Recovery through ACKs, timeouts & retransmission
Sequence numbering to identify out-of-sequence &
duplicate frames
HDLC provides for options that implement several
ARQ methods

Error Detection & Loss Recovery

Supervisory frames
Used for error (ACK, NAK) and flow control (Don’t Send):

Receive Ready (RR), SS=00
ACKs frames up to N(R)-1 when piggyback not available

REJECT (REJ), SS=01
Negative ACK indicating N(R) is first frame not received
correctly. Transmitter must resend N(R) and later frames

Receive Not Ready (RNR), SS=10
ACKs frame N(R)-1 & requests that no more I-frames be sent

Selective REJECT (SREJ), SS=11
Negative ACK for N(R) requesting that N(R) be selectively
retransmitted

Unnumbered Frames
Setting of Modes:

SABM: Set Asynchronous Balanced Mode
UA: acknowledges acceptance of mode setting commands
DISC: terminates logical link connectio

Information Transfer between stations
UI: Unnumbered information

Recovery used when normal error/flow control fails
FRMR: frame with correct FCS but impossible semantics
RSET: indicates sending station is resetting sequence
numbers

XID: exchange station id and characteristics

Connection Establishment &
Release

Supervisory frames used to establish and release
data link connection
In HDLC

Set Asynchronous Balanced Mode (SABM)
Disconnect (DISC)
Unnumbered Acknowledgment (UA)

SABM UAUA DISC
Data
transfer

Primary A Secondaries B, C
B, RR, 0, P

B, I, 0, 0
B, I, 1, 0
B, I, 2, 0,F

X

B, SREJ, 1
C, RR, 0, P

C, RR, 0, F

B, SREJ, 1,P

B, I, 1, 0
B, I, 3, 0
B, I, 4, 0, F

B, I, 0, 5

Time

Example: HDLC using NRM
(polling)

A polls B

B sends 3 info
frames

A rejects fr1

A polls C
C nothing to

send
A polls B,
requests
selective
retrans. fr1

B resends fr1
Then fr 3 & 4

A send info fr0
to B, ACKs up to 4

N(R)

N(S) N(R)

Address of secondary

Combined Station A Combined Station B
B, I, 0, 0 A, I, 0, 0

B, I, 1, 0

B, I, 2, 1

A, I, 1, 1

A, I, 2, 1

X

B, REJ, 1B, I, 3, 2

B, I, 4, 3

B, I, 1, 3

B, I, 2, 4

B, I, 3, 4

A, I, 3, 1

B, RR, 2

B, RR, 3

Frame Exchange using
Asynchronous Balanced Mode

B sends 5
frames

A ACKs fr0

A rejects
fr1

B goes
back to 1

A ACKs fr1

A ACKs fr2

I3 I4 I5 I6RNR5 RR6

Flow Control
Flow control is required to prevent transmitter from
overrunning receiver buffers
Receiver can control flow by delaying
acknowledgement messages
Receiver can also use supervisory frames to
explicitly control transmitter

Receive Not Ready (RNR) & Receive Ready (RR)

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

Link Sharing Using Statistical
Multiplexing

Buffer

A

B

C

Input lines

Output line

Header Data payload

Statistical Multiplexing

Multiplexing concentrates bursty traffic onto a shared line
Greater efficiency and lower cost

A1 A2

B1 B2

C2C1

A2B1 B2 C2C1

(a)

(b) A1Shared lines

Dedicated lines

Tradeoff Delay for Efficiency

Dedicated lines involve not waiting for other users, but lines
are used inefficiently when user traffic is bursty
Shared lines concentrate packets into shared line; packets
buffered (delayed) when line is not immediately available

1

2

N

1

2

N

Multiplexers inherent in Packet
Switches

Packets/frames forwarded to buffer prior to transmission from
switch
Multiplexing occurs in these buffers

Buffer

Output line

Input lines

A

B

C

Multiplexer Modeling

Arrivals: What is the packet interarrival pattern?
Service Time: How long are the packets?
Service Discipline: What is order of transmission?
Buffer Discipline: If buffer is full, which packet is dropped?

Performance Measures:
Delay Distribution; Packet Loss Probability; Line Utilization

Delay = Waiting + Service Times

Packets arrive and wait for service
Waiting Time: from arrival instant to beginning of service
Service Time: time to transmit packet
Delay: total time in system = waiting time + service time

Packet arrives
at queue

Packet begins
transmission

Packet completes
transmission

Service
time

Waiting
time

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

A1 A2

B1 B2

C2C1

A2B1 B2 C2C1

(a)

(b) A1Shared line

Dedicated lines

(c) N(t)

Fluctuations in Packets in the
System

Number of
packets in the

system

Packet Lengths & Service Times

R bits per second transmission rate
L = # bits in a packet
X = L/R = time to transmit (“service”) a packet
Packet lengths are usually variable

Distribution of lengths → Dist. of service times
Common models:

Constant packet length (all the same)
Exponential distribution
Internet Measured Distributions fairly constant

See next chart

Measure Internet Packet
Distribution

Dominated by TCP
traffic (85%)
~40% packets are
minimum-sized 40 byte
packets for TCP ACKs
~15% packets are
maximum-sized
Ethernet 1500 frames
~15% packets are 552
& 576 byte packets for
TCP implementations
that do not use path
MTU discovery
Mean=413 bytes
Stand Dev=509 bytes
Source: caida.org

M/M/1/K Queueing Model

Poisson Arrivals
rate λ

K – 1 buffer Exponential service
time with rate μ

At most K customers allowed in system

1 customer served at a time; up to K – 1 can wait in queue
Mean service time E[X] = 1/μ
Key parameter Load: ρ = λ/μ
When λ << μ (ρ≈0), customers arrive infrequently and usually
find system empty, so delay is low and loss is unlikely
As λ approaches μ (ρ→1) , customers start bunching up and
delays increase and losses occur more frequently
When λ > μ (ρ>0) , customers arrive faster than they can be
processed, so most customers find system full and those that
do enter have to wait about K – 1 service times

Average Arrival Rate: λ packets per second
Arrivals are equally-likely to occur at any point in time
Time between consecutive arrivals is an exponential random
variable with mean 1/ λ
Number of arrivals in interval of time t is a Poisson random
variable with mean λt

[] t
k

e
k
tP λλ −=
!
)(secondsin t arrivalsk

Poisson Arrivals

P
r o

ba
b i

lit
y

de
ns

ity

t
0

λe-λt P
[X

<t
]

t
0

1-e-λt

. 0 > for = =]>[
t-[X]/- teetXP Et λ

Exponential Distribution

Probability of Overflow:

Average Total Packet Delay:

)1(
][][
KP

NETE
−

=
λ

11
)1(

+−
−

=
K

K

lossP
ρ

ρρ

1

1

1
)1(

1
][+

+

−
+

−
−

= K

KKNE
ρ

ρ
ρ

ρ

M/M/1/K Performance Results
(From Appendix A)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

load

los
s p

ro
ba

bil
ity

lo
ss

 p
ro

ba
bi

lit
y

no
rm

al
iz

ed
 a

vg
de

la
y

E
[T

]/E
[X

]

0
1
2
3
4
5
6
7
8
9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

load

M/M/1/10

Maximum 10
packets allowed in
system
Minimum delay is 1
service time
Maximum delay is
10 service times
At 70% load delay
& loss begin
increasing
What if we add
more buffers?

M/M/1 Queue

Pb=0 since customers are never blocked
Average Time in system E[T] = E[W] + E[X]
When λ << μ, customers arrive infrequently and delays are
low
As λ approaches μ ��customers start bunching up and
average delays increase
When λ > μ�� customers arrive faster than they can be
processed and queue grows without bound (unstable)

Poisson Arrivals
rate λ

Infinite buffer Exponential service
time with rate μ

Unlimited number of customers
allowed in system

.model M/M/1for 1 1
1

 1
1

1
1

1][
μμρ

ρ
μρρ

ρ
λ

+⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

=MTE

Avg. Delay in M/M/1 & M/D/1

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

load

no
rm

al
iz

ed
 a

vg
. d

el
ay

no
rm

al
iz

ed
 a

ve
ra

ge
 d

el
ay

M/M/1

M/D/1

constant
service time

.system M/D/1for 11
)1(2

 1
)1(2

1][
μμρ

ρ
μρ

ρ
+⎥

⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

+=DTE

C = 100,000 bps
Exp. Dist. with Avg. Packet
Length: 10,000 bits
Service Time: X=0.1 second

Arrival Rate: 7.5 pkts/sec
Load: ρ=0.75
Mean Delay:

E[T] = 0.1/(1-.75) = 0.4 sec

Aggregation of flows can improve Delay & Loss Performance

Effect of Scale
C = 10,000,000 bps
Exp. Dist. with Avg. Packet
Length: 10,000 bits
Service Time: X=0.001
second
Arrival Rate: 750 pkts/sec
Load: ρ=0.75
Mean Delay:
E[T] = 0.001/(1-.75) =
0.004 sec

Reduction by factor of 100

Example: Header overhead &
Goodput

Let R=64 kbps
Assume IP+TCP header = 40 bytes
Assume constant packets of total length

L= 200, 400, 800, 1200 bytes
Find avg. delay vs. goodput (information transmitted
excluding header overhead)

Service rate μ = 64000/8L packets/second
Total load ρ = λ 64000/8L
Goodput = λ packets/sec x 8(L-40) bits/packet
Max Goodput = (1-40/L)64000 bps

0

0.1

0.2

0.3

0.4

0.5

0.6

0 8000 16000 24000 32000 40000 48000 56000 64000

A
ve

ra
ge

 D
el

ay
 (s

ec
on

ds
)

Goodput (bits/second)

L=200

L=400

L=800

L=1200

Header overhead limits maximum
goodput

Burst Multiplexing / Speech
Interpolation

Voice active < 40% time
No buffering, on-the-fly switch bursts to available trunks
Can handle 2 to 3 times as many calls
Tradeoff: Trunk Utilization vs. Speech Loss

Fractional Speech Loss: fraction of active speech lost
Demand Characteristics

Talkspurt and Silence Duration Statistics
Proportion of time speaker active/idle

Fewer
Trunks

Many
Voice
Calls

Part of this burst is lost

trunks

sp
ee

ch
 lo

ss

connections

0.001

0.01

0.1

1
10 12 14 16 18 20 22 24

24 32 40

48

.
)!(!

! where
)1()(

lossspeech 1

knk
n

np

ppmk
n

k

knk
n

mk

n

k

−
=⎟

⎠
⎞

⎜
⎝
⎛

−⎟
⎠
⎞

⎜
⎝
⎛−

=

−

+=
∑

Speech Loss vs. Trunks

Typical
requirement

Effect of Scale

0.832.092348

0.802.002040

0.802.001632

0.741.851324

UtilizationMultiplexing
GainTrunksSpeakers

Trunks required for 1% speech loss

Larger flows lead to better performance
Multiplexing Gain = # speakers / # trunks

Packet Speech Multiplexing
Many voice
terminals

generating
voice packets Buffer

B2

Buffer overflow

C1 D1A2 B1C2D2B3 C3 A1

D3 D1D2

B3 B1B2

C3 C1C2

A3 A1A2

Digital speech carried by fixed-length packets
No packets when speaker silent
Synchronous packets when speaker active
Buffer packets & transmit over shared high-speed line
Tradeoffs: Utilization vs. Delay/Jitter & Loss

Packet Switching of Voice

Packetization delay: time for speech samples to fill a packet
Jitter: variable inter-packet arrivals at destination
Playback strategies required to compensate for jitter/loss

Flexible delay inserted to produce fixed end-to-end delay
Need buffer overflow/underflow countermeasures
Need clock recovery algorithm

Received t

Sent t
1 2 3

1 2 3

Chapter 5
Peer-to-Peer Protocols

and Data Link Layer

ARQ Efficiency Calculations

E [t t o t a l] = t 0 + (i − 1)t o ut P[nt = i]
i =1

∞

∑

= t 0 + (i − 1)t o ut (1 − Pf)i −1Pf
i =1

∞

∑

= t 0 + t o u t Pf

1 − Pf

= t 0
1

1 − Pf

.

1 successful transmission i – 1 unsuccessful transmissions

.)1()(2
1

1
)1(][

0ηη f

f

procprop

f

a

f

o

f
total

of

SW P

n
Rtt

n
n

n
n

P
R
tE

nn

−=
+

++

−
−=

−

=

Efficiency:

Stop & Wait Performance

.
1

)1(1
1

)1)(1(

][)1(][

1

1

1

f

fs
f

f

ffs
f

i
f

i
ffsf

i
tfsftotal

P
PW

t
P
PtW

t

PPitWt

inPtWittE

−

−+
=

−
+=

−−+=

=−+=

∑

∑
∞

=

−

∞

=

1 successful transmission i – 1 unsuccessful transmissions

.
)1(1

1
)1(][

fs

f

o

f
total

of

GBN PW
n
n

P
R
tE

nn

−+

−
−=

−

=η

Efficiency:

Go-Back-N Performance

