ENSC 427
Communication Networks
Spring 2012
Analysis of VoIP
(Voice over Internet Protocol)

Group 11
King Fai Chung kfchung@sfu.ca
Yue Pan ypa11@sfu.ca
Ziyue Zhang zza15@sfu.ca

http://www.sfu.ca/~ypa11/Ensc%20427/427.html
Overview

- Introduction
- Scenario cases
- Results analysis
Voice over Internet Protocol

- Start 1970s
- Transmit voice and multimedia over packet switched network
- Operate Over Internet Protocol
- Alternative to public switched telephone network (PSTN)
- Allows call to be make over non phone device
VoIP vs. Tradition Calls

- Cost
- Quality
- Reliability
Introduction

- Project motivation
 - Increasing popularity of VoIP

- Project overview
 - Performance of VoIP between wire and wireless connection
 - Compare and analysis the QoS parameter between scenarios
Scenario Cases

- Scenario
 - Two-Floor Office
 - Local Lan Call
 - Wlan Local Call
 - Wlan with interference
 - Two location locate across Canada
 - Wlan Long Distance
 - Ethernet Long Distance
Analysis Parameters

- Jitter
- Mean Opinion Score Value (MOS Value)
- End to End Delay
- Delay Variation
Simulation Setup

- WLAN 802.11g connection using 56Mbps
- G.711 encode scheme
- 1 voice frame / packet
- Best effort
- One minute /call and total simulation of 5 calls in total
LAN Local call
Scenario

- WLAN Local Call
Scenario

- WLAN call with interference from same frequency devices
Scenario – Long Distance Call

- Long distance call for LAN and WLAN
- Continental Size
Future Work

- Multiple access of switch (FTP, Printer server, Http server and Email Server)
- G.729 comparison
- WiMax over WiFi
- Conference Call across the Globe
Results – Jitter (Local Call)

Blue – Ethernet Connection
Red – Wireless Connection
Results – Jitter (Long Distance Call)

Blue – Ethernet Connection
Red – Wireless Connection
Results – Jitter (Wifi connection with interference)

Blue – Wireless Connection with interference
Red – Wireless Connection

average on VoIP application Jitter (ms)

Time (s)
Results – ETE Delay (Local Call)

Blue – Ethernet Connection
Red – Wireless Connection
Results – ETE Delay (Long Distance Call)

Blue – Ethernet Connection
Red – Wireless Connection
Results – ETE Delay (Interference)

Blue – Wireless Connection with Interference
Red – Wireless Connection
Delay Variation
Delay Variation

Red – Wireless Connection with Interference
RESULTS – MOS VALUE

[Graph showing MOS values]
RESULTS – MOS VALUE
Conclusion

- Ethernet has a more stable and less delay connection than wireless connection.
- Interference near wireless router greatly reduce QoS.
- Distance VoIP introduce greater jitter, ETE and lower MOS.
convergence: challenges and solutions,” Communications Magazine, IEEE
, vol.48, no.12, pp.26-34, December 2010

video and VoIP transmission performance in IEEE 802.11 b/g/n
3-4, pp. 247-260, December 2011

to Support Desktop Videoconferencing using OPNET,” Elsevier Journal of
Network and Computer Applications (JNCA), 2006

performance when streaming audio and video content,” OPNETWORK
2011, Washington, DC, Aug. 2011

Megaco/H.248 protocol: multi-call and multi-connection scenarios,”

