Performance analysis of QoS-Oriented Distributed Routing protocols for wireless networks using NS-2.35

Manpreet Singh

Team number – 8

Project webpage- http://manpreetensc833.weebly.com/

ENSC 833 : NETWORK PROTOCOLS AND PERFORMANCE

Instructor : Dr. Ljiljana Trajkovic

School of Engineering Science

Simon Fraser University
Roadmap

• Motivation
• Introduction
• Related work
• Simulation design
• NS-2.35 model
• Simulation results
• Conclusions
• Challenges and future work
• References
Acronyms

• **EAODV**: Enhanced Ad-hoc on demand distance vector routing
• **QOD**: QOS oriented dynamic routing protocol
• **DSR**: Dynamic source routing
• **AS**: Access Point
• **UDP**: User datagram protocol
• **CBR**: Constant Bit rate
• **TX**: Transmission
Motivation

• Related to my Co-op work
• Emergence of real time and multimedia applications have stimulated the need of high Quality of Service (QoS) support for wireless networking environment.

• **Challenges in QOS**
 • Mobility
 • Bandwidth constraints
 • Energy constraints
 • Dynamic changing topology
Roadmap

• Motivation
• **Introduction**
• Related work
• Simulation design
• NS-2.35 model
• Simulation results
• Conclusions
• Challenges and future work
• References
• **Data transmission in hybrid networks has two features.**
 • AP can be a source or a destination to any mobile node.
 • Number of transmission hops between a mobile node and an AP is small.
• **EAODV:** Node always forwards a packet to a next hop node that has small buffer usage than itself and high remaining energy

![Diagram](image.png)

Fig. 1

Reference:[1]
QoS-Oriented distributed routing protocol

• **QOD:** If source node is not within the TX range of the AP, it selects nearby neighbors that can provide QOS services to forward its packets to AP in a distributed manner

• Neighbor node selection criterion of **QOD:**
 • Queuing condition
 • Channel condition
 • Bandwidth availability

• Neighbor node selection criterion of **EAODV:**
 • Power availability
 • Buffer usage
Roadmap

- Motivation
- Introduction
- **Related work**
 - Simulation design
 - NS-2.35 model
 - Simulation results
- Conclusion
- Challenges and future work
- References
Related work

- Only AODV and EAODV is compared

- QOD routing protocol is discussed and simulated
Roadmap

- Motivation
- Introduction
- Related work
- **Simulation design**
- NS-2.35 model
- Simulation results
- Conclusion
- Challenges and future Work
- References
Simulation design

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMULATOR</td>
<td>Network Simulator 2</td>
</tr>
<tr>
<td>NUMBER OF NODES</td>
<td>Random</td>
</tr>
<tr>
<td>TOPOLOGY</td>
<td>mobile users</td>
</tr>
<tr>
<td>INTERFACE TYPE</td>
<td>Phy/WirelessPhy</td>
</tr>
<tr>
<td>MAC TYPE</td>
<td>802.11</td>
</tr>
<tr>
<td>QUEUE TYPE</td>
<td>Droptail/Priority Queue</td>
</tr>
<tr>
<td>QUEUE LENGTH</td>
<td>50 Packets</td>
</tr>
<tr>
<td>ANTENNA TYPE</td>
<td>Omni Antenna</td>
</tr>
<tr>
<td>PROPAGATION TYPE</td>
<td>Towray Ground</td>
</tr>
<tr>
<td>ROUTING PROTOCOL</td>
<td>DSR</td>
</tr>
<tr>
<td>TRANSPORT AGENT</td>
<td>UDP</td>
</tr>
<tr>
<td>APPLICATION AGENT</td>
<td>CBR</td>
</tr>
<tr>
<td>SIMULATION TIME</td>
<td>50 seconds</td>
</tr>
</tbody>
</table>
Network model

Basic Hybrid N/w model

Fig:2

Reference:[1]
Network topology

- 30 mobile nodes in the network
- APs are fixed nodes
- Source nodes connects to nearest AP using neighbor node while ensuring QOS.

Fig :4
Roadmap

• Motivation
• Introduction
• Related work
• Simulation design
• NS-2.35 model
• **Simulation results**
• Conclusion
• Challenges and future work
• References
Transmission delay

- **Analysis:** QOD has performed better as comparison to energy based EAODV
 - EAODV has higher TX delay in this scenario.
- **Reason:** QOD uses the distributed packet switching algorithm which reduce the TX delay.
• **Analysis:** QOD has performed better as comparison to energy based EAODV
 • Result may vary according to scenario and topology chosen.
• **Reason:** In EAODV the delay resulted from the path searching degrades the ability to meet the QOS requirements as comparison to QOD.
• **Analysis:** In low mobility environment, QOD generates higher overhead than E-AODV. But with high mobility EAODV has higher overhead.
Roadmap

• Motivation
• Introduction
• Related work
• Simulation design
• NS-2.35 model
• Simulation results

• **Conclusion**
• Challenges and future Work
• References
Extensive simulations of hybrid wireless networks is conducted and the findings are

- Direct adoption of the QOS routing techniques in hybrid networks inherits their drawbacks such as race condition.
- QOD provides better quality of service than energy based EAODV but this might differ depending upon scenario and topology.
- With low mobility in network QOD has higher overhead
Roadmap

• Motivation
• Introduction
• Related work
• Simulation design
• NS-2.35 model
• Simulation results
• Conclusion

• Challenges and future Work
• References
Challenges and Future Work

• **Challenges:**
 - Understanding TCL and ns-2.35
 - Implementation of mobile nodes with fixed node

• **Future work:**
 – Enhanced propose a QoS-based distributed routing protocol (QOD) for hybrid networks to provide QoS services in a highly dynamic scenario
Roadmap

- Motivation
- Introduction
- Related work
- Simulation design
- OPNET model
- Simulation results
- Conclusion
- Challenges and future work
- References

