
Detection of Denial of Service Attacks
Using

Echo State Networks
by

Kamila Bekshentayeva

B. Sc., Pennsylvania State University, 2015

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Applied Science

in the
School of Engineering Science
Faculty of Applied Sciences

© Kamila Bekshentayeva 2021
SIMON FRASER UNIVERSITY

Summer 2021

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Kamila Bekshentayeva

Degree: Master of Applied Science

Title: Detection of Denial of Service Attacks Using
Echo State Networks

Committee: Chair: Ivan Bajic
Professor, Engineering Science

Ljiljana Trajković
Supervisor
Professor, Engineering Science

Mirza Faisal Beg
Committee Member
Professor, Engineering Science

Uwe Glässer
Examiner
Professor, Computing Science

ii

Abstract

Denial of Service and Distributed Denial of Service attacks are major threats to commu-
nication security. These cyber attacks are evolving and becoming more difficult to identify
and, hence, a number of detection approaches have been proposed. Various machine learning
techniques have proved useful in detecting network intrusions. We apply echo state networks
to detect known DoS and DDoS attacks. Echo state networks are a reservoir computing ap-
proach to train recurrent neural networks. The reservoir in the echo state networks serves as
a memory and as a nonlinear high dimensional expansion of the input. The performance of
echo state network models depends on settings of reservoir hyperparameters: input scaling,
spectral radius, leaking rate, size and sparsity of the reservoir, and distribution of nonzero
elements. The most important features are selected using an extra-trees classifier. We use
network intrusion and Internet routing datasets. We compare echo state network models
to bidirectional long short-term memory, one of the widely used recurrent neural networks,
and evaluate their performance based on accuracy, F-Score, false alarm rate, and training
time.

Keywords: Machine learning, supervised learning, classification, recurrent neural networks,
reservoir computing, echo state networks, network anomalies, network intrusion detection,
(distributed) denial of service attacks

iii

Dedication

Dedicated to Rafael, Emilia, and Simon.

iv

Acknowledgements

Working on this Thesis would not have been possible without the support and inspiration
I received on the way to completing my Master’s degree.

I would like to express my gratitude to my Senior Supervisor Dr. Ljiljana Trajković for
her guidance, patience, and time. She has always been inspiring me with her hard work,
immense knowledge, and expertise. I am very grateful for her encouragements and hours
she invested in my research work.

I would like to thank my committee members Prof. Faisal Beg and Prof. Glässer for the
knowledge that I have received in their classes that were influential in selecting the topic
for my research. I would also like to thank them for providing valuable and constructive
feedback when reviewing my Thesis.

I am extending my gratitude to Prof. Ouldooz Baghban Karimi, late Prof. Steve Whit-
more, Michael Hegedus, and Michael Sjoerdsma. I enjoyed being a TA for the classes you
were teaching.

I would like to thank the professors of CMPT 726: Ke Li and Greg Mori. I applied ma-
chine learning knowledge that I acquired from this course in my Thesis. I am also thanking
my team: Matthew Canute, Young-min Kim, Donggu Lee, and Adriena Wong.

Many thanks also go to my colleagues, volunteers, visitors and past members in Commu-
nication Networks Laboratory at Simon Fraser University: Zhida Li, Ana Laura Gonzalez
Rios, Soroush Haeri, Professor Sorrentino, Maheeppartap Singh, Guangyu Xu, and Alfonso
Diaz Alonso for their support during my graduate study.

I would also like to extend my gratitude to friends I met throughout this journey:
Tatyana Mozgacheva, Sadika and Veso Jungic, Maheeppartap Singh, Daria Sergienko, Mu-
bina Sarwar, Aigerim Shilibekova, Anna Shatayeva, Neha Sharma, Elif Erdermli, Aisuluu,
and Yunduz, who have been emotionally supportive and inspiring in countless ways.

My immense gratitude goes to my husband Rafael and to our parents. I do not believe I
would be able to complete my degree without their understanding and constant support in
helping me balance the academic and family life. Zhanybek, Irina, and Svetlana Yakovlevna,
I will never have enough words to express my gratitude for taking care of Emilia when I
was away. Gulzada, Umirbek, and Eric thank you for your unconditional love and support.
Emilia and Simon, you are our constant inspiration and all the efforts and accomplishments
are dedicated to you.

v

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Overview of Denial of Service and Distributed Denial of Service Attacks . . 1
1.2 Types of DoS and DDoS Attacks . 3
1.3 DoS and DDoS Detection Methods and Anomaly-Based Detection 5
1.4 Overview of Machine Learning . 7
1.5 Machine Learning Algorithms for Network Anomaly Detection 8
1.6 Research Contributions . 10
1.7 Organization of the Thesis . 10

2 Echo State Networks 12
2.1 Recurrent Neural Networks . 12

2.1.1 Long Short-Term Memory and Bidirectional Long-Short Term Memory 15
2.2 Reservoir Computing as a Paradigm for Training RNNs 17
2.3 Description of Echo State Networks . 19
2.4 Echo State Networks: Related Work . 21
2.5 Purpose and Hyperparameters of the Reservoir in ESNs 23
2.6 Finding Optimal Parameters in ESNs . 24
2.7 Output Feedbacks in ESNs . 27

3 CIC-IDS Datasets: CIC-IDS2017, CSE-CIC-IDS2018, and CIC-DDoS2019 28

vi

3.1 CIC-IDS2017 Dataset . 29
3.2 CSE-CIC-IDS2018 Dataset . 30
3.3 CIC-DDoS2019 Dataset . 30
3.4 Attacks and Features . 32

4 Border Gateway Protocol Datasets 37
4.1 Border Gateway Protocol . 37
4.2 Border Gateway Protocol Data Collections 37
4.3 Anomalies and Features . 38

5 Feature Selection, Performance Metrics, and Experimental Procedure 48
5.1 Feature Selection . 48
5.2 Performance Metrics . 50
5.3 Experimental Procedure . 54

5.3.1 Data Preprocessing: CIC-IDS Datasets 54
5.3.2 Data Preprocessing: BGP Datasets 57

5.4 Cross-Validation in ESN . 58

6 Performance Results 60
6.1 Performance of ESN Models with Balanced and Unbalanced Datasets . . . 62
6.2 Comparing Performance of ESN and Bi-LSTM in Detecting the Denial of

Service Attacks . 68

7 Conclusions and Future Work 71

Bibliography 73

Appendix A Figures: CIC-IDS and BGP Datasets 83

Appendix B Scripts for Detecting Anomalies Using CIC-IDS2017, CSE-
CIC-IDS2018, CIC-DDoS2019, and BGP Datasets 91

vii

List of Tables

Table 1.1 A taxonomy of DDoS attacks [3, 11] 4

Table 2.1 Key points and recommendations when selecting hyperparameters for
ESN reservoir . 25

Table 4.1 Examples of BGP Internet worms . 38
Table 4.2 Examples of major DDoS attacks . 39
Table 4.3 List of features extracted from BGP update messages 46
Table 4.4 Definition of volume and AS-path features extracted from BGP update

messages . 46

Table 5.1 Most relevant features and their importance for CIC-IDS datasets. Fea-
ture importance score in parentheses: decreased impurity weighted by
the probability of reaching the node 51

Table 5.2 Most relevant features and their importance: BGP datasets: Slammer,
Nimda, and Code Red I. Feature importance score in parentheses: de-
creased impurity weighted by the probability of reaching the node . . 52

Table 5.3 Most relevant features and their importance: BGP datasets: DDoS2019
and DDoS2020. Feature importance score in parentheses: decreased
impurity weighted by the probability of reaching the node 53

Table 5.4 Confusion matrix . 53
Table 5.5 Number of data points before resampling 55
Table 5.6 Number of data points after oversampling and undersampling 56
Table 5.7 Number of total, regular, and anomalous points in Slammer, Nimda,

and Code Red I datasets . 57
Table 5.8 Number of total, regular, and anomalous points in AWS 2019 and AWS

2020 datasets . 57

Table 6.1 ESN models and hyperparameters: deterministic reservoir weights W,
leaking rate (α), spectral radius (ρ(W)), and number of reservoir nodes
(Nz) . 62

Table 6.2 Number of data points in training and test sets 63

viii

Table 6.3 Performance of ESN models when evaluated using CIC-IDS2017 Wednes-
day, July 5, 2017 (unbalanced), CIC-CSE-IDS2018 Thursday, February
15, 2018 (unbalanced), CIC-CSE-IDS2018 Friday, February 16, 2018
(balanced), and CIC-DDoS2019 Saturday, January 12, 2019 (balanced) 64

Table 6.4 Number of data points after oversampling 65
Table 6.5 Number of data points after undersampling 65
Table 6.6 Performance of ESN models when evaluated using resampled CIC-

IDS2017 Wednesday, July 5, 2017 and CIC-CSE-IDS2018 Thursday,
February 15, 2018 datasets . 66

Table 6.7 Number of total, regular, and anomalous points in Slammer, Nimda,
and Code Red I datasets . 66

Table 6.8 Performance of ESN models when evaluated using BGP datasets: Slam-
mer, Nimda, and Code Red I . 67

Table 6.9 Number of total, regular, and anomalous points in DDoS2019 and
DDoS2020 datasets . 68

Table 6.10 Performance of ESN models: BGP DDoS2019 and DDoS2020 datasets
collected from RIPE and Route Views 69

Table 6.11 Performance of Bi-LSTM and ESN5 model based on accuracy, F-Score,
false alarm rate (FAR), and training time 70

ix

List of Figures

Figure 1.1 DDoS attacks include a victim, bots, a controller, and a real attacker. 2
Figure 1.2 DoS and DDoS attacks duration: 52% of all DoS and DDoS attacks

in 2019 lasted less than 15 min [8]. 3
Figure 1.3 Distribution of DDoS attacks by type: SYN attacks constitute ap-

proximately 80% of all DDoS attacks [9]. 3
Figure 1.4 A sudden upsurge in a number of packets per second may help de-

tecting whether the network is under attack using only one feature:
“average packets/second flow” (CSE-CIC-IDS2018, Friday, February
16, 2018). 5

Figure 1.5 An example of anomalies in a two-dimensional dataset. It includes
anomalous (O1, O2, O3) and regular (N1, N2) regions. 6

Figure 2.1 Sequential and recurrent structures of neural networks. The input of
a neural network with recurrent structure is flowing from a previous
state of a hidden layer and is circularly fed into the next state along
with the new input signal. 13

Figure 2.2 A repeating module of LSTM with four interracting neural network
layers. The main components: the cell state (indicated by the hori-
zontal line on top of a diagram), three gates (yellow bricks), vectors
(grey arrows), and pointwise operators (blue circles). 15

Figure 2.3 Module structure for the Bi-LSTM neural network. 16
Figure 2.4 Gradient-based (top) and RC-based (bottom) RNN training: x(n) is

input vector, z(n) is a vector of nodes activations, dE/dW is gradi-
ent of loss function E with respect to weights. The operator ∑(·)2

indicates the sum of squared error between the output and target
vectors. The optimal weights (W in, W , W out) that are being com-
puted are in bold. 18

Figure 2.5 A graphical representation of training the echo state network: input
x(n) ∈ RNx , input weights matrix Win ∈ RNx×Nz , reservoir acti-
vation z(n) ∈ RNz , reservoir weights matrix W ∈ RNz×Nz , output
y(n) ∈ RNy , output weights matrix Wout ∈ R(Nx+Nz)×Ny , labels
yt(n) ∈ RNy , and root mean-square error E(y, ytarget). 19

x

Figure 3.1 CIC-IDS2017: Average packet size. Color indicates flow labels. Size
shows average packet size. Hulk attack has the largest average packet
size. 29

Figure 3.2 CIC-IDS2017: Number of forward and backward packets. 30
Figure 3.3 CSE-CIC-IDS2018: Number of forward and backward packets. . . . 31
Figure 3.4 CSE-CIC-IDS2018: Average packet sizes. Color indicates flow labels.

Size shows average packet sizes. Benign packets have the largest av-
erage packet size. 31

Figure 3.5 CIC-DDoS2019: Number of forward and backward packets. 32
Figure 3.6 CIC-DDoS2019: Average packet size. Colors indicate flow labels. Size

of the circles shows the average size of packets. LDAP has the largest
packet size. 32

Figure 3.7 CIC-IDS2017: Average backward packet length. Heartbleed, Golden-
Eye, and Hulk have larger packet length compared to benign traffic. 34

Figure 3.8 CIC-IDS2017: Standard deviation of packet length. Benign packets
usually have high variation in length. 35

Figure 3.9 CIC-IDS2017: Average flow interarrival time (IAT) values are the
highest for GoldenEye, Hulk, SlowHTTPTest, and Slowloris. 35

Figure 3.10 CIC-IDS2017: Average duration of collected flows. 36
Figure 3.11 CIC-DDoS2019: ACK, SYN, and URG flag counts. SYN attacker

may bring down a network connection by requesting seemingly legit-
imate connections through a series of TCP requests with TCP SYN
and ACK flags set to 1. 36

Figure 4.1 Slammer (top), Nimda (middle), and Code Red I (bottom): Number
of BGP announcements. The red dotted line indicates two classes:
regular and anomaly. 40

Figure 4.2 DDoS2019-v2 collected from RIPE: Number of announced NLRI pre-
fixes (top), number of duplicate announcements (middle), and num-
ber of implicit withdrawals (bottom). The red dotted line indicates
two classes: regular and anomaly. 42

Figure 4.3 DDoS2019-v2 collected from Route Views: Number of announced
NLRI prefixes (top), number of duplicate announcements (middle),
and number of implicit withdrawals (bottom). The red dotted line
indicates two classes: regular and anomaly. 43

Figure 4.4 DDoS2020 collected from RIPE: Number of BGP announcements
(top) and number of announced NLRI prefixes (bottom). The red
dotted line indicates two classes: regular and anomaly. 44

xi

Figure 4.5 DDoS2020 collected from Route Views: Number of BGP announce-
ments (top) and number of announced NLRI prefixes (bottom). The
red dotted line indicates two classes: regular and anomaly. 45

Figure 5.1 Resampling: a widely adopted technique for dealing with unbalanced
datasets. It consists of removing samples from the majority class
(undersampling) or adding more samples from the minority class
(oversampling) [131]. 56

Figure 5.2 Illustration of the 10-fold cross validation. The original training dataset
is partitioned into 10 folds. Each fold is used once as a validation set
during the training process. The final estimation is the average num-
ber of the 10 validation results. 59

Figure 6.1 ESN structure. Shown are: input X , reservoir state Z, and output Y;
trainable matrix Wo; Win and Wfb are randomly initialized matrices;∫

represent non-linear transformation; “n−1” indicates the unit delay.
Wfb and adjacent “n−1” unit delay are optional feedback. 62

xii

Chapter 1

Introduction

1.1 Overview of Denial of Service and Distributed Denial of
Service Attacks

Denial of Service (DoS) attacks are attempts of an attacker to make services unavailable
to legitimate users. Distributed Denial of Service (DDoS) attacks combine the resources of
multiple compromised end systems in a coordinated way to exhaust resources of a target
system. DoS and DDoS are employed by attackers to overload a network’s infrastructure
thus causing disruptions and outages to companies and organizations. An attacker may be a
cyber criminal, a hacktivist, or a user who pursues financial gain, prestige, or other personal
goals from the conducted attacks [1].

DoS and DDoS attacks utilize the best-effort Internet architecture, which was origi-
nally designed for functionality without initial security concerns. Even though a victim’s
end system may be properly secured, it is still exposed to cyber threats because of the
interdependent nature of Internet [2].

Malware bots are devices that are affected by malware while their collections are known
as botnet. DDoS attacks, illustrated in Fig. 1.1, include a victim (target host), bots (daemon
agents), a controller (handler), and a real attacker (the mastermind behind the attack) [3, 4].

The following steps [3] are performed to initiate a DDoS attack:

• Selection of agents: An attacker manually or automatically selects agents and exploits
vulnerabilities in their machines.

• Compromise: The attack code is planted and some measures are taken by the attacker
to prevent the planted code from being discovered and deactivated. Intermediate layers
between bots and victims may be utilized in order to impede the traceback.

• Communication: The attacker communicates with a single or multiple controllers via
Internet Control Message Protocol (ICMP), Transmission Control Protocol (TCP),
or User Datagram Protocol (UDP) to control further processes.

1

Figure 1.1: DDoS attacks include a victim, bots, a controller, and a real attacker.

• Attack: At this step, the attacker launches the attack and is able to modify features
of the attack such as duration, time-to-live, and port numbers.

The first documented DDoS attack was launched in August 1999 using a tool called
Trinoo. It targeted a computer in University of Minnesota through at least 227 bots [4]. The
first large-scale DDoS attack executed by Mafiaboy from Canada affected Yahoo!, Amazon,
Buy.com, CNN, Dell, FIFA, and eBay, leaving them inaccessible, slow, or dysfunctional. It
lasted one week and captured world’s attention in early 2000. In late 2016, a novel strategy
was introduced to amplify the effect of DDoS attacks. It utilized a network of Internet
of Things (IoT). (IoT are the Internet-connected devices such as doorbells, light switches,
thermometers.) One of the known examples of the DDoS attacks that involved botnets of
IoT devices included the Mirai botnet that was responsible for generating one of the largest
DDoS attacks and compromised thousands of insecure IoT devices affecting Reddit, Etsy,
Spotify, CNN, and the New York Times [6]. Mirai also took down a major DNS provider
Dyn via massive DDoS that exceeded 1 Tbps.

A massive (1.35 Tbps) DDoS attacks based on artificial intelligence (AI) self-learning
algorithms occurred in the beginning of 2018 and targeted the developer platform Github [5].
Another recent attack in 2019 targeted Amazon Web Services (AWS) causing eight hours
of outage and interrupted services and leaving thousands of customers unable to reach
cloud services, websites, and applications. The largest (2.3 Tbps) attack of all time - DDoS
attack occurred in February 2020, affected Amazon cloud services, and caused three days
of elevated threat. These attacks illustrated that DoS and DDoS attacks are evolving and
becoming not only more sophisticated and devastating but also more difficult to detect and
prevent, especially when using traditional countermeasures.

Every DDoS attack on average costs enterprises over $2M USD [7]. Attackers are en-
hancing their commercial tactics and advertising their malicious services both on the dark
web and on social media channels. Reports [8, 9, 10] suggest that the number of attacks

2

may double by 2023. According to the report [8], 52% of all DoS and DDoS attacks in 2019
lasted less than 15 min (Fig. 1.2) with the longest attack lasting 509 hours. Distribution of
popular DDoS attacks by type is shown in Fig. 1.3.

Figure 1.2: DoS and DDoS attacks duration: 52% of all DoS and DDoS attacks in 2019
lasted less than 15 min [8].

Figure 1.3: Distribution of DDoS attacks by type: SYN attacks constitute approximately
80% of all DDoS attacks [9].

1.2 Types of DoS and DDoS Attacks

Generalizing attacks into categories helps design counter strategies for each category. A tax-
onomy of DDoS attacks is presented in Table 1.1. DDoS attacks may belong to: volumetric
application/network level floods, amplification and reflection, network and application pro-
tocol layer attacks, and multivector attacks.

Volumetric attacks (floods), measured in gigabits per second, use a voluminous traffic
to crash a target such as DNS or web server. A botnet floods a victim with requests that

3

Table 1.1: A taxonomy of DDoS attacks [3, 11]

Degree of automation

Manual

Semiautomatic Direct
Indirect

Automatic

Exploited vulnerability

Flood attack Application level flood
Network level flood

Amplification and reflection attack Smurf attack
Fraggle attack

Protocol exploit attack
Malformed packet attack

Attack network used
Attacks based on agent handler network

IRC botnet based
Peer to peer network based

Attack rate dynamics
Continuous

Variable Fluctuating
Increasing

Victim type

Host
Resource
Network

Application

Impact Disrupting
Degrading

Agent set Constant agent set attacks
Variable set attacks

may not be properly formatted thus consuming victim’s bandwidth with ICMP or UDP
packets.

UDP is a simple connectionless transport layer protocol. In order to establish faster
connections, UDP does not require the source and destination to establish an end-to-end
connection for transmission. This connectionless nature of UDP is utilized by attackers for
amplification and reflection DDoS attacks, which often occur together. An attacker directs
requests to server spoofing the source address (inserting a false source IP address that
belongs to a victim). The amplified responses from the server are reflected to the victim.
This type of the DDoS attacks include Domain Name System (DNS) and Network Time
Protocol (NTP) amplifications.

Network protocol attacks or (TCP) state exhaustion attacks, measured in packets per
second, usually target firewalls, load balancers, and servers. In state exhaustion DoS attacks,
an attacker exploits weakness within a system’s memory allocation mechanism to take up
all memory or state resources. An attacker may exploit vulnerabilities of TCP and UDP
transport layer protocols. For example, using a TCP’s three-way handshake, an attacker

4

sends the initial SYN to establish connection with a receiver that keeps connection open
waiting to receive further packets.

The main focus of application layer attacks is to monopolize SMTP, HTTP, or DNS
services. An attacker may launch a slow POST operation or perform an HTTP GET flood
thus overwhelming the HTTP server until the session times out.

The volume of the involved traffic often defines the difference between various types of
attacks. While network and application level flood attacks are easy to identify by the large
volume they take to overwhelm the network services, application layer attacks are more
challenging to detect because the requests seem to be legitimate and they cause low volume
of traffic.

Multivector attacks employ a combination of various types of DoS and DDoS attacks.
They may be launched as a flood and evolve into other type of attacks [1].

1.3 DoS and DDoS Detection Methods and Anomaly-Based
Detection

The continuous growth of vulnerable and connected end systems (computers, smartphones,
IoT devices, self-driving cars) increase chances of successful DDoS attacks [1]. Due to the
development of new attacks, various of DoS and DDoS detection, mitigation, and prevention
techniques have been designed.

The first step in countering an attack is detecting the onset of an attack. Older single
source attacks or volumetric attacks are easily detected by the majority of defence systems.
As shown in Fig. 1.4, one could simply identify a sudden surge in a number of packets and,

Figure 1.4: A sudden upsurge in a number of packets per second may help detecting whether
the network is under attack using only one feature: “average packets/second flow” (CSE-
CIC-IDS2018, Friday, February 16, 2018).

thus, successfully detect whether the network is under attack. However, the problem is not

5

only in determining whether the network is under attack but also in accurate classification:
whether a request for each source IP and port traffic flow is an anomaly or a regular event
because regular traffic should not be blocked in the midst of a DoS attack. The objectives of
attack detection are high accuracy, low false alarm rate, and faster detection time. Methods
to detect DoS and DDoS attacks include poll-based monitoring and detection, flow-based
network parameter detection, network mirrors and deep packet inspection, and anomalies-
based detection [1].

Anomaly-based detection has been extensively used in machine learning, statistics, in-
formation theory, as well as application domains such as network intrusion detection, fraud
detection, fault or damage detection, and intelligent monitoring and forecasting in safety
critical systems [12, 13, 14]. Anomaly detection is identifying the patterns in data that do
not conform to expected behavior. There are three types of anomalies: point anomalies,
contextual anomalies, and collective anomalies [13]. Point anomaly is a data instance that
is considered anomalous compared to the remaining observations. Contextual anomaly, also
known as conditional anomaly, is an anomalous data instance defined in a specific con-
text. Collective anomaly is a collection of related anomalous data instances. The individual
outliers in a collective anomaly may not be considered anomalous. Examples of anoma-
lies are shown in Fig. 1.5 using a simple two-dimensional dataset. It shows anomalies (re-
gions O1, O2, O3) with points that lie far away from two regular regions (N1, N2). Factors
that make anomaly detection a challenging task include difficulty in defining boundaries
of normal regions, varying notions of anomaly for various application domains, adapting
anomalous observations to appear as normal by adversaries, and lack of labeled data for
training.

Figure 1.5: An example of anomalies in a two-dimensional dataset. It includes anomalous
(O1, O2, O3) and regular (N1, N2) regions.

6

Intrusion detection is one of the applications of anomaly detection. Two types of in-
trusion detection systems are host-based and network-based [15]. Host-based intrusion de-
tection systems treat intrusions as collective anomalies (subsequences) where the nature of
data is considered to be sequential. Network-based intrusion detection deals with the point
anomalies in network data [12].

1.4 Overview of Machine Learning

Machine learning, defined as “the study of algorithms that improve automatically through
experience” [17], involves the design of learning algorithms that optimize their performance
as additional data are observed to solve a specific task. The history of machine learning
and pattern recognition is long and successful. While the concept of machine learning is
introduced in “Computing Machinery and Intelligence” by Alan Turing in 1950s [18], the
applications of pattern recognition to the discoveries of regularities in data go back to the
16th century [19]. The field of machine learning is one of the fastest developing fields due
to growing computing power, availability of distributed and cloud computing, and ability
to store and process data on massive scales. Machine learning and pattern recognition have
been showing great promise and practical value in solving complex problems and have been
adopted in various domains. Applications of machine learning include image recognition to
identify specific shapes and colors (faces and fingerprints recognition), security heuristics
to distinguish between attack and regular patterns (network intrusion detection systems),
generating rules for behavior analytics (marketing and sales), and object recognition and
prediction (autonomous driving) [20].

A large set of observations N = {x1, x2, ..., xN } called a training set is employed for
obtaining optimal parameters of an adaptive model. An identity of a corresponding obser-
vation point xi is known as a label or a target ytarget

i [19]. A machine learning algorithm
generates an output as a result of mapping input vector x to an output vector y using a
function y(x), which is determined during the training (learning) phase. After the model is
trained, a test set is used to evaluate the ability of the model to correctly categorize new
examples different from the observations contained within the training set. This process is
known as generalization.

Machine learning includes supervised, unsupervised, and reinforcement learning paradigms.
In supervised learning, the training data contain the input data points with their corre-
sponding labels. Supervised learning includes classification (logistic regression, classification
trees, support vector machines, random forests, artificial neural networks) and regression
(linear regression, decision trees, Bayesian networks, fuzzy classification, artificial neural
networks) [20]. The goal of classification is to predict one of a discrete set of labels. The
classifier labels the observations as either an anomaly or a regular instance. The classifier
models are usually trained using datasets that contain fewer samples of anomaly class. The

7

performance of the classifier relies on the ability of the model to correctly predict the class.
The goal of regression is to predict a value within a continuous interval. Examples of linear
regression are a linear function of input variables and linear combinations of a fixed set of
nonlinear functions of input variables. The latter can be nonlinear with respect to the input
while being linear functions of the parameters [19].

In unsupervised learning, the training data do not include any labels. The purpose of
such machine learning technique is to discover observations or clusters of observations with
similar behavior. Unsupervised learning employs clustering (k-means, hierarchical, Gaussian
mixture models, genetic algorithms, artificial neural networks) and dimension reduction
(principal component analysis, tensor decomposition, multidimensional statistics, random
projection artificial neural networks) [20].

In reinforcement learning [21], a sequence of actions is performed by an algorithm in a
given environment to maximize a cumulative reward. The algorithm is not given examples
of suitable outputs and is searching for the optimal ones by trial and error. Basic reinforce-
ment process may be modeled as a Markov Decision Process (MDP) that includes a set
of environment and agent states, set of agent actions, a probability of transition from one
state to another, and immediate reward after transition.

Most common machine learning approach to classify network intrusions is supervised
learning: classification algorithms are utilized to learn classes of regular and anomalous
traffic, and detect irregularities by mapping input observations to discrete output values.

1.5 Machine Learning Algorithms for Network Anomaly De-
tection

Various network anomaly detection systems [22, 23, 24, 25, 26] have been proposed to
address a dynamically changing landscape of cyber threats. They employed diverse machine
learning algorithms [27, 28] such as convolutional neural networks, recurrent neural networks
(RNN) [29, 30], deep belief networks, and autoencoders that offered promising performance
for anomaly detection [31, 32, 33].

A cascade-structured architecture based on three-step methodology (data augmenta-
tion, hyperparameters optimization, and ensemble learning) had been proposed [23]. The
approach optimized intrusion detection with neural networks and achieved high classifi-
cation accuracy. Combination of supervised learning and feature selection algorithms was
employed to devise novel intrusion detection solutions that addressed the high false alarm
rate by classifying previously unobserved network traffic patterns [24]. Reported results
demonstrated that the proposed anomaly-based intrusion detection system (IDS) employ-
ing a neural network with a wrapper feature selection outperformed other models. A deep
neural network model with four hidden layers yielding high accuracy had been also in-
troduced [34]. RNN-based IDS was proposed for binary and multiclass classification [25].

8

The performance of the system yielded higher accuracy when compared to traditional ap-
proaches that employ J48 algorithm, artificial neural network, random forest, and support
vector machine. The proposed systems had been evaluated using KDD Cup 99 [35] and
NSL-KDD [36] datasets.

An extensible framework was designed for testing machine learning algorithms in detect-
ing DDoS attacks [26]. The framework utilized fully automated learning approach (without
human interaction) that allowed detecting zero-day attacks. Before applying artificial neu-
ral network (ANN), the framework performed data collection and traffic filtering. Load and
traffic probes were installed on a victim’s site that exported usage data and traffic samples
to the server. The management interface was employed to retrieve status and make changes
to the system. The proposed solution achieved comparable results in detecting attacks not
based on the traffic but instead from monitoring the resources usage within the system.
Data collection was performed at various levels of the network stack and was fed to the
training algorithm.

Support Vector Machine (SVM), a widely used machine learning algorithm, was em-
ployed to identify Border Gateway Protocol (BGP) anomalies [37, 38, 39, 40]. Various
types of supervised RNN such as long short-term memory (LSTM) [30], gated recurrent unit
(GRU) [29, 41], and stack bidirectional LSTM [42] had been applied for data classification
and intrusion detection in network traffic. The main disadvantages of conventional machine
learning techniques are long training time and computational complexity. In contrast, broad
learning system (BLS) employed fewer hidden layers, relied on calculating pseudo-inverse
during the training process, and required comparably shorter training time when used for
function approximation, time series forecast, and image recognition [43, 44, 45]. BLS, when
employed for network anomaly detection, was compared to RNN [46, 47] and SVM [40]
showing competitive performance. Various BLS models, such as BLS, RBF-BLS, BLS with
cascades of mapped features and cascades of enhancement nodes with and without incre-
mental learning, were evaluated using CIC-IDS2017 and CSE-CIC-IDS2018 datasets [48].

Echo state networks (ESNs), a reservoir computing approach that uses sparse neural
networks, was employed in online anomaly detection framework that was implemented on
mote-class devices (computers with limited resources in terms of memory size, processing
speed, wireless communication throughput, and power budget) [49]. The approach showed
comparable accuracy to PC-based intrusion detection implementation. ESN was proved to
detect a wider variety of anomalies with lower false alarm rate when compared to rule-
based anomaly detection techniques. It was also shown that ESN was a fast and simple
approach that was not too resource intensive to be implemented on motes for pattern
recognition alongside a fully-functional real-time environmental monitoring. Three neural
networks models (feed-forward neural network, LSTM, ESN) were trained and tested using
CSE-CIC-IDS2018 network dataset. Additionally, the models were tested using a dataset

9

that was generated by employing a modified HULK attack script. ESN demonstrated a
comparable performance in terms of accuracy and F-Score [50].

1.6 Research Contributions

Various machine learning approaches were employed for detecting network anomalies [37,
38, 39, 46, 47, 40, 48]. Previous research findings were extended by including ESNs as a
feasible reservoir computing approach to identify network intrusions by classifying regular
and anomalous instances.

We have selected synthetically generated CIC-IDS datasets: CIC-IDS2017, CSE-CIC-
IDS2018, and CIC-DDoS2019 that reflect the characteristics of diverse regular and anoma-
lous current network trends. Important properties and features of DoS and DDoS attacks
are visualized using Tableau 2019.4. Border Gateway Protocol (BGP) datasets that were
acquired from BGP trace collectors contain worms that may cause DoS and DDoS. We also
considered the BGP data collected over periods of large DDoS attacks that targeted Ama-
zon Web Services in 2019 and 2020. In order to improve classification accuracy, we decrease
redundancy in data by selecting appropriate features employing extra-trees, a tree-based
ensemble method. Furthermore, we compare the performance of classification models using
both unbalanced and balanced datasets.

We provide an overview of DoS and DDoS attacks, past network intrusion detection
systems and algorithms, description of recurrent neural networks and reservoir computing,
characterization of ESNs, the hyperparameters of a reservoir, and review of ESNs related
work. By varying the ESN hyperparameters, we generate ESN models to evaluate the in-
fluence of the ESN reservoir configuration. The 10-fold cross-validation is employed for
model selection. We compare the best ESN model to bidirectional long short-term memory
(Bi-LSTM), a widely used recurrent neural network and evaluate both based on accuracy,
F-Score, false alarm rate, and training time.

The experiments are performed on Windows 10 64-bit Operating System, and Intel
Corei7-8650U CPU at 1.9-2.11 GHz. We use Python 3.8 with the following libraries and
packages: numpy, pandas, scipy, and sklearn. We employ PyTorch for Bi-LSTM model.

1.7 Organization of the Thesis

The Thesis is organized as follows: We first describe Denial of Service and Distributed
Denial of Service attacks, the methods of their detection, and provide an overview of ma-
chine learning. Recurrent neural networks, reservoir computing, and ESNs are introduced in
Chapter 2. We describe the ESN reservoir hyperparameters and provide details about ESN
output training. The description of three CIC-IDS datasets considered in this Thesis and
characterization of the collected attacks and their features are given in Chapter 3. Chapter
4 contains the description of the BGP, BGP data collection from RIPE and Route Views,

10

generated BGP datasets, and the anomalous events and their features. In Chapter 5, we
describe the employed feature selection algorithm, performance metrics, and experimental
procedure. Results, including the comparison with Bi-LSTM model, are given in Chapter
6. We conclude with Chapter 7. The list of references is provided in the Reference Section.
The scripts for detecting anomalies are provided in the Appendix.

11

Chapter 2

Echo State Networks

2.1 Recurrent Neural Networks

Artificial neural networks are efficient models for problems that are challenging to address
using classic machine learning approaches. One of the most commonly applied neural net-
works is feed-forward neural network known as multilayer perceptron. Feed-forward neural
networks model [51, 52, 53], described as a series of functional transformations, may be
unable to solve cases where a time-series inputs are processed (Fig. 2.1(a)). Recurrent Neu-
ral Networks (RNNs) have been introduced specifically for sequential data [54]. RNNs also
belong to a class of artificial neural networks and are one of the widely used approaches to
detect anomalies in network datasets.

A simple RNN shown in Fig. 2.1(b) has an input node, a hidden layer (associated with
a weight), and an output node. The output may be represented as [55]:

y = WLhL, (2.1)

where y is an output layer, WL are model parameters of the output layer, and hL is the
last hidden layer. Unlike the case of neural networks with sequential structure shown in
Fig. 2.1(a), the input of RNN is flowing from a previous state of a hidden layer and is fed
into the next state along with the new input signal at each step, as seen in the unrolled
RNN in Fig. 2.1(c).

RNNs often employ backpropagation algorithm for training. Backpropagation is an ef-
ficient dynamic programming algorithm for computing gradients. It consists of two stages:
forward pass and backward pass. In forward pass, the values of all intermediate variables
such as pre- and post-activations (z1, . . . , zL, h1, . . . , hL) are computed:

hL = f(zL), (2.2)

12

Figure 2.1: Sequential and recurrent structures of neural networks. The input of a neural
network with recurrent structure is flowing from a previous state of a hidden layer and is
circularly fed into the next state along with the new input signal.

where hL is the last hidden layer of total n hidden layers, f(·) is known as an activation
function, and zL is the last pre-activation layer:

zL = WL−1hL−1 . . . W1h1, (2.3)

where WL−1, . . . , WL−n are model parameters of intermediate hidden layers hL−1 . . . hL−n:

hL−n = f(WL−(n+1)hL−(n+1)), (2.4)

with h1 as a first hidden layer:

h1 = f(z1), (2.5)

where z1 is the first pre-activation layer:

z1 = W0x, (2.6)

where W0 are input weights and x is an input layer.
In backward pass, gradients of the loss function L(y) are computed first with respect

to all later layers, starting from the last layer. The eventual goal of the backward pass is to
compute gradient of the loss function with respect to first layer’s weights and biases. The
partial derivative of the loss with respect to the post-activations of the last hidden layer is:

∂L

∂hL
:= ∂y

∂hL

∂L

∂y = WT
L

∂L

∂y . (2.7)

13

The partial derivative of the loss with respect to the pre-activations of the lth hidden layer:

∂L

∂zl
:= ∂hl

∂zl

∂L

∂hl
=


f ′(zl,1) 0 · · · 0

0 f ′(zl,2) · · · 0
...

...
0 0 · · · f ′(zl,n)


∂L

∂hl
. (2.8)

The partial derivative of the loss with respect to the post-activations of the lth hidden layer
is:

∂L

∂hl
:= ∂zl+1

∂hl

∂L

∂zl+1
= WT

l

∂L

∂zl+1
. (2.9)

The partial derivative of the loss with respect to the weights between lth layer and the
preceding l + 1 hidden layer is:

∂L

∂wT
l,j

:= ∂zl+1
∂wT

l,j

∂L

∂zl+1
=
(
0 · · · 0 hl 0 · · · 0

) ∂L

∂zl+1
. (2.10)

For example, to compute the partial derivative of the loss with respect to the weights of the
first hidden layer is:

∂L

∂wT
0,j

:=
(
0 · · · 0 x 0 · · · 0

) n∏
l=1

(
f ′(zl,1) 0 · · · 0

0 f ′(zl,2) · · · 0
...

...
0 0 · · · f ′(zl,n)

WT
l

)
∂L

∂y
.

(2.11)
If the activation function f(·) is a logistic sigmoid or hyperbolic tangent, the derivatives

of the large pre-activations are close to zero. The small entries f ′(zl,n) in (2.11) multiplied
with the remaining terms resulting in a small or “vanishing” gradient. If there are many
layers, the magnitude of the gradient decays exponentially as the number of such layers
grows. Vanishing gradient problem may cause the network to stop updating the weights
during training. Selecting a different activation function such as rectified linear unit (ReLU)
or softplus may help creating a more stable model.

In the opposite case, when the weights W are large, the gradient may “explode”. As-
suming we use a non-saturating activation functions such as ReLU or softplus, if there are
many layers whose weight matrices’ singular values are large, the magnitude of the gradient
grows exponentially with the increasing number of such layers.

Vanishing and exploding gradients are encountered in backpropagation process of the
simplest RNN models. Solutions that treat the gradient problems by efficiently coping with
long-term dependencies include long short-term memory (LSTM) [56] and gated recurrent
unit (GRU) [29]. Echo state networks (ESNs) [57] do not employ gradient-based iterative op-

14

timization algorithms such as backpropagation to compute the optimal weights. Therefore,
they do not encounter vanishing or exploding gradient problems.

2.1.1 Long Short-Term Memory and Bidirectional Long-Short Term Mem-
ory

Vanilla RNN architectures may perform poorly with the data that have long-time gaps [137].
The main advantages of LSTM is that while retaining memory, it allows the model to be
trained over long sequences. LSTM employs four gates in order to overcome the gradient
problems [138].

Figure 2.2: A repeating module of LSTM with four interracting neural network layers. The
main components: the cell state (indicated by the horizontal line on top of a diagram), three
gates (yellow bricks), vectors (grey arrows), and pointwise operators (blue circles).

LSTM is composed of repeating modules chained together. The main components of one
repeating module shown in Fig. 2.2 are the cell state and LSTM gates that have the ability
to control the information that may be added to or removed from the cell state. The lines
in figure indicate vectors while blue circles represent pointwise operations. Sigmoid layers
generate values between 0 and 1 that denote the amount of information to be passed to the
rest of the network. Steps 1, 2, and 3 [139] are described as:

1. A sigmoid layer called forget gate ft decides what information may be kept or discarded
by accepting its inputs (output of the previous hidden state h(t − 1) and a new input
x(t)) and applying sigmoid activation. The output of the forget gate is:

ft = σ(Wf [ht−1, x(t)] + bf). (2.12)

2. A sigmoid layer called input gate it determines what new information is added:

it = σ(Wi[ht−1, x(t)] + bi). (2.13)

15

A vector C̃t of new candidate values to be added to the current state is created after
tanh is applied:

C̃t = tanh(Wc[ht−1, x(t)] + bc). (2.14)

Then, the current cell state Ct is updated as:

Ct = ft ∗ C(t − 1) + it ∗ C̃t. (2.15)

3. The sigmoid output gate layer ot has a returning value of:

ot = σ(Wo[ht−1, x(t)] + bo) (2.16)

that is multiplied by a vector of all possible values between -1 and 1 generated after
applying tanh activation:

ht = ot ∗ tanhC(t). (2.17)

The parameters W∗ and b∗ represent the weight and the bias, respectively [139].
Bidirectional LSTM neural network is one of the variants of LSTM that has two hidden

layers of opposite directions connected to the same output [140]. Bi-LSTM aims to improve
the performance of a model for sequence classification tasks due to its ability to utilize
additional information: the output obtains information from past (backward or negative
time direction) and future (forward or positive time direction) states at the same time [42].
Therefore, having timesteps of the input sequence, Bi-LSTMs employ two LSTMs instead
of one as the input sequence. The general structure of Bi-LSTM is shown in Fig. 2.3.

Figure 2.3: Module structure for the Bi-LSTM neural network.

Typically, including future information introduces delays in standard RNN architectures.
In Bi-LSTMs, forward and backward cell states are not interacting and, therefore, no delays
are associated when using future information. Bi-LSTM may be trained using algorithms
similar to RNN because the two directional layers are not connected.

16

2.2 Reservoir Computing as a Paradigm for Training RNNs

Reservoir computing (RC) is an approach to supervised training of RNNs that avoids the
gradient related problems. Reservoir is a randomly connected network of nodes (nodes,
neurons, and units are used interchangeably) that may be excited by the input x(n) of
the network. The reservoir weights are not changed by training. Most common reservoirs
are echo state networks (ESNs) in machine learning and liquid state machine (LSM) in
computational neuroscience. They both share the idea that it is sufficient to train only the
memoryless output weights leaving out the supervised adaptation of input and reservoir
weights (reservoir, internal, and recurrent weights are used interchangeably). With this ap-
proach, the difficulties of training RNNs, such as discontinuous changes in behavior caused
even by small changes due to cyclic dependencies in RNNs, may be prevented while achieving
adequate performance in various tasks. Other problems such as non-convergence stemmed
from classical gradient descent RNN approach may be avoided when employing ESN and
LSM methods thus decreasing computational complexity and costs [58]. Reservoir in ES-
Ns/LSM is a linear combination of the reservoir activations. Because there are no cyclic
dependencies between the trained output connections, training an ESN/LSM becomes a
simple linear regression task. The difference between gradient-based and RC-based RNN
training is shown in Fig. 2.4. Weights in gradient based training are updated iteratively
while in ESN the values of the output weights Wout are calculated in a single iteration.

The recurrent networks in RC are usually discrete-time networks of non-linearly acti-
vated nodes with the following reservoir state activation equation:

z(n) = f(x(n)Win + z(n − 1)W + y(n − 1)Wfb), n = 1, ..., N, (2.18)

where z(n) ∈ RNz is a vector of reservoir node activations at a time step n, f(·) is the
node activation function (usually the tanh(·) applied elementwise), Win ∈ RNx×Nz is a
randomly generated input weight matrix, x(n) ∈ RNx is an input, W ∈ RNz×Nz is a
randomly generated sparse reservoir weight matrix, Wfb ∈ RNz×Ny is an optional output
feedback weight matrix, and y(n) ∈ RNy is the network output (typically, Ny = 1). Discrete
time n = {1, ..., N} with N being the total number of data points in the training set, R is a
set of real numbers, Nx, Nz, and Ny are numbers of input, reservoir, and output nodes. [59].
Bias, that may be easily implemented by adding an additional input with a constant value
of 1 and a randomly generated column in the input weights matrix, is omitted in (2.18)
for simplicity. The output of the network is a combination of the reservoir state and input,
defined as:

y(n) = g([z(n); x(n)]Wout), n = 1, ..., N, (2.19)

where Wout ∈ R(Nx+Nz)×Ny is the learned output weight matrix, g(·) is the output acti-
vation function (commonly tanh(·) or the identity function when using linear regression)

17

Figure 2.4: Gradient-based (top) and RC-based (bottom) RNN training: x(n) is input vec-
tor, z(n) is a vector of nodes activations, dE/dW is gradient of loss function E with respect
to weights. The operator ∑(·)2 indicates the sum of squared error between the output and
target vectors. The optimal weights (W in, W , W out) that are being computed are in bold.

applied componentwise, and “;” stands for a vertical concatenation of vectors (or matrices).
The standard supervised training in case of ESN starts with the training input sequence
x(n) that is fed to the reservoir with reservoir’s initial state equal to zero. The internal
states are collected over the entire training period. Output weights Wout are then derived
as the linear regression weights of the label ytarget(n).

A new perspective on RC [58] states that the reservoir (recurrent part) is trained differ-
ently than the output, moving away from the traditional view that only the output is trained
while the reservoir remains unchanged. The partition of reservoir and output training cre-
ates ground for two independent research directions: reservoir training and output training.
The best results may be combined to test different types of RNN models and supervised,
unsupervised, reinforcement, and biologically inspired adaptation techniques. The original

18

Figure 2.5: A graphical representation of training the echo state network: input x(n) ∈ RNx ,
input weights matrix Win ∈ RNx×Nz , reservoir activation z(n) ∈ RNz , reservoir weights
matrix W ∈ RNz×Nz , output y(n) ∈ RNy , output weights matrix Wout ∈ R(Nx+Nz)×Ny ,
labels yt(n) ∈ RNy , and root mean-square error E(y, ytarget).

approach is also used for its simplicity and effectiveness. Original and modern paradigms of
RC were employed for temporal pattern recognition and classification, time series predic-
tion, and controlling of nonlinear systems [58]. Reservoirs resemble the spatial encoding of
the temporal information in the brain that was used for sensory-motor sequence and natural
language learning models [60, 61]. Other RC applications include speech and handwriting
recognition [62, 63, 64], robot motor control [65], financial forecasting [68, 66, 67, 69], and
medical applications [71, 70].

2.3 Description of Echo State Networks

ESNs are a practical, conceptually simple, and computationally non-expensive to implement
reservoir computing approach [57]. The ESN approach where the reservoir is generated
randomly and only the output is trained without the need to fully adapt all weights provided
important insights for training RNNs. A graphical illustration of ESN and the idea of
training ESN is shown in Fig. 2.5.

ESN is employed as a supervised machine learning approach for time series data for the
tasks where for the given input x(n) ∈ RNx , the output of the model y(n) ∈ RNy matches as
closely as possible the provided target ytarget(n) ∈ RNy . According to the original reservoir
computing approach [57], the four steps associated with applying ESNs are:

19

1. Generate random reservoir with parameters: Win ∈ RNx×Nz (input weight matrix),
W ∈ RNz×Nz (reservoir or recurrent weight matrix), and leaking rate α ∈ (0, 1] (used
in updating the reservoir state);

2. Calculate reservoir activation states z̃(n) from the training input x(n). Let s(n) =
[s1(n), s2(n), ..., sNx(n)]T ∈ RNx×1, where n = 1, 2, ..., N , be the collected time series,
x(n) = s(n) is the input, and y(n) = s(n + h) is the output at time step n with the
prediction horizon h. The echo states z̃(n) ∈ RNz×1 are generated from the input
x(n) and the echo states z(n − 1). The initial state of the reservoir is a zero vector.
The common ESN reservoir state update equations are:

z̃(n) = tanh([x(n)]Win + z(n − 1)W) (2.20)

z(n) = (1 − α)z(n − 1) + αz̃(n), (2.21)

where z(n) ∈ RNz is the reservoir state update, and z̃(n) ∈ RNz is its activation at
time step n, with Nz: number of reservoir nodes. The most commonly used sigmoid
wrapper tanh(·) is applied element-wise. Input weight matrix is Win ∈ RNx×Nz , the
reservoir or recurrent weight matrix is W ∈ RNz×Nz , and α ∈ (0, 1] is the leaking rate.
In cases where the model is used without the leaky integration, α = 1 and z(n) ≡ z̃(n).
The state of the ESN contains information about the input history where recent input
vanishes gradually as time elapses.

Matrix Z ∈ RN×(Nz+Nx) is generated by concatenating the column vectors [z(n); x(n)]
horizontally over the training data points n. Labels ytarget(n) ∈ R1 are collected into
a matrix Y ∈ RN×1. Z and Y have a row for each training time step n.

3. Use linear regression to obtain the output weights Wout from the reservoir by mini-
mizing the mean square error of the network output with respect to the labels Y:

Wout = Z†Y. (2.22)

The matrix (ZT Z)−1ZT is known as the pseudoinverse (or Moore-Penrose inverse) of
Z, and is denoted as Z†. In order to match the output of the model with the labels,
the loss function - root mean-squared error (RMSE) E(y, ytarget) (2.23) should be
minimized [72], where RMSE is averaged over the output dimensions Ny:

E(y, ytarget) = 1
Ny

Ny∑
n=1

√√√√ 1
N

N∑
i=1

(yi(n) − ytarget
i (n))2. (2.23)

20

4. Evaluate the network by applying collected output weights Wout with the new input
x(n) to compute y(n). The output layer is a linear combination of the input and the
reservoir state:

y(n) = [z(n); x(n)]Wout, (2.24)

where y(n) is the output of the network and Wout ∈ R(Nz+Nx)×1 is the learned output
weight matrix. Vertical vector (or matrix) concatenation is represented by [·; ·].

ESN is said to have the echo state property if it is able to “wash out” the initial state of
the reservoir at a rate independent of the input sequence. ESN with the echo state property
is designed so that the effect of the past input on the reservoir gradually fades away [57].
Echo state property ensures that, provided an input sequence, future trajectories of initial
states become indistinguishable [73].

2.4 Echo State Networks: Related Work

During the past two decades, ESNs have been employed in a variety of domains and tasks,
including time series forecasting [66, 67, 68, 69], wireless communnication networks [74],
speech and handwriting recognition [63, 62], music imitation [75], fetal ECG monitoring [76],
and robot control [65].

Application of neural networks in predicting financial time series has been of a great
interest. A variety of artificial neural networks have been considered, including RNNs. How-
ever, predicting nonlinear and volatile stock data using vanilla RNN methods have encoun-
tered challenges due to its slow convergence and high computational cost. ESNs proved
powerful in approximating dynamical systems and have been applied in prediction of fu-
ture stock prices outperforming classic neural networks [66, 67]. Most of the key reservoir
hyperparameters of standard ESNs are configured by trial and error. A deterministically
constructed ESN and its forecasting performance have been investigated exhibiting higher
accuracy with minimum complexity when compared to a standard ESN model [68]. The
problem of overfitting is solved with the proposed multi-objective diversified ESN for pre-
dicting trends in stock prices [69].

ESNs have been considered for optimization of uplink-downlink decoupling for small cell
networks where users may be associated with different base stations and may access both
licensed and unlicensed long-term evolution (LTE) bands. ESN acts as a framework of an
allocating algorithm that allows base stations to select optimal resource allocation strategies
based on the limited information about the states of network and users. The developed
solution shows high performance gains based on rate and load balancing when compared
to conventional approaches such as Q-learning. Furthermore, the ESN resource allocation
framework significantly decreases information exchange for the cellular networks [74].

21

The models that may support the long-term dependencies are proved effective in im-
itating music [75]. Currently, most methods in reproducing and creating music modeling
are based on RNNs such as LSTM [77, 78, 79]. The ESN model has been applied to gen-
erate musical compositions as complex systems of probabilistic relationship [75]. Setting of
ESN reservoir hyperparameters in combination with other variables are explored in order
to provide a comparable result. ESN is shown as a feasible, light-weight, and least compu-
tationally “costly” solution for Mozart’s music imitation when selecting the best values for
leaking rate, input scaling, and spectral radius [75].

ESNs have been applied in detecting fetal QRS (a combination of three graphical de-
flections seen on a typical electrocardiogram: Q wave, R wave, and S wave) complexes by
monitoring the fetal electrocardiogram (fECG) and parameters that are useful in portray-
ing fetal heart health information. The long-standing challenge in noninvasive fECG is low
signal-to-noise ratio due to the noise caused by strong signal interferences of maternal ECG
(mECG), fetal brain activity, and myographic signals. ESN is trained to recognize fetal
QRS (fQRS) along with the options of dynamic programming employed to combine data
coming from sensors. The proposed method has high score with fast processing time. The
results may be improved by using larger ESN reservoir. However, that might increase the
processing time [76].

ESN variations have been proposed in order to improve ESNs’ performance in pattern
recognition, prediction, and classification tasks. In order to address dynamic time warping
(measuring similarity between two temporal sequences) in pattern recognition, a modified
version of ESNs named time warping invariant ESN (TWIESNs) has been designed. This
modification employs leaky integrator node reservoirs and has been applied for handwriting
recognition tasks [80]. A leaky integrator node is a biologically inspired model of a neuron,
which accumulates its input signals, but also exponentially leaks the accumulated excitation
over time (2.25–2.26):

z̃(n) = f([x(n)]Win + z(n)W) (2.25)

z(n) = c−1(−α)z(n) + z̃(n)), (2.26)

where f(·) is the activation function and c is the positive time constant. To adapt the
network to the temporal characteristics during training with slow dynamical system for
classifying slow noisy time series data using Japanese vowel dataset, ESN nodes are con-
sidered as leaky integrated nodes. In this case, a stochastic gradient descent approach has
been introduced to optimize a leaking rate [62].

Multivariate time series employ more than one time-dependent variable. Collinearity
problem arises when one variable is correlated with another, making it hard to deter-
mine their separate influences. To address a collinearity problem that is observed in high-

22

dimensional reservoirs to predict multivariate time-series, the weights are derived using
a new model-adaptive elastic ESN is designed that utilizes adaptive elastic net algorithm.
The proposed model proves effective when evaluated on two benchmark multivariate chaotic
datasets and two real-world applications [81].

The advantages of ESNs allow computation on non-conventional hardware platforms.
ESNs are used in opto-electronic, optical systems, randomly crystallized nonlinear electronic
circuits [82, 83, 84, 85].

2.5 Purpose and Hyperparameters of the Reservoir in ESNs

The reservoir in ESNs, being an input driven dynamical system, allows obtaining the desired
ytarget

i . It serves as a a memory as well as a nonlinear high dimensional expansion z(n) of
the input x(n) ∈ RNx , where the input becomes linearly separable in the expanded space
RNz . The reservoir is characterized by the tuple (Win, W, α), where the generation of both
input weight Win and the recurrent connection weight W matrices is random. The global
ESN parameters are: size of the reservoir Nz, reservoir sparsity, spectral radius ρ of W,
Win scaling, and leaking rate α.

• Reservoir size or number of nodes in the reservoir Nz determines the ESN’s memory
capacity. The larger the number of reservoir nodes the better the performance because
it becomes easier to obtain linear combination of the inputs to approximate the target.
However, large reservoirs are computationally expensive. The number of reservoir
nodes Nz is selected to be at least equal to the approximate number of values the
reservoir keeps from the input to solve the task. The maximum number of stored
values, called memory capacity, may not exceed Nz. When performing regression on
a reservoir that is larger than the training output, there are fewer equations than
unknowns, making the system underdetermined. This problem can be mitigated when
using regularization by ridge regression or by including scaled noise to the input.
When comparing various approaches, the reservoir size may be limited for convenience.
Several models reported in the literature employ relatively small reservoir sizes (40
nodes) for optimal performance [86].

• Reservoir sparsity is the ratio of zero elements. A reservoir weight matrix with
a sparsity of 0.5, implies that half of its elements are zero. Sparsity is one of the
hyperparameters that is often tuned last since its impact may be minimal. In the
original ESN models, the reservoir connections are sparse, which enables fast reservoir
updates. This hyperparameter is referred to as connectivity: the ratio of nonzero rather
than zero elements. Connectivity determines the ratio of the connections between
nodes in the reservoir out of all possible connections.

23

• Spectral radius ρ(W) is the highest absolute value of the eigenvalues of a reservoir
weight matrix. Spectral radius sets the reservoir weight matrix W or, alternatively,
sets the width of the distribution of its nonzero elements. A reservoir with large ρ(W)
has higher memory capacity. It is usually recommended to select a ρ(W) slightly
below 1 to allow large memory while still ensuring the echo state property.

• Input weights scaling is used to scale large input weights and enable the reservoir
to be driven more by the reservoir dynamics rather than the input. The input scaling
controls the amount of the nonlinearity that may also grow with the increasing spectral
radius of the reservoir. As the spectral radius controls the impact of the internal
dynamics of the reservoir, both spectral radius and input weight scaling have to be
adjusted so that input and reservoir have the appropriate impact on the reservoir
dynamics.

• Leaking rate α is related to the reservoir’s update dynamics and may be tuned by
trial and error. By default, the ESN does not use a leaking rate (α = 1). In this case,
the value of a reservoir state activation is equal to reservoir’s update at time step n

and the reservoir has no memory of its previous value. When using a leaking rate, the
reservoir state keeps portion of its original value (1 − α)z(n − 1). A new value αz̃(n)
based on new input and the reservoir state controlled by the amount of α is assigned
to the reservoir state update. The reservoir values change more gradually for lower α,
which induces slow dynamics of z(n) thus increasing the duration of the short-term
network memory.

The proper selection of the hyperparameters needed to produce the reservoir are summa-
rized in Table 2.1 [72]. The most important hyperparameters to optimize are input scaling,
spectral radius (ρ), and leaking rate (α). It is recommended to change hyperparameters’
values one at a time [72].

2.6 Finding Optimal Parameters in ESNs

Finding optimal parameters in ESNs is comparably a fast process, and determining the
training and validation errors is a straightforward way to evaluate the reservoir. Cross-
validation is common for static non-temporal machine learning tasks. However, it is not
widely used in temporal modeling due to the challenges in splitting time series for training
and validation. Temporal dependencies may leak across the cuts and have to be disentan-
gled. K-fold cross-validation might be an excess, unless the data is scarce in quantity, and
obtaining training error has a benefit of using fewer data without a need to rerun the entire
network. Smaller reservoir sizes and/or shorter datasets speed up the training [72].

The output (2.24) [72] may be represented in a matrix form:

24

Table 2.1: Key points and recommendations when selecting hyperparameters for ESN reser-
voir

Hyperparameters Key points Recommendations

Size of the reservoir (Nz)

The larger number of nodes Nz

in reservoir, the better the performance
(if proper regularization against
overfitting is applied)

Select Nz to be at least equal
to the number of values the reservoir has
to memorize from the input

Sparsity of the
reservoir

The sparser the connections (when
most elements in Win are 0),
the better the performance and
faster reservoir updates

Connect each node in the reservoir
to a small fixed number of other nodes,
irrespective of Nz

Distribution of
nonzero elements

Nonzero element of W (typically
sparse matrix) and Win (typically
dense matrix) have either symmetrical
uniform, discrete bi-valued, or normal
distribution centered around 0

Spectral radius ρ(W)
(maximal
eigenvalue
of W)

Spectral radius ρ(W) defines how fast the
influence of input dies out in reservoir
with time (e.g., the larger
the radius, the longer the
memory of the input)

Set the ρ(W) < 1 to ensure
the echo state property

Input scaling

Input scaling determines the amount
of nonlinearity of z(n) and the
influence of the input on z(n) as
opposed to the history of the input

Normalize the data in order
to keep the inputs bounded
and avoid outliers (e.g., apply tanh(·))

Leaking rate (α)
Usually small dynamics of the
reservoir extends the duration
of the memory in ESN

Select the leaking rate to match
the speed of dynamics of the input
and/or the target (usually tuned
by trial and error)

25

Y = ZWout (2.27)

Ytarget = ZWout, (2.28)

where Y and Ytarget ∈ RN×Ny and Z ∈ RN×(Nz+Nx) are the representation of vectors
y(n) and [z(n); x(n)], respectively. The matrix Z is used instead of [X; Z] for simplicity.
The optimal output weights Wout are obtained by minimizing the squared error between
Y (2.27) and Ytarget (2.28) by solving the overdetermined (N >> Nz + Nx) system of
equations (2.27, 2.28). Ridge regression (2.29) is the most preferred option [72] to solve the
system and learn output weights:

Wout = (ZTZ + βI)−1ZT Y target (2.29)

Wout = argmin
Wout

1
Ny

Ny∑
i=1

(
N∑

n=1
(yi(n) − ytarget

i (n))2 + β
∥∥∥wout

i

∥∥∥2
), (2.30)

where I is the identity matrix and β is regularization coefficient used to reduce the effect
of overfitting, which is usually indicated by large values of the output weights. The term
β
∥∥wout

i

∥∥2 is a regularization term that introduces weight decay and penalizes large values
of Wout, with || · || standing for Eucleadian norm. Including scaled white noise to the input
serves a similar purpose as regularization.

The dimensions of the matrices (ZT Ytarget) ∈ RNz×Ny and ZTZ ∈ RNz×Nz do not
depend on the size of the training set N , which allows training with nearly unlimited data
size. The size of data N also does not influence the training time and memory. The matrices
may be easily updated by adding the results with the new data.

If ZTZ is invertible, (2.30) becomes:

Wout = Z†Ytarget. (2.31)

It is also a solution to (2.21), where Z† is Moore-Penrose pseudoinverse. Even though this
solution shows high stability and requires little or no regularization, its disadvantage is
that it requires sizeable memory for large design matrices (ZT Z)−1ZT thus restraining the
size of the reservoir Nz and/or number of training samples. The pseudoinverse solution is
recommended, time and memory permitting.

For classification tasks, a model is trained to decide a class for an input sequence given
a ytarget(n) that is equal to 1 for the class of interest and 0 otherwise. The class is decided
by:

26

class x(n) = argmax
k

(
1

|τ |
∑
n∈τ

yk(n)
)

= argmax
k

((∑
y
)

k

)
, (2.32)

where yk(n) is the element of the kth column of y(n) and τ is an integration interval. The∑
y is equal to y(n) time-averaged over τ :

∑
y = 1

|τ |
∑
n∈τ

y(n) = 1
|τ |
∑
n∈τ

[x(n); z(n)]Wout =

Wout 1
|τ |
∑
n∈τ

[x(n); z(n)] = Wout
∑

z.
(2.33)

Equation (2.33) is an effective way to find ∑y because it involves only one multiplication
with Wout. For a given input sequence, it is more convenient to find one Wout that minimizes
the error between E(ytarget,

∑
y) instead of calculating Wout for every n ∈ τ that minimizes

E(ytarget(n), y(n)).

2.7 Output Feedbacks in ESNs

The dynamics of training process is varied as the trained output is fed back to the reservoir
creating recurrence between the output and reservoir [72]. The update equation with the
looping output y(n − 1) for the next update step is:

z̃(n) = tanh([x(n)]Win + z(n − 1)W + y(n − 1)Wfb). (2.34)

Input x(n) and input weights Win are virtually equivalent to y(n − 1) and Wfb. How-
ever, because of stability issues, feedback should be utilized when learning is otherwise not
possible. When training output with feedbacks, two methods may be followed:

- Target forcing or breaking the feedback loop during the learning process (feeding
ytarget(n) instead of y(n));

- Adapting Wout online in the presence of a feedback.

27

Chapter 3

CIC-IDS Datasets: CIC-IDS2017,
CSE-CIC-IDS2018, and
CIC-DDoS2019

The performance of network intrusion detection models relies on datasets that are public,
labeled, and contain diverse traffic. With changing network behavior and intrusion patterns,
it is challenging to identify datasets that reflect the current network trends.

The Canadian Institute for Cybersecurity (CIC) has devised testbed framework [87,
88, 89] to generate CIC-IDS2017 [90], CSE-CIC-IDS2018 [91] (in collaboration with the
Communications Security Establishment (CSE)), and CIC-DDoS2019 [92] network traffic
datasets. Two profile classes are used: B-Profile and M-Profile. The profiles are employed
with various protocols and network topologies. Features such as certain patterns in payload
and its size, number of packets per flow, and request time distribution are extracted from
client traffic into individual profiles. They are clustered into B-Profiles. These B-profiles are
groups of users with similar behavior representing regular (benign) background traffic. For
these datasets, B-Profiles incorporate the abstract behavior of 25 users based on the most
frequently used protocols such as HTTP, HTTPS, FTP, SSH, SMTP, POP3, and IMAP.
M-Profiles generate attacks scenarios: infiltration of the network, denial of service, brute
force, and a variety of web application attacks.

Extraction of more than 80 features including duration, size of packets, and number of
packets was performed using CICFlowMeter, an application written in Java for generating
and analyzing network traffic flows [93]. The application generates bi-directional flows where
the first packet defines the forward or backward directions. Hence, the features are calculated
for both directions. CICFlowMeter analyzes network traffic and labels the flows based on
time stamp, source and destination IP addresses and ports, protocols, and type of attacks.

28

3.1 CIC-IDS2017 Dataset

The CIC-IDS2017 testbed includes an attacker and victim networks. The attacker network
consists of one router, one switch, and four terminals with Kali Linux and Windows 8.1
operating systems. The victim network consists of three servers, one firewall, two switches,
and ten terminals interconnected by a security authentication server. One switch in the
victim-network serves as a mirror port and captures the incoming and outgoing traffic.

The CIC-IDS2017 dataset includes intrusions that rely on various network vulnerabili-
ties [87] and are executed using attack tools: Patator, Slowloris, Heartleech, Damn Vulner-
able Web App, Metasploit, Ares, and Low Orbit Ion Cannon.

The data capture began with regular traffic at 9:00 on Monday July 3, 2017. Intrusion
attacks were initiated at 9:20 on Tuesday, July 4, 2017 and ended at 17:00 on Friday, July
7, 2017 [90, 93]. The 2,830,743 data points collected during five days include regular traffic
and attacks.

We use DoS data collected on Wednesday, July 5, 2017 with the average packet size
shown in Fig. 3.1. Malicious data points are labeled GoldenEye, Hulk, SlowHTTPTest, and

Figure 3.1: CIC-IDS2017: Average packet size. Color indicates flow labels. Size shows average
packet size. Hulk attack has the largest average packet size.

Slowloris having 10,293, 230,124, 5,499, and 5,796 intrusions, respectively. The number of
regular (benign) and malicious packets is shown in Fig. 3.2.

29

Figure 3.2: CIC-IDS2017: Number of forward and backward packets.

3.2 CSE-CIC-IDS2018 Dataset

The CSE-CIC-IDS2018 testbed consists of victim (420 terminals and 30 servers split into
5 subsets) and attacker networks (50 terminals) implemented using Amazon Web Services.
Ubuntu, Windows 8.1, and Windows 10 operating systems are installed on host machines
while servers use Windows 2012 and Windows 2016.

The CSE-CIC-IDS2018 dataset captures ten days between Wednesday, February 14,
2018 and Friday, March 2, 2018 [91]. There are 6.1 million rows, each consisting of a bidi-
rectional flow (biflow) representing the source-to-destination packets for nine attack types.
Malicious (attack) data contain seven most common attack scenarios: botnet, brute-force,
DoS, DDoS, heartbleed, network infiltration, and web attacks.

In this Thesis, we considered the GoldenEye, Hulk, SlowHTTPTest, and Slowloris DoS
attacks collected on Thursday, February 15, 2018 and Friday, February 16, 2018. The content
of the dataset collected during these days is shown in Fig. 3.3. Average size of packets is
shown in Fig. 3.4.

3.3 CIC-DDoS2019 Dataset

The CIC-DDoS2019 testbed contains victim and attack networks. The victim network in-
cludes one Ubuntu 16 webserver, four personal computers with Windows 7, Windows Vista,
Windows 8.1, and Windows 10 operating systems, one Fortinet firewall, and two switches.
The attack network employs a third party infrastructure and utilizes tools and packages
necessary to initiate 12 types of DDoS attacks.

The set, collected on January 12, 2019 from 10:30 to 17:15, includes 12 attacks: NTP,
DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-Lag, WebDDoS, SYN, and
TFTP. The set, collected on March 11, 2019 from 9:40 to 17:35, includes 7 attacks: PortScan,

30

Figure 3.3: CSE-CIC-IDS2018: Number of forward and backward packets.

Figure 3.4: CSE-CIC-IDS2018: Average packet sizes. Color indicates flow labels. Size shows
average packet sizes. Benign packets have the largest average packet size.

31

NetBIOS, LDAP, MSSQL, UDP, UDPLag, and SYN. In this Thesis, we use LDAP, NTP,
SYN, UDP-lag, and WebDDoS attacks collected on January 12, 2019, 9:00–13:00.

The content and the collection time of the selected set of regular and malicious traffic
are shown in Fig. 3.5 with the average packets size shown in Fig. 3.6.

Figure 3.5: CIC-DDoS2019: Number of forward and backward packets.

Figure 3.6: CIC-DDoS2019: Average packet size. Colors indicate flow labels. Size of the
circles shows the average size of packets. LDAP has the largest packet size.

3.4 Attacks and Features

The attacks considered in this Thesis as well as the features related to these attacks are de-
scribed in this Subsection. We considered CIC-IDS2017 and CSE-CIC-IDS2018 that include:
GoldenEye, HULK, SlowHTTPTest, and Slowloris attacks. LDAP, NTP, SYN, UDP-lag,
and WebDDoS are the attacks encountered in the CIC-DDoS2019 dataset.

32

GoldenEye is a Python-based application for security testing that may be also used
for malicious activities. GoldenEye creates application-layer attacks. Their main goal is to
occupy all available HTTP/HTTPS sockets by sending keep alive requests. The time that it
takes to successfully start a GoldenEye DDoS attack is 6.2 ms compared to Slowloris that
may be launched in 100 ms [117].

HULK (HTTP Unbearable Load King) creates high volumes of obscure traffic that brings
down web servers with voluminous requests from a number of random user agents.

SlowHTTPTest is a tool for implementing most common application-layer DoS attacks
such as Slow HTTP Post, Slowloris, and Slow Read. HTTP is designed to wait for complete
requests before they are processed. Exploiting this feature, application-layer DoS attacks
drain the concurrent connections pool by sending incomplete requests.

Slowloris is a slow rate and low volume traffic generation from a single source that
makes it difficult to detect using traditional Network Intrusion Detection Systems’ (NIDS)
approaches. This attack occurs at the application-layer and is characterized by sending
fractional HTTP GET requests without termination code in order to keep the connection
open. Hence, the server is forced to wait indefinitely for the remaining data. By sending
HTTP headers one by one, attacker keeps the session alive overflowing buffer with live
sessions and resulting in busy resources to establish new legitimate connection requests
from other users.

Lightweight Directory Access Protocol (LDAP) is a widely used, open, vendor-neutral,
industry standard application protocol for accessing and supporting distributed directory
information services over an IP network [118]. LDAP allows an access to organized set of
records such as email directory, information about users, systems, and services [119]. LDAP
Amplification attacks utilize this protocol by sending requests to a publicly available vulner-
able LDAP server with open TCP port 389. This triggers amplified replies approximately
50 times larger than the initial small queries. The amplified replies are reflected to a target
server.

Network Time Protocol (NTP) is one of the oldest currently used Internet protocols that
provides clock synchronization between computer systems over packet-switched, variable-
latency data networks [120]. NTP amplification attack allows an attacker to use spoofed
IP address of the victim’s NTP infrastructure and send small NTP queries to the Internet
servers that, in turn, generate and reflect amplified NTP responses.

SYN flood, often created via distributed botnet, overwhelms available resources of the
target systems. It may affect firewalls or other defense components of a target. SYN packets
are sent to victim at a very high rate using up the TCP connection pool that causes
dropping of legitimate packets. Approximately 80% of all DDoS attacks in 2018 were SYN
flood attacks [9].

UDP-lag attack aims to disrupt the connection between the client and the server. An
example is online gaming where the players wish to slow down or interrupt their opponents.

33

The attack may be initiated either via a hardware switch known as a lag switch, or by a
software program that allows monopolization of bandwidth [92].

Web DoS attacks may be divided into three categories. In type-I attacks, the same page
is repeatedly being requested. This may be detected using thresholds that prevent sources
from requesting the same page more than N times per time period. In type-II attacks,
random web pages are being requested. In type-III attacks, an attacker scans websites and
creates navigation patterns that resemble genuine human web surfers [92]. Both, type-II
and type-III web DoS attacks are more difficult to detect and block compared to type-I
attacks.

Packet length features such as the sizes of header, trailer, and payload are valuable in
detecting volumetric nature of amplification DDoS attacks (floods) or monopolizing na-
ture of application layer attacks. Regular packets are often under 1,000 bytes in length as
shown in Figs. 3.7, A.1, and A.2. Note that Heartbleed attack packets reach on average
approximately 15,000 bytes.

Figure 3.7: CIC-IDS2017: Average backward packet length. Heartbleed, GoldenEye, and
Hulk have larger packet length compared to benign traffic.

Standard deviation of packet length helps differentiate regular from anomalous traffic
because regular traffic exhibits high variation in packet length, as shown in Fig. 3.8. For
example, regular packets in CIC-IDS2017 dataset have high variation of packet length, as
shown in Fig. 3.8. The length of malicious packets in the TCP state exhaustion attacks such
as SYN and ICMP packets is often small. Moreover, the attackers often generate fixed-sized
packets. Therefore, the minimum average segment size in a malicious flow may be smaller
than in regular flows. In CSE-CIC-IDS2018 datasets, standard deviation of packet length in
case of benign packets is high most of the time, as shown in Fig. A.3. This is easier observed
if 9 AM and 11 AM benign traffic is excluded from the graph. Slowloris, however, shows
comparably high standard deviation. Malicious packets may have high length variation, as
in the case of NTP attack shown in Fig. A.4. In such cases, machine learning models may
not be able to learn from this feature in order to distinguish benign and malicious traffic.

Features related to flow interarrival time (IAT) such as minimum/maxium/mean inter-
arrival time and flow duration, help detect the DDoS attacks such as DDoS UDP-lag and

34

Figure 3.8: CIC-IDS2017: Standard deviation of packet length. Benign packets usually have
high variation in length.

DDoS-NTP that cause bursty behavior. Average flow IAT is the highest for GoldenEye,
Hulk, SlowHTTPTest, and Slowloris attacks in CIC-IDS2017, as shown in Fig. 3.9. While
GoldenEye and Slowloris keep comparable IAT as in 2017, Hulk and SlowHTTPTest have
lower flow IATs in CSE-CIC-IDS2018 as shown in Fig. A.5. Application layer DoS attacks
exhibit longer flow duration as shown in Fig. 3.10.

Figure 3.9: CIC-IDS2017: Average flow interarrival time (IAT) values are the highest for
GoldenEye, Hulk, SlowHTTPTest, and Slowloris.

In TCP, flags (control bits) indicate a particular state of connection and provide useful
information. Most commonly used flags are ACK, SYN, URG, RST, PSH, and FIN where
each flag can be set to 1 (on) or 0 (off). They are often used by attackers to disrupt the
target’s normal operation. Therefore, “ACK Flag Count”, “SYN Flag Count”, and “URG
Flag Count” shown in Fig. 3.11, may be important features that help detect malicious

35

Figure 3.10: CIC-IDS2017: Average duration of collected flows.

traffic. An attacker may use the control bits by overwhelming the server with TCP ACK

Figure 3.11: CIC-DDoS2019: ACK, SYN, and URG flag counts. SYN attacker may bring
down a network connection by requesting seemingly legitimate connections through a series
of TCP requests with TCP SYN and ACK flags set to 1.

packets as shown in Fig. A.6, where Hulk attack employs a large number of packets with
ACK set to 1.

SYN attacker may bring down a network connection by requesting seemingly legitimate
connections through a series of TCP requests with TCP flags SYN and SYN ACK set to
1, as shown in Fig. 3.11. By using up available connections, the server will not be able to
respond to legitimate connection requests.

36

Chapter 4

Border Gateway Protocol Datasets

4.1 Border Gateway Protocol

Border Gateway Protocol (BGP) is a routing protocol that plays an essential role in for-
warding Internet Protocol traffic between the source and destination Autonomous Systems
(ASes) [94]. Autonomous System (AS) is a group consisting of one or more independent net-
works of BGP peers (neighbors) with uniform routing policies enforced by a single network
administrative domain [95]. BGP enables ASes to exchange reachability information with
neighboring ASes and propagate the information about the availability of routes within an
AS thus allowing all sub-networks to be interconnected and known to the Internet. BGP
routers exchange four types of messages: open, update, keep-alive, and notification. BGP
is an incremental protocol that sends updates only if there are reachability or topology
changes within the network. Therefore, only updates regarding new prefixes or withdrawals
of the existing prefixes are exchanged [94].

Transmission of the BGP routing information is susceptible to various cyber threats
including worms, malicious attacks, power outages, blackouts, and misconfigurations of
BGP routers. These threats affect the Internet servers and hosts and are manifested by
anomalous traffic behavior. These events may spread false routing information throughout
the Internet by either dropping packets or directing traffic through unauthorized ASes [96].

4.2 Border Gateway Protocol Data Collections

BGP routing information is shared by Internet service providers (ISPs) located world-
wide [97]. BGP trace collectors obtain and store the routing tables into publicly available
archives. Routing tables contain entries from each peering AS that indicate the preferred
paths to destination prefixes at a given time. BGP routing update messages are available
from global BGP monitoring systems such as RIPE [98] and Route Views [99]. The In-
ternet routing data used in this Thesis contain BGP anomalous events: Slammer [100],
Nimda [101], and Code Red I [102] were acquired from the Routing Information Service

37

(RIS) project. The Internet routing data that contain BGP anomalous events: AWS (Ama-
zon Web Services) DDoS attacks, used in this Thesis, were acquired from the Routing
Information Service (RIS) and Route Views projects.

Routing Information Service (RIS) is the project originated in 2001 by the Réseaux IP
Européens (RIPE) Network Coordination Centre (NCC) [98] with the main goal to collect
and store chronological routing data offering a unique view of the Internet topology. The
RIPE BGP update messages are publicly available to the research community. Data were
exported every fifteen minutes until July 2003. The interval between consecutive exports
was later increased to five minutes.

Route Views [99] is the University of Oregon project that aims to store real-time BGP
routing data from backbone routers located in various geographical locations since 1997. The
publicly available data have been used for routing analysis, AS path visualization, analysis
of IPv4 address space utilization, topological studies, and generation of geographic host
locations. Backbone routers (Cisco, Juniper), configured as IPv4 or IPv6 Route-Views-like
route servers, connect as peers via multi-hop BGP sessions. Route Views project employs
three types of collectors: FRR, Quagga, and Cisco.

BGP update messages are collected and stored in the multi-threaded routing toolkit
(MRT) binary format [103]. The BGP update messages are converted from MRT into
American Standard Code for Information Interchange (ASCII) format by using the zebra-
dump-parser [104]. A C# tool [105] is used to generate datasets by extracting 37 numerical
features from BGP update messages.

4.3 Anomalies and Features

Considered BGP datasets contain worms that may cause DoS and DDoS. We consider
Slammer [100], Nimda [101], and Code Red I [102] worms obtained from collector rrc04
located at at CIXP, Geneva that stores route updates since 2001. These anomalies caused
increases in the number of announcement and withdrawal messages exchanged by the Border
Gateway Protocol (BGP) routers. The examples of the collected traces of Slammer, Nimda,
and Code Red I worms are shown in Figs. 4.1–A.10. Details including the period and
duration of these anomalous events are given in Table 4.1.

Table 4.1: Examples of BGP Internet worms

Dataset Class Beginning of the event Duration (min)
Slammer Anomaly 25.01.2003 at 5:31 GMT 869
Nimda Anomaly 18.09.2001 at 13:19 GMT 1,301
Code Red I Anomaly 19.07.2001 at 13:20 GMT 600

Slammer : The Structured Query Language (SQL) Slammer worm attacked Microsoft
SQL servers on January 25, 2003 [100]. Microsoft SQL servers were infected through a
small piece of code that generated IP addresses at random. Furthermore, code replicated

38

itself by infecting new machines through randomly generated targets. If the destination IP
address was a Microsoft SQL server or a user’s PC with the Microsoft SQL Server Data
Engine (MSDE) installed, the server became infected and began infecting other servers.
The number of infected machines doubled approximately every nine seconds. As a result,
the update messages consumed most of the routers’ bandwidth, which in turn slowed down
the routers and, in some cases, caused the routers to crash.

Nimda: The Nimda worm exploited vulnerabilities in the Microsoft Internet Information
Services (IIS) web servers for the Internet Explorer 5 on September 18, 2001 [101]. It prop-
agated fast through email messages, web browsers, and file systems. The worm propagated
by sending an infected attachment that was automatically downloaded after viewing the
email messages. A user could also download the worm from the website or access an infected
file through the network. The worm modified the content of the web document file in the
infected hosts and copied itself in local host directories.

Code Red I : Although the Code Red I worm attacked Microsoft IIS web servers earlier,
the peak of infected computers was observed on July 19, 2001. The worm affected approx-
imately half a million IP addresses a day [102]. It took advantage of vulnerability in the
Internet Information Services (IIS) indexing software. The worm replicated itself by exploit-
ing weakness of the IIS servers and, unlike the Slammer worm, Code Red I searched for
vulnerable servers to infect. It triggered a buffer overflow in the infected hosts by writing to
the buffers without checking their limits. Rate of infection was doubling every 37 minutes.

We also consider the BGP data collected from RIPE rrc14 collector over periods of
largest DDoS attacks that affected Amazon Web Services (AWS) in 2019 (DDoS2019-v1
and DDoS2019-v2) and in 2020 (DDoS2020). BGP data for AWS 2019 and 2020 attacks
were also collected from Route Views route-views4 collector (Quagga type). The RIPE
collector rrc14 is located in Palo Alto, USA. The Route Views collector route-views4 is
located in Eugene, Oregon, USA. Details including the period and duration of the events
are shown in Table 4.2.

Table 4.2: Examples of major DDoS attacks

Dataset Class Beginning of the event Duration of the event
DDoS2019-v1 Anomaly 22.10.2019 8 hours
DDoS2019-v2 Anomaly 22.10.2019 61.5 hours
DDoS2020 Anomaly 17.02.2020 3 days

October 2019 DDoS Attack on AWS (DDoS2019): AWS experienced a DDoS attack on
October 22, 2019 that caused an eight hour outage and interrupted services [107]. The at-
tack affected the Amazon route 53 DNS webservice leaving thousands of customers unable
to access cloud services, websites, and applications [108]. After the malicious DNS query
hit the AWS network, approximately 50% of packets were dropped. The attack lasted from
10:30 AM to 6:30 PM PDT and was persistent in San Francisco and intermittent in Boston,

39

Figure 4.1: Slammer (top), Nimda (middle), and Code Red I (bottom): Number of BGP
announcements. The red dotted line indicates two classes: regular and anomaly.

40

Chicago, and Dallas. AWS Shield [109] attempted to mitigate the malicious traffic affecting
legitimate traffic, which caused further DNS failures and congestion due to the increased
traffic. Meanwhile, on October 23, 2019, a wave of ransom driven DDoS attacks hit the
banking industry in South Africa that left Johannesburg’s emergency call centers and e-
services, including online banking and billing system inaccessible to customers. The attack
was launched with a ransom note (data that are encrypted and locked down by malware)
that was delivered to staff email addresses. The attackers were demanding four Bitcoins
(equivalent to $37,000 USD) threatening to upload the hacked data online. However, no
private data breach occurred and DDoS attack only caused increased network traffic and
service disruptions [110]. This attack may have impacted the BGP update messages col-
lected for AWS DDoS attack that occurred on October 22, 2019 (DDoS2019-v1), as shown
in Fig. A.11. We used BGP data collected from RIPE (Fig. 4.2) and from Route Views
(Fig. 4.3) for AWS DDoS attack on October 22, 2019 (DDoS2019-v2) and DDoS attack on
October 23, 2019 (DDoS2019-v2).

February 2020 DDoS Attack on AWS: The largest ever DDoS attack of 2.3 Tbps oc-
curred on February 17, 2020 and caused three days of elevated threat [111]. It was a Con-
nectionless Lightweight Directory Access Protocol (CLDAP) reflection attack that targeted
Amazon cloud web services. Both CLDAP and its older alternative LDAP are widely used
protocols for authenticating username and password information. According to AWS Shield
report, this attack was 44% larger than any network volumetric event previously detected
on AWS [111]. In such attacks, an attacker sends a CLDAP request to a LDAP server with
a spoofed sender IP address that is the target’s IP address. The server prepares a bulked-up
response to the target’s IP address starting the reflection attack. The goal is to flood the
target with a massive amount of data to disrupt normal traffic, leaving unresponsive the
web services hosted on the server. The server, unaware of the attack, receives multiple seem-
ingly legitimate requests to establish communication and replies with a SYN-ACK causing
the server’s connection tables to fill and, thus, deny access to legitimate users [112]. The
numbers of BGP announcements and announced Network Layer Reachability Information
(NLRI) prefixes of a dataset collected from RIPE are shown in Fig. 4.4. Even though the at-
tack lasted until February 20, 2020, we are able to see high occurrences of the BGP updates
starting February 21, 2020, which may influence the training of a machine learning model.
The BGP data for the same anomaly collected from Route Views are shown in Fig. 4.5.

GMT (UTC) time is used for all update messages in order to synchronize RIPE and
Route Views collection times. While the available datasets contain data over much longer
periods of time, we have selected for our analysis five-, six-, and seven-day periods to
minimize storage and computational requirements. Furthermore, selecting longer periods of
regular data would make datasets even more unbalanced. The AS-path is a BGP update
message attribute that enables the protocol to select the best path for routing packets.
It indicates a path that a packet may traverse to reach its destination. If a feature is

41

Figure 4.2: DDoS2019-v2 collected from RIPE: Number of announced NLRI prefixes (top),
number of duplicate announcements (middle), and number of implicit withdrawals (bottom).
The red dotted line indicates two classes: regular and anomaly.

42

Figure 4.3: DDoS2019-v2 collected from Route Views: Number of announced NLRI prefixes
(top), number of duplicate announcements (middle), and number of implicit withdrawals
(bottom). The red dotted line indicates two classes: regular and anomaly.

43

Figure 4.4: DDoS2020 collected from RIPE: Number of BGP announcements (top) and
number of announced NLRI prefixes (bottom). The red dotted line indicates two classes:
regular and anomaly.

44

Figure 4.5: DDoS2020 collected from Route Views: Number of BGP announcements (top)
and number of announced NLRI prefixes (bottom). The red dotted line indicates two classes:
regular and anomaly.

45

derived from the AS-path attribute, it is categorized as an AS-path feature. Otherwise, it is
categorized as a volume feature. There are three types of features: continuous, categorical,
and binary. Extracted AS-path and volume features are shown in Table 4.3. Definitions of
the extracted features are listed in Table 4.4.

Table 4.3: List of features extracted from BGP update messages

Feature Name Category
1 Number of announcements volume
2 Number of withdrawals volume
3 Number of announced NLRI prefixes volume
4 Number of withdrawn NLRI prefixes volume
5 Average AS-path length AS-path
6 Maximum AS-path length AS-path
7 Average unique AS-path length AS-path
8 Number of duplicate announcements volume
9 Number of implicit withdrawals volume
10 Number of duplicate withdrawals volume
11 Maximum edit distance AS-path
12 Arrival rate AS-path
13 Average edit distance volume
14 – 23 Maximum AS-path length, where n = (11, ..., 20) AS-path
24 – 33 Maximum edit distance = n, where n = (7, ..., 16) AS-path
34 Number of Interior Gateway Protocol (IGP) packets volume
35 Number of Exterior Gateway Protocol (EGP) packets volume
36 Number of incomplete packets volume
37 Packet size (B) volume

Table 4.4: Definition of volume and AS-path features extracted from BGP update messages

Feature Name Definition
1 Number of announcements Routes available for delivery of data
2 Number of withdrawals Routes no longer reachable
3/4 Number of announced/withdrawn BGP update messages that have

NLRI prefixes type field set to announcement/withdrawal
5/6/7 Average/maximum/average unique Features related to AS-path

AS-path length
8/10 Number of duplicate Duplicate BGP update messages

announcements/withdrawals with type field set to announcement/withdrawal
9 Number of implicit withdrawals BGP update messages with type field

set to announcement and different AS-path
attribute for already announced NLRI prefixes

11/13 Average/maximum edit distance Average/maximum of edit distances of messages
34/35/36 Number of IGP, EGP, BGP update messages generated by

or incomplete packets IGP, EGP, or unknown sources

BGP update messages are either announcement or withdrawal messages for the NLRI
prefixes. The NLRI prefixes that have identical BGP attributes are encapsulated and sent
in a single BGP packet [113]. Hence, a BGP packet may contain more than one announced
or withdrawn NLRI prefix. The average and the maximum number of AS peers are used

46

for calculating AS-path lengths. Large length of the AS-path BGP attribute implies that
the packet is routed to its destination via a longer path, which causes large routing delays
during BGP anomalies. Duplicate announcements are the BGP update packets that have
identical NLRI prefixes and the AS-path attributes. Conversely, a duplicate announcement
is a redundant prefix advertisement with the same attributes as the most recent update
for this prefix in the same session and not interleaved with a withdrawal or a session reset.
Implicit withdrawals are prefixes that have been implicitly withdrawn by sending the same
prefix with new attributes [114]. The edit distance is a metric to quantify the similarity
of strings. A router uses edit distance to measure the difference between two AS paths.
The edit distance between two AS-path attributes is the minimum number of deletions,
insertions, or substitutions that need to be executed to match the two attributes [115].
The more frequent changes in an AS path, the larger is the edit distance, which makes
the routing update less trustworthy [116]. During the Slammer, Nimda, Code Red I events,
the paths change frequently, as shown in Fig. A.9. The maximum AS-path length and the
maximum edit distance are used to count Features 14 to 33. We also consider Features
34, 35, and 36 based on distinct values of the origin attribute that specifies the origin
of a BGP update packet and may assume three values: IGP, EGP, and incomplete. Even
though the EGP protocol is the predecessor of BGP, EGP packets still appear in traffic
traces containing BGP updates messages. Under a worm attack, BGP traces contained
large number of EGP packets. Furthermore, incomplete update messages imply that the
announced NLRI prefixes are generated from unknown sources. They usually originate from
BGP redistribution configurations [113]. Examples of the impact of BGP anomalies on
features, such as number of BGP announcements, number of announced NLRI prefixes,
edit distances, duplicate announcements, implicit withdrawals, number of EGP packets are
shown in Figs. 4.1–A.10.

47

Chapter 5

Feature Selection, Performance
Metrics, and Experimental
Procedure

5.1 Feature Selection

Feature selection is usually the first step in the classification process. Selecting relevant
features may decrease the redundancy while enhancing the classification performance and
reducing training time in deep neural networks [121]. Purpose of feature selection is to
identify a set of useful features with the preservation of important discriminatory informa-
tion [19]. The selected features are used as an input to classification algorithms. Simulations
with ESNs employing two feature selection algorithms have been performed to illustrate
that it is important to disregard irrelevant features from directly contributing to the output
in order to decrease the generalization error (error when trained ESNs are evaluated on
previously unseen data) [122].

Decision tree is an algorithm that is employed for classification or regression tasks by
posing conditions on a given point. A simple condition may be of the form: “Is feature i

smaller than the value v?” The conditions are represented as non-leaf nodes and predicted
values are represented as leaves of a decision tree. Decision trees are trained downward
from the root in a greedy recursive way. When a node with an associated split is created,
the children of the node are constructed by the same tree-growing procedure. The data
used to train left subtree are the points satisfying xi < v. Similarly, the right subtree is
trained with the data points satisfying xi ≥ v. Trees are grown until no further splits are
made and a prediction (rather than a split) is associated with a node. Building the trees is
associated with understanding of how to select the split-feature, split-value pairs and when
to stop growing the trees. Decision trees select a split by considering all possible splits and
choosing the split that has the smallest uncertainty. Ways to quantify the uncertainty are
entropy and Gini impurity. The heuristics that we consider when deciding when to stop
splitting are:

48

• Limited depth: Do not split if the node is beyond some fixed depth in the tree.

• Node purity: Do not split if the proportion of training points in a class is sufficiently
high.

• Information gain criteria: Do not split if the gained information/purity is sufficiently
close to zero.

In order to select relevant features, we have employed tree-based ensemble learning
method called extremely randomized trees, or extra-trees [123]. Ensemble learning is a
technique to overcome the overfitting by combining the predictions of many varied models
into a single prediction. The varied models are decision trees trained in a randomized way
to reduce correlation among them. The extra-trees algorithm generates a large number of
decision trees from the training set. The majority voting from decision trees is employed for
classification tasks. The main differences between extra-trees and other related ensemble
decision trees algorithms such as random forest and bagging are that the extra-trees algo-
rithm randomly chooses cut-points to split nodes (instead of using greedy algorithm) and
it employs the entire training set to grow trees. The main hyperparameters to adjust are
the number of attributes (features) K used at each node and a minimum sample size nmin

in a node to create a new splitting point. K defines the strength of the feature selection
process while nmin determines the strength of averaging output noise. The number of deci-
sion trees in the ensemble determines the strength of the variance reduction of the ensemble
model aggregation. The common value for the number of decision trees is 100, which is large
enough to ensure convergence. Typically selected value for nmin is 2 for classification and
5 for regression [123].

The scikit-learn Python machine learning library contains an implementation of extra-
trees (ExtraTreesRegressor and ExtraTressClassifier classes). We rank the features of the
employed datasets using sklearn.ensemble.ExtraTreesClassifier() [124] with parameters
n_estimators = 100, min_samples_split = 2, and default values for the remaining set-
tings. Gini impurity is the function used to measure the quality of a split. It measures how
often a randomly chosen element from the set would be incorrectly labeled. It is defined as:

G(Y) =
∑

k

P (Y = k)
∑
i ̸=k

P (Y = i), (5.1)

G(Y) =
∑

k

P (Y = k)(1 − P (Y = k)), (5.2)

G(Y) = 1 −
∑

k

P (Y = k)2, (5.3)

where Y are the labels. Gini impurity is slightly faster to compute than entropy because
there is no need to take logs. Feature importance is calculated as the decrease in node
impurity weighted by the probability of reaching the leaf node. The node probability may

49

be calculated by the number of samples that reach the node, divided by the total number
of samples. The higher the value, the more important is the feature. Most relevant features
in the CIC-IDS datasets and their importance are shown in Table 5.1. Most relevant fea-
tures in Slammer, Nimda, Code Red I, DDoS2019, and DDoS2020 BGP datasets and their
importance are shown in Tables 5.2–5.3.

5.2 Performance Metrics

We evaluate the ESN performance by calculating the confusion matrix shown in Table 5.4,
where:

• True Negative (TN): correctly classified regular data points as regular

• False Negative (FN): incorrectly classified anomalous data points as regular (type II
error)

• False Positive (FP): incorrectly classified regular data points as anomaly (type I error)

• True Positive (TP): correctly classified anomalous data points as anomaly

Various measures calculated to evaluate classification algorithms are: accuracy, F-Score,
precision, recall (sensitivity), and specificity. Accuracy reflects the proportion of the accu-
rately predicted results:

Accuracy = TP + TN

TP + FP + TN + FN
. (5.4)

Even though it is common to use accuracy as a metric for a classification model performance,
it may be a misleading measure for imbalanced datasets because it accepts equal cost for
misclassifications despite the distribution of classes in a dataset. For example, given a sample
with 95 regular instances and 5 anomalous, classifying all instances as regular will yield 95%
accuracy, which seems high. However, no anomalous points were classified correctly. In this
case of uneven class distribution, it would be more effective to use F-Score (5.5). F-Score
considers the false predictions and is described as a harmonic mean of the precision and
recall (sensitivity):

F-Score = 2 × Precision × Recall
Precision + Recall . (5.5)

It measures the discriminating ability of the classifier to identify classified and misclassi-
fied anomalies. In case of misclassified anomalous points in the given example, where the
accuracy score is 95%, the F-Score is zero.

The precision identifies true anomalies among all data points that are classified as
anomalies and shows how many positively identified instances were relevant:

Precision = TP

TP + FP
. (5.6)

50

Table 5.1: Most relevant features and their importance for CIC-IDS datasets. Feature im-
portance score in parentheses: decreased impurity weighted by the probability of reaching
the node

CIC-IDS2017 Wednesday, July 5
1. feature 84: BiFlowsCount (0.189) 11. feature 58: Average Packet Size (0.026)
2. feature 5: Protocol (0.049) 12. feature 46: Packet Length Mean (0.025)
3. feature 53: ACK Flag Count (0.044) 13. feature 29: Fwd IAT Max (0.025)
4. feature 80: Idle Mean (0.039) 14. feature 2: Source Port (0.024)
5. feature 18: Bwd Packet Length Mean (0.038) 15. feature 75: min_seg_size_forward (0.023)
6. feature 24: Flow IAT Max (0.036) 16. feature 19: Bwd Packet Length Std (0.021)
7. feature 4: Destination Port (0.034) 17. feature 44: Min Packet Length (0.020)
8. feature 60: Avg Bwd Segment Size (0.033) 18.feature 54: URG Flag Count (0.017)
9. feature 47: Packet Length Std (0.029) 19. feature 16: Bwd Packet Length Max (0.017)
10. feature 82: Idle Max (0.027) 20. feature 28: Fwd IAT Std (0.017)
CSE-CIC-IDS2018 Thursday, February 15
1. feature 70: Fwd Seg Size Min (0.218) 11. feature 68: Init Bwd Win Byts (0.020)
2. feature 67: Init Fwd Win Byts (0.086) 12. feature 18: Flow IAT Mean (0.020)
3. feature 79: BiFlowsCount (0.069) 13. feature 22: Fwd IAT Tot (0.020)
4. feature 1: Protocol (0.043) 14. feature 26: Fwd IAT Min (0.019)
5. feature 0: Dst Port (0.041) 15. feature 25: Fwd IAT Max (0.018)
6. feature 48: PSH Flag Cnt (0.034) 16. feature 23: Fwd IAT Mean (0.016)
7. feature 12: Bwd Pkt Len Max (0.030) 17. feature 75: Idle Mean (0.015)
8. feature 15: Bwd Pkt Len Std (0.029) 18. feature 3: Flow Duration (0.015)
9. feature 49: ACK Flag Cnt (0.026) 19. feature 20: Flow IAT Max (0.015)
10. feature 21: Flow IAT Min (0.021) 20. feature 41: Pkt Len Max (0.015)
CSE-CIC-IDS2018 Friday, February 16
1. feature 0: Dst Port (0.246) 11. feature 44: Pkt Len Var (0.024)
2. feature 8: Fwd Pkt Len Max (0.128) 12. feature 37: Bwd Header Len (0.023)
3. feature 11: Fwd Pkt Len Std (0.095) 13. feature 19: Flow IAT Std (0.018)
4. feature 41: Pkt Len Max (0.056) 14. feature 54: Pkt Size Avg (0.018)
5. feature 55: Fwd Seg Size Avg (0.047) 15.feature 25: Fwd IAT Max (0.017)
6. feature 10: Fwd Pkt Len Mean (0.046) 16. feature 14: Bwd Pkt Len Mean (0.016)
7. feature 43: Pkt Len Std (0.044) 17.feature 68: Init Bwd Win Byts (0.015)
8. feature 15: Bwd Pkt Len Std (0.033) 18. feature 48: PSH Flag Cnt (0.016)
9. feature 12: Bwd Pkt Len Max (0.032) 19.feature 67: Init Fwd Win Byts (0.012)
10.feature 23: Fwd IAT Mean (0.026) 20. feature 6: TotLen Fwd Pkts (0.011)
CIC-DDoS2019 Saturday, January 12
1. feature 85: BiFlowsCount (0.206) 11. feature 21: Flow Packets/s (0.029)
2. feature 2: Source Port (0.086) 12. feature 46: Packet Length Mean (0.021)
3. feature 4: Destination Port (0.081) 13. feature 55: CWE Flag Count (0.020)
4. feature 54: URG Flag Count (0.076) 14. feature 5: Protocol (0.020)
5. feature 53: ACK Flag Count (0.056) 15. feature 58: Average Packet Size (0.020)
6. feature 13: Fwd Packet Length Min (0.051) 16. feature 57: Down/Up Ratio (0.019)
7. feature 59: Avg Fwd Segment Size (0.042) 17. feature 20: Flow Bytes/s (0.018)
8. feature 42: Fwd Packets/s (0.038) 18. feature 72: Init_Win_bytes_forward (0.014)
9. feature 44: Min Packet Length (0.038) 19. feature 51: RST Flag Count (0.011)
10. feature 14: Fwd Packet Length Mean (0.030) 20. feature 35: Bwd IAT Min (0.009)

51

Table 5.2: Most relevant features and their importance: BGP datasets: Slammer, Nimda,
and Code Red I. Feature importance score in parentheses: decreased impurity weighted by
the probability of reaching the node

Slammer
1. feature 34: IGP packets (0.116) 11. feature 37: Packet size (B) (0.029)
2. feature 1: Number of announcements (0.112) 12. feature 6: Maximum AS-path length (0.024)
3. feature 36: Number of incomplete packets (0.102) 13. feature 13: Interarrival time (0.023)
4. feature 3: Number of announced NLRI prefixes (0.094) 14. feature 7: Average unique AS-path length (0.020)
5. feature 9: Number of duplicate withdrawals (0.084) 15. feature 5: Average AS-path length (0.019)
6. feature 8: Number of duplicate announcements (0.073) 16. feature 11: Average edit distance (0.018)
7. feature 10: Number of implicit withdrawals (0.072) 17. feature 20: Maximum edit distance n = 13 (0.016)
8. feature 4: Number of withdrawn NLRI prefixes (0.071) 18. feature 35: Number of EGP packets (0.009)
9. feature 2: Number of withdrawals (0.043) 19. feature 28: Maximum AS-path length n = 10 (0.004)
10. feature 12: Maximum edit distance (0.031) 20. feature 26: Maximum AS-path length n = 8 (0.004)
Nimda
1. feature 34: Number of IGP packets (0.136) 11. feature 8: Number of duplicate announcements (0.047)
2. feature 1: Number of announcements (0.129) 12. feature 13: Interarrival time (0.023)
3. feature 3: Number of announced NLRI prefixes (0.100) 13. feature 7: Average unique AS-path length (0.020) (0.019)
4. feature 4: Number of withdrawn NLRI prefixes (0.079) 14. feature 5: Average AS-path length (0.019)
5. feature 9: Number of duplicate withdrawals (0.075) 15. feature 35: Number of EGP packets (0.013)
6. feature 12: Maximum edit distance (0.067) 16. feature 6: Maximum AS-path length (0.011)
7. feature 37: Packet size (B) (0.059) 17. feature 11: Average edit distance (0.010)
8. feature 2: Number of withdrawals (0.055) 18. feature 16: Maximum edit distance n = 9 (0.004)
9. feature 36: Number of incomplete packets (0.054) 19. feature 14: Maximum edit distance n = 7 (0.004)
10. feature 10: Number of implicit withdrawals (0.049) 20. feature 32: Maximum AS-path length n = 14 (0.004)
Code Red I
1. feature 34: Number of IGP packets (0.137) 11. feature 8: Number of duplicate announcements (0.049)
2. feature 1: Number of announcements (0.137) 12. feature 13: Interarrival time (0.025)
3. feature 3: Number of announced NLRI prefixes (0.096) 13. feature 7: Average unique AS-path length (0.021) (0.019)
4. feature 4: Number of withdrawn NLRI prefixes (0.079) 14. feature 5: Average AS-path length (0.020)
5. feature 9 : Number of duplicate withdrawals (0.070) 15. feature 35: Number of EGP packets (0.012)
6. feature 12: Maximum edit distance (0.065) 16. feature 11: Average edit distance (0.009)
7. feature 36: Number of incomplete packets (0.058) 17. feature 6: Maximum AS-path length (0.009)
8. feature 37: Packet size (B) (0.057) 18. feature 32: Maximum AS-path length n = 14 (0.004)
9. feature 2: Number of withdrawals (0.055) 19. feature 18: Maximum edit distance n = 11 (0.004)
10. feature 10: Number of implicit withdrawals (0.049) 20. feature 29: Maximum AS-path length n = 11 (0.003)

52

Table 5.3: Most relevant features and their importance: BGP datasets: DDoS2019 and
DDoS2020. Feature importance score in parentheses: decreased impurity weighted by the
probability of reaching the node

DDoS2019
1. feature 35: EGP packets (0.116) 11. feature 12: Maximum edit distance (0.029)
2. feature 1: Number of announcements (0.112) 12. feature 4: Number of withdrawn NLRI prefixes (0.024)
3. feature 10: Number of implicit withdrawals (0.102) 13. feature 7: Average unique AS-path length (0.023)
4. feature 3: Number of announced NLRI prefixes (0.094) 14. feature 7: Average unique AS-path length (0.020)
5. feature 2: Number of withdrawals (0.084) 15. feature 13: Interarrival time (0.019)
6. feature 34: Number of IGP packets (0.073) 16. feature 11: Average edit distance (0.018)
7. feature 37: Packet size (B)(0.072) 17. feature 21: Maximum edit distance n = 14 (0.016)
8. feature 3: Number of announced NLRI prefixes (0.071) 18. feature 5: Average AS-path length (0.009)
9. feature 8: Number of duplicate announcements (0.043) 19. feature 20: Maximum edit distance n = 13 (0.004)
10. feature 9: Number of duplicate withdrawals (0.031) 20. feature 22: feature 22: Maximum edit distance n = 15 (0.004)
DDoS2020
1. feature 8: Number of duplicate announcements (0.136) 11. feature 12: Maximum edit distance (0.047)
2. feature 2: Number of withdrawals(0.129) 12. feature 35: Number of EGP packets (0.023)
3. feature 9: Number of duplicate withdrawals (0.100) 13. feature 13: Interarrival time (0.019)
4. feature 36: Number of incomplete packets (0.009) 14. feature 11: Average edit distance (0.019)
5. feature 3: Number of announced NLRI prefixes (0.075) 15. feature 6: Maximum AS-path length (0.013)
6. feature 34: Number of IGP packets (0.013) (0.004) 16. feature 5: Average AS-path length (0.011)
7. feature 1: Number of announcements (0.059) 17. feature 7: Average unique AS-path length (0.010)
8. feature 37: Packet size (B) (0.055) 18. feature 20: Maximum edit distance n = 13 (0.004)
9. feature 4: Number of withdrawn NLRI prefixes (0.054) 19. feature 23: Maximum edit distance n = 16 (0.004)
10. feature 10: Number of implicit withdrawals (0.049) 20. feature 22: Maximum edit distance n = 15 (0.004)

Table 5.4: Confusion matrix

Predicted class
Actual class Negative (regular) Positive (anomaly)

Negative (regular) TN FP
Positive (anomaly) FN TP

Recall measures the ability of the model to identify correctly predicted anomalies and shows
how many relevant instances are selected:

Recall = TP

TP + FN
. (5.7)

Specificity or true negative rate, measures the proportion of actual negatives that are
correctly identified:

Specificity = TN

TN + FP
. (5.8)

False alarm rate (FAR) is a common measure used for evaluating intrusion detection
models:

FAR = 1 − Specificity = FP

TN + FP
. (5.9)

53

5.3 Experimental Procedure

The experiments are performed on Windows 10 64-bit Operating System and Intel Core
i7-8650U CPU at 1.9-2.11 GHz. We use Python 3.8 and import the following libraries and
packages:

• numpy: Library that supports large and multidimensional arrays and matrices, as well
as high-level mathematical functions to manipulate these arrays and matrices [125].

• pandas: Library for data manipulation and analysis [126].

• scipy: Package that provides a wide range of functions to work around with differ-
ent format of files; we imported: "sparse" for sparse matrices manipulation; scipy.io:
Module that allows to read data from and write data to a variety of file formats;
scipy.stats a module that includes a large number of probability distributions, along
with a growing library of statistical functions.

• scikit-learn/sklearn: Library that contains various classification, regression, and
clustering algorithms (such as random forests). It is designed to interoperate with the
Python numerical (numpy) and scientific libraries (scipy); employed were: "preprocess-
ing", sklearn.decomposition "PCA" for linear dimensionality reduction, sklearn.
linear_model "Ridge" for linear least squares with L2 regularization, sklearn.metrics
"accuracy_score", "f1_score", sklearn.model_selection "train_test_split" [127].

• math: Provides an access to mathematical functions defined by the C standard [129].

5.3.1 Data Preprocessing: CIC-IDS Datasets

The numbers of features in CIC-IDS2017, CSE-CIC-IDS2018, and CIC-DDoS2019 datasets
are 84, 79, and 85, respectively. As discussed in Section 5.1, we extract 20 most important
features from each dataset to train the model. Categorical features are converted to numeric
(by applying pandas.to_numeric), with setting the invalid parsing to Not a Number (NaN).
The values of raw data varied broadly. Therefore, in order to normalize the range of features,
we apply min-max scaling, so that each feature contributes proportionately. Normalization
keeps the input data bounded avoiding outliers. Min-max scaling translates each feature
leaving it in the given range of the training set (between zero and one). When using min-
max scaling, NaN are treated as missing values and kept in normalized data. The scaling is
given by:

x′ = x − min(x)
max(x) − min(x) . (5.10)

After normalization NaN are converted to 0. A target data frame is created while converting
all the ’BENIGN’ labels to 0 and the remaining to 1.

54

Bias in the training dataset may affect the performance of machine learning models.
Oversampling and undersampling are the resampling techniques applied to imbalanced
datasets with a skewed class distribution [130]. Oversampling is duplicating samples from
the minority class (the class with the smallest number of data points). Undersampling is
removing samples from the majority class. These resampling techniques are illustrated in
Fig. 5.1. The total, regular, and anomalous number of points before applying resampling
with the CIC-IDS datasets are shown in Table 5.5.

Table 5.5: Number of data points before resampling

Dataset Class Number of data points
CIC-IDS2017, Wednesday, July 5, 2017 Total 692,703

Regular 440,031
Anomaly 252,672

CSE-CIC-IDS2018, Thursday, February 15, 2018 Total 1,048,575
Regular 996,077
Anomaly 52,498

CSE-CIC-IDS2018, Friday, February 16, 2018 Total 1,048,575
Regular 446,772
Anomaly 601,802

CIC-DDoS2019, Saturday, January 12, 2019 Total 1,000,000
Regular 3,654
Anomaly 996,346

We apply both random oversampling and random undersampling. Random oversampling
involves randomly selecting examples from the minority class, and including them with
replacement to the dataset achieving the desired split across the classes. The examples
from the minority are selected from the original dataset and inserted to the new “more
balanced” dataset multiple times. These samples are returned or “replaced” in the original
dataset, allowing to be selected again. Random undersampling involves randomly selecting
samples from the majority class to be removed from a dataset. Number of points in the
majority class is decreased until the desired class distribution is achieved. A drawback of
undersampling is that valuable information may be removed from the majority class. Due to
removal of random samples, it may be infeasible to keep “more important” information in
the majority class. Random oversampling and random undersampling are known as “naive
resampling” because no assumptions about the data is made and no heuristics are used.
Random resampling is simple to implement and fast to execute even with large datasets. It
may be employed for binary and multi-class classification tasks [130].

CIC-IDS2017 dataset initially contains 692,703 data points. The dataset is unbalanced:
440,031 regular instances and 252,672 anomalies. When creating balanced datasets, we
apply random resampling: We experiment with oversampling (oversampling anomalies),
followed by undersampling (undersampling regular points).

The number of data points in CSE-CIC-IDS2018, on both days (Thursday and Friday)
is 1,048,575. CSE-CIC-IDS2018 dataset collected on Thursday, February 15, 2018 includes

55

Figure 5.1: Resampling: a widely adopted technique for dealing with unbalanced datasets.
It consists of removing samples from the majority class (undersampling) or adding more
samples from the minority class (oversampling) [131].

996,077 regular points and 52,498 anomalies. For the experiments with balanced datasets,
we oversample underrepresented attack class (anomalies). The number of data points after
applying undersampling of regular class is 104,996. There is no need to apply resampling to
CSE-CIC-IDS2018 dataset collected on Friday, February 16, 2018 since the dataset contains
57% anomaly and 43% regular data points.

CIC-DDoS2019 dataset consists of multiple datasets. We merge DrDoS_NTP.csv, Dr-
DoS_LDAP.csv, Syn.csv, and UDPLag.csv files. Since the dataset, with the total of 1,000,000
points, is highly unbalanced, we only conduct experiments with balanced (resampled)
dataset. We apply minority (regular class) oversampling. The final dataset has 1,000,000
data points containing 50% regular data points.

The number of total, regular, and anomalous data points after applying oversampling
and undersampling is shown in Table 5.6. Because the size of training data impacts the

Table 5.6: Number of data points after oversampling and undersampling

Dataset Class After After
oversampling undersampling

CIC-IDS2017, Total 800,000 505,344
Wednesday, July 5 Regular 399,919 252,672

Anomaly 400,081 252,672
CSE-CIC-IDS2018, Total 1,000,000 104,996
Thursday, February 15 Regular 500,120 52,498

Anomaly 499,880 52,498
CIC-DDoS2019, Total 1,000,000
Saturday, January 12 Regular 500,153

Anomaly 499,847

performance of machine learning models, the datasets are of comparable sizes (exception:
undersampled datasets). In order to speed up the computation, a fraction of each dataset
may be used: we use half of each dataset.

56

5.3.2 Data Preprocessing: BGP Datasets

We use BGP datasets that contain update messages collected during the time periods when
the Internet experienced major anomalies. The amount of total, regular, and anomalous
points in Slammer, Nimda, and Code Red I datasets are provided in Table 5.7. The amount
of total, regular, and anomalous points in DDoS2019 and DDoS2020 datasets are provided
in Table 5.8.

Table 5.7: Number of total, regular, and anomalous points in Slammer, Nimda, and Code
Red I datasets

Dataset Class Number of points
Slammer Total 7,200

Regular 6,331
Anomaly 869

Nimda Total 8,609
Regular 7,308
Anomaly 1,301

Code Red I Total 7,200
Regular 6,600
Anomaly 600

Table 5.8: Number of total, regular, and anomalous points in AWS 2019 and AWS 2020
datasets

Dataset Class Number of points
DDoS2019-v1 Total 7,200

Regular 6,719
Anomaly 481

DDoS2019-v2 Total 10,080
Regular 6,390
Anomaly 3,690

DDoS2020 Total 10,080
Regular 5,709
Anomaly 4,371

For Slammer and Code Red I anomalies, we consider a five-day period: one day of the
attack (anomalous data points) and two days prior and two days after the attack (regular
data points). Slammer and Code Red I attacks lasted 869 and 600 minutes, respectively.
The duration of regular periods within two days before and after the Slammer and Code
Red I are 6,331 and 6,600 minutes, respectively. The Nimda attack lasted 1,301 minutes.
We use two and a half days prior to the Nimda event and two days after the attack as
regular data points. Oversampling the anomalous points in BGP datasets in order to have
balanced datasets, causes significant improvement (around 100%) in the performance of
machine learning models implying that the models learn well when smaller datasets, such
as BGP datasets, get resampled. Therefore, for the experiments in this Thesis, we are not

57

balancing the BGP datasets via resampling techniques. The data represented by matrices:
7,200 by 37, 8,609 by 37, and 7,200 by 37, where 37 corresponds to 37 features.

For DDoS2019-v1 dataset, we consider a five-day period with 8 hours of anomaly. For
DDoS2019-v2, we select approximately 2.5 days of anomaly that includes the ransom-driven
DDoS attack on October 23, 2019, and two days prior and two days after the attacks for
regular data points. DDoS2020 dataset contains 3 days of anomalies, and four days of regular
points.

The 20 most important features from each dataset are used to train the model, as
discussed in Section 5.1. Similarly to CIC-IDS datasets, categorical features found in features
columns are converted to a numeric type by applying pandas.to_numeric. To normalize the
range of features, we apply min-max scaling so that each feature contributes proportionately.

Training set is a set of observations used for training (fitting) a model. Test set is a set
of new observations. Number of data points and properties of a model often determine how
to split a dataset. Most commonly, the training and test sets are split in proportions 7:3 or
8:2. If a model requires a large number of data points to train, the test set may be reduced
to improve the performance [19]. We have divided the data into 80% or 60% for training
and 20% or 40% for test, as shown in Tables 6.2, 6.4, 6.5, 6.7, and 6.9.

5.4 Cross-Validation in ESN

Choosing the best hyperparameters is known as model selection. It is not recommended to
select models using a test set. Instead, a training set is split into smaller subsets where
validation subsets are used to evaluate the model. K-fold cross-validation, the most popular
cross-validation technique, allows (K −1)/K of the data to be used for training and the rest
to assess performance. When employing a k-fold cross-validation, the entire training set is
used for both training and validating where each subset is used for validation only once.
The 10-fold cross-validation is illustrated in Fig. 5.2. In the 10-fold cross-validation, the
original training dataset is randomly partitioned into 10 equal-sized subsets. Nine subsets
are used for training and one is left as a validation set to evaluate the model. This process
continues until all subsets have been used for both training and validation and have returned
10 estimation results. The average of the 10 results is the final estimation of the model
performance useful for model selection. When the model achieves low training loss and low
test loss, the model is said to generalize.

The k-fold cross-validation may be effective in preventing models’ underfitting and over-
fitting. Underfitting occurs when a model is not fitted well enough: when training and test
losses are high. A different selection of hyperparameters may solve this issue. In practice,
underfitting is easy to detect while overfitting is rather challenging. When model overfits,
the model is fitted too well to the data and its test loss is much higher than training loss.

58

Figure 5.2: Illustration of the 10-fold cross validation. The original training dataset is par-
titioned into 10 folds. Each fold is used once as a validation set during the training process.
The final estimation is the average number of the 10 validation results.

In general, training a model on larger datasets makes it perform better on test data.
Therefore, when the training set is smaller, the validation loss is a less accurate gauge of
true performance on the testing set. This is one of the drawbacks of cross-validation. When
training set is smaller, machine learning models may underfit. Another drawback of k-fold
cross-validation is computational cost: number of training runs is increased by k. This may
be problematic for models where the training is computationally expensive [19]. For example,
this may occur with ESN when increasing the number of reservoir nodes. Typically, ESN
and other time series algorithms are validated on a single data subset. Cross-validation may
optimize the basic ESN performance [136]. We use a variation of 10-fold cross-validation
called time series cross-validation in order to test if having several splits and averaging the
results would produce a better performance.

59

Chapter 6

Performance Results

We generate the reservoir by creating a class (ESN_Reservoir) with hyperparameters:

• proc_nodes: N z determines the size of the reservoir, number of reservoir/internal/pro-
cessing nodes (units/neurons);

• s_radius: Largest eigenvalue of reservoir connection weights matrix W.

• leak: Leaking rate of the reservoir.

• connectivity: Ratio of nonzero elements in the reservoir, related to the sparsity of the
reservoir. This hyperparameter is not used in a deterministic topology.

• inp_scale: Scaling of input weights matrix W in.

• noise: Deviation of the Gaussian noise added to the state update.

• deterministic_res: Deterministic (also known as recursive or circular) reservoir with
each weight having the same value.

Reservoirs that vary in size, number of nodes, or other hyperparameters may behave
differently in various learning tasks [62]. However, contribution of hyperparameters to the
performance of ESN models may be ambiguous. Therefore, thorough hyperparameters ini-
tialization may improve ESN’s predictive or classification capabilities.

The input and reservoir weights are generated randomly. To generate the input weights,
we use a binomial distribution with n = 1, p = 0.5, and the size = Nx × N z. The reservoir
weights W are usually sparse (not fully connected) because sparse connections yield better
performance and speed up the updates [72]. It is recommended to connect each internal
node to a small number of other internal nodes (10 nodes). The connectivity in this Thesis
is set to 25% (alternatively, sparsity is set to 75%). Generated reservoir weights are set to
be uniformly distributed between [−0.5, 0.5] centered around 0.0.

A simple deterministically constructed circular reservoir was sufficient for a variety
of tasks to obtain performances comparable to the ESN with randomly generated reser-
voirs [134]. In order to evaluate the reservoir with deterministic topology, that is designed

60

with minimal complexity we may select a deterministic reservoir. The reservoir weights
W ∈ RNz×Nz are then generated in a deterministic manner where each connection is hav-
ing the same weight.

A larger value of spectral radius is employed for the tasks where a longer history of the
input is required. If the output y(n) relies on a more recent history of the input x(n), a
smaller value of the radius is recommended. To assure an echo state property, the ability
of the reservoir to gradually wash out the effect of past input on the present state, the
spectral radius value is kept below 1. [72]. We divide W by the spectral radius to obtain
a matrix with a unit spectral radius, which is later scaled with the given value of spectral
radius. Spectral radius scales the matrix W (scales the width of the distribution of nonzero
elements):

W = W ∗ ρ

max|λ|
. (6.1)

Usually, the level of input weights scaling is determined by trial and error. The input
weights are scaled by 0.3. Scaling of both Win and W indicates how much the current state
z(n) relies on the input. Furthermore, principal component analysis (PCA) characterized by
dimensionality reduction with data preservation may be included before feeding the input
to the reservoir.

The training/test phase begins upon calculating the initial reservoir state matrix (when
loading x_train/x_test). Then, we set the sequence of reservoir states at each instance - the
state matrix Z (matrix Z ∈ RN×(Nz+Nx) is generated by concatenating the column vectors
[z(n); x(n)] horizontally over the training data points n) using (6.2) and (6.3), where for
every time step n, the current state of a reservoir is:

z̃(n) = tanh(x(n)Win + z(n − 1)W), (6.2)

and the update is:
z(n) = (1 − α)z(n − 1) + αz̃(n), (6.3)

where z(n−1) ∈ RNz is the previous state. Furthermore, we include noise for regularization.
The addition of noise during the training of a machine learning model has a regularization
effect and improves the robustness of the model [132]. It shows a similar impact on the loss
function (2.23) as the addition of a penalty term, as in the case of weight regularization
methods. A schematic of ESN is shown in Fig. 6.1. After training the model, we evaluate
its performance using the metrics described in Section 5.2.

61

Figure 6.1: ESN structure. Shown are: input X , reservoir state Z, and output Y; trainable
matrix Wo; Win and Wfb are randomly initialized matrices;

∫
represent non-linear trans-

formation; “n−1” indicates the unit delay. Wfb and adjacent “n−1” unit delay are optional
feedback.

6.1 Performance of ESN Models with Balanced and Unbal-
anced Datasets

We follow the guides for applying the ESN for time-series classification [72, 128] and conduct
grid-search by varying reservoir hyperparameters’ settings. The results are generated based
on the scripts provided in the Appendix: Section 7. In order to evaluate the influence of
the hyperparameters on the ESN performance, we select the following values, as shown
in Table 6.1: Deterministic Reservoir Weights W are set to either False or True; leaking
rate ("α"): None and 0.2; spectral radius ("ρ(W)"): 0.1 and 0.9; number of reservoir nodes
("Nz"): 10 and 30 (higher values for reservoir nodes produced memory errors and thus are
not considered); connectivity: 0.25; input scaling: 0.3; and noise level: 0.01. We develop the
ESN models when varying one hyperparameter at a time and fixing values for the rest, as
shown in Table 6.1.

Table 6.1: ESN models and hyperparameters: deterministic reservoir weights W, leaking
rate (α), spectral radius (ρ(W)), and number of reservoir nodes (Nz)

Deterministic W ρ(W) α Nz

ESN1 False 0.9 0.2 10
ESN2 True 0.9 0.2 10
ESN3 False 0.1 0.2 10
ESN4 False 0.9 None 10
ESN5 False 0.9 0.2 30

62

Number of data points in training and test sets for the CIC-IDS datasets is provided
in Table 6.2 while the validation and test performance results are given in Table 6.3. We

Table 6.2: Number of data points in training and test sets

Dataset Class Number of data points Training set Test set
CIC-IDS2017, Total 346,352 277,081 69,271
Wednesday, July 5 Regular 219,984 175,855 44,129

Anomaly 126,368 101,226 25,142
CSE-CIC-IDS2018, Total 525,288 419,430 104,858
Thursday, February 15 Regular 497,973 398,349 99,624

Anomaly 26,315 21,081 5,234
CSE-CIC-IDS2018, Total 525,288 419,430 104,858
Friday, February 16 Regular 223,208 178,483 44,725

Anomaly 301,080 240,947 60,133
CIC-DDoS2019, Total 500,000 400,000 100,000
Saturday, January 12 Regular 249,977 200,016 49,961

Anomaly 250,023 199,984 50,039

perform a model selection based on 10-fold cross-validation results that indicate that the
ESN5 is the best model among evaluated ESNs in terms of accuracy, F-Score, and false
alarm rate. Increasing the number of reservoir nodes Nz enhances the performance of ESN
models: ESN5 model with 30 reservoir nodes shows better performance than ESN1 model
with 10 reservoir nodes. Reducing the radius of the reservoir degrades the performance:
the ESN3 model with a low spectral radius performs worse than the ESN1 model with a
larger spectral radius. Additional benefits of using cross-validation are improved stability:
training on multiple folds could be a form of regularization. Moreover, if data have occasional
imperfections, averaging validation over many folds reduces their effects [136].

In order to balance CIC-IDS2017, Wednesday, July 5, 2017, CSE-CIC-IDS2018, Thurs-
day, February 15, 2018, and CIC-DDoS2019, Saturday, January 12, 2019, we use the resam-
pling techniques: random oversampling and undersampling, as described in Subsection 5.3.1.
As shown in Table 6.6, there is a difference compared to the cases with unbalanced datasets.
The results vary depending on the used resampling technique. We observe that resampling
the CIC-IDS datasets neither significantly improves nor reduces the performance of ESN
models. Training a model on larger data makes it perform better on test data [133]. Im-
balanced and balanced CIC-IDS datasets are large enough for the models to learn diverse
examples and show comparable classification performance with no overfitting. For balanced
(resampled) CIC-IDS datasets, ESN5 is the best model in terms of accuracy, F-Score, and
false alarm rate.

Number of data points in training and test sets for BGP datasets: Slammer, Nimda,
and Code Red I are given in Table 6.7 while the performance results are given in Table 6.8.
ESN3 is the best model to detect anomalies in Slammer dataset while ESN2 is the best
model to detect anomalies in Nimda and Code Red I datasets. ESN models are able to
detect only half of the anomalies in Nimda and Code Red I datasets yielding low F-Score.

63

Table 6.3: Performance of ESN models when evaluated using CIC-IDS2017 Wednesday, July
5, 2017 (unbalanced), CIC-CSE-IDS2018 Thursday, February 15, 2018 (unbalanced), CIC-
CSE-IDS2018 Friday, February 16, 2018 (balanced), and CIC-DDoS2019 Saturday, January
12, 2019 (balanced)

CIC-IDS2017, Wednesday, July 5 2017
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.929 0.928 0.129 0.927 0.907 0.106
ESN2 0.927 0.925 0.136 0.958 0.945 0.058
ESN3 0.895 0.894 0.176 0.915 0.893 0.120
ESN4 0.900 0.899 0.189 0.919 0.899 0.120
ESN5 0.967 0.950 0.057 0.973 0.965 0.038

CIC-CSE-IDS2018, Thursday, February 15 2018
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.938 0.937 0.109 0.983 0.854 0.017
ESN2 0.927 0.925 0.113 0.980 0.828 0.020
ESN3 0.798 0.787 0.401 0.961 0.679 0.032
ESN4 0.855 0.851 0.259 0.979 0.824 0.021
ESN5 0.945 0.944 0.011 0.997 0.973 0.003

CIC-CSE-IDS2018, Friday, February 16 2018
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.988 0.990 0.115 0.997 0.998 0.006
ESN2 0.934 0.937 0.123 0.980 0.828 0.020
ESN3 0.985 0.988 0.117 0.996 0.996 0.010
ESN4 0.991 0.993 0.032 0.999 0.999 0.003
ESN5 0.995 0.996 0.009 0.999 0.999 0.000

CIC-DDoS2019, Saturday, January 12 2019
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.989 0.989 0.017 0.994 0.994 0.012
ESN2 0.992 0.991 0.013 0.999 0.997 0.000
ESN3 0.922 0.921 0.154 0.927 0.932 0.146
ESN4 0.957 0.957 0.077 0.981 0.999 0.000
ESN5 0.998 0.998 0.002 0.999 0.999 0.001

64

Table 6.4: Number of data points after oversampling

Dataset Class After Training Test
oversampling set set

CIC-IDS2017, Total 400,000 320,000 80,000
Wednesday, July 5 Regular 200,376 160,415 40,039

Anomaly 199,624 159,585 39,961
CSE-CIC-IDS2018, Total 500,000 400,000 100,000
Thursday, February 15 Regular 250,060 200,403 50,343

Anomaly 249,940 199,597 49,657
CIC-DDoS2019, Total 500,000 400,000 100,000
Saturday, January 12 Regular 249,977 200,016 50,039

Anomaly 250,023 199,984 49,961

Table 6.5: Number of data points after undersampling

Dataset Class After Training Test
undersampling set set

CIC-IDS2017, Total 252,672 202,137 50,535
Wednesday, July 5 Regular 126,388 100,918 25,470

Anomaly 126,284 101,219 25,065
CSE-CIC-IDS2018, Total 52,498 41,998 10,500
Thursday, February 15 Regular 26,280 21,012 5,294

Anomaly 26,218 20,986 5,206

Numbers of data points in training and test sets for BGP datasets that contain DDoS
attacks of 2019 and 2020 are given in Table 6.9 while the performance results are shown
in Table 6.10. The models when trained using the DDoS2019 dataset that contains only
one attack (DDoS2019-v1) that occurred on October 22, 2019 categorize almost all the
points as regular producing close to 0 recall and thus low F-Score. The classifier is not
able to adequately predict anomalies because the dataset does not clearly reflect the dif-
ference between regular and anomalous traces shown in Fig. A.11; therefore, the results
of ESN models trained with this dataset are not included. When labeling both October
22 and 23, 2019 as days of anomalies, shown in Fig. 4.2), performance of the ESN models
improves. However, the models still underfit and are unable to capture underlying trend
of the data, due to the observed anomalous behavior outside of the “anomalous” days as
well as some regular behavior during the “anomalous” days. Similar behavior is observed
in case of DDoS2020: large spikes in BGP announcements, announced NLRI prefixes, and
other features are seen on a “regular” day on February, 22, 2020 (Fig. 4.4). However, no
known anomaly was reported during that period. There is a difference when training the
ESN models using datasets collected either from RIPE or Route Views. ESN5 is the best
model to detect anomalies in these datasets.

The employed datasets influence the performance of ESN models. The ESN models
evaluated using CIC-IDS datasets perform better than using BGP datasets. Note that CIC-
IDS datasets are synthetically generated and contain records of various application layer

65

Table 6.6: Performance of ESN models when evaluated using resampled CIC-IDS2017
Wednesday, July 5, 2017 and CIC-CSE-IDS2018 Thursday, February 15, 2018 datasets

CIC-IDS2017, Wednesday, July 5 2017
Oversampling Undersampling

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.926 0.930 0.127 0.925 0.929 0.135
ESN2 0.946 0.948 0.099 0.920 0.924 0.140
ESN3 0.911 0.917 0.159 0.818 0.840 0.321
ESN4 0.896 0.906 0.202 0.924 0.928 0.133
ESN5 0.971 0.972 0.052 0.960 0.960 0.074

CIC-CSE-IDS2018, Thursday, February 15 2018
Oversampling Undersampling

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.981 0.982 0.035 0.970 0.971 0.059
ESN2 0.976 0.976 0.046 0.981 0.981 0.038
ESN3 0.891 0.902 0.215 0.837 0.860 0.322
ESN4 0.982 0.982 0.036 0.823 0.850 0.355
ESN5 0.990 0.991 0.018 0.988 0.989 0.022

Table 6.7: Number of total, regular, and anomalous points in Slammer, Nimda, and Code
Red I datasets

Dataset Class Entire dataset Training set Test set
Slammer Total 7,200 5,760 1,440

Regular 6,331 5,058 1,273
Anomaly 869 702 167

Nimda Total 8,609 6,887 1,722
Regular 7,308 5,841 1,467
Anomaly 1,301 1,046 255

Code Red I Total 7,200 5,760 1,440
Regular 6,600 5,272 1,328
Anomaly 600 488 112

66

Table 6.8: Performance of ESN models when evaluated using BGP datasets: Slammer,
Nimda, and Code Red I

Slammer
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.587 0.549 0.446 0.907 0.699 0.080
ESN2 0.625 0.654 0.366 0.908 0.710 0.083
ESN3 0.536 0.563 0.453 0.930 0.726 0.036
ESN4 0.505 0.524 0.471 0.927 0.712 0.036
ESN5 0.636 0.669 0.341 0.900 0.699 0.095

Nimda
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.463 0.465 0.512 0.805 0.502 0.166
ESN2 0.507 0.529 0.473 0.821 0.470 0.130
ESN3 0.446 0.439 0.507 0.843 0.167 0.024
ESN4 0.436 0.433 0.514 0.841 0.122 0.021
ESN5 0.492 0.497 0.513 0.818 0.516 0.150

Code Red I
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.619 0.612 0.331 0.910 0.432 0.040
ESN2 0.636 0.671 0.358 0.919 0.424 0.027
ESN3 0.678 0.700 0.270 0.913 0.046 0.002
ESN4 0.907 0.876 0.001 0.901 0.536 0.075
ESN5 0.598 0.605 0.401 0.910 0.547 0.062

67

Table 6.9: Number of total, regular, and anomalous points in DDoS2019 and DDoS2020
datasets

Dataset Class Entire dataset Training set Test set
DDoS2019 Total 10,080 6,048 4,032

Regular 6,390 3,823 2,567
Anomaly 3,690 2,225 1,465

DDoS2020 Total 10,080 8,064 2,016
Regular 5,709 4,572 1,136
Anomaly 4,371 3,492 880

protocols: HTTPS, HTTP, SMTP, POP3, IMAP, SSH, and FTP. Therefore, features such
as distributions of packet sizes, number of packets per flow, certain patterns in the payload,
and size of payload may provide more information about regular and anomalous network
behavior for machine learning models. While Slammer, Nimda, and Code Red I as well as
DDoS2019 and DDoS2020 datasets contain records of BGP protocol only, RIPE and Route
Views BGP trace collection projects provide only estimates of AS-level Internet topologies.
They collect routing updates from a smaller number of AS peers. Their view of Internet
connectivity may be limited and including additional data from route servers and looking
glasses may help capture more complete AS-level topology [97]. The labeling of the regular
and anomaly data was based on the known time of the anomalies. However, indicated periods
of anomaly may also contain the regular BGP traces that were categorized as anomalous.
The CIC-IDS and BGP datasets that we consider consist of approximately 105 − 106 and
103 − 104 data points, respectively. Hence, training ESN models on larger datasets may
improve their performance.

6.2 Comparing Performance of ESN and Bi-LSTM in De-
tecting the Denial of Service Attacks

We use PyTorch [141], an open-source Python-based scientific computing package, to create
LSTM model. PyTorch, developed by Facebook’s AI Research lab (FAIR), is employed for
various applications including computer vision and natural language processing. Tensors
are used in PyTorch to encode the model’s parameters, inputs, and outputs. Tensors are a
specialized data structure similar to arrays and matrices. PyTorch Tensors, unlike NumPy
ndarrays, can run on GPUs. We use torch.nn that provides building blocks for any neural
network that consists of various modules (layers). The nested structure allows for building
neural network architectures of any complexity.

Our RNN contains: one bidirectional LSTM layer with input nodes = number of features
and 16 output nodes, dropout rate 0.5, and batch size 10. The LSTM layer employs the ReLU
activation function followed by fully-connected layer with 32 input and 2 output nodes. The
last layer returns logits - raw values which are passed to the F.softmax module. The logits

68

Table 6.10: Performance of ESN models: BGP DDoS2019 and DDoS2020 datasets collected
from RIPE and Route Views

DDoS2019, RIPE
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.622 0.621 0.351 0.571 0.502 0.465
ESN2 0.618 0.623 0.389 0.579 0.558 0.527
ESN3 0.549 0.546 0.398 0.481 0.522 0.702
ESN4 0.564 0.552 0.399 0.525 0.505 1.000
ESN5 0.602 0.611 0.361 0.677 0.617 0.371

DDoS2019, Route Views
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.560 0.528 0.378 0.613 0.433 0.259
ESN2 0.555 0.587 0.374 0.611 0.551 0.406
ESN3 0.551 0.552 0.394 0.615 0.261 0.130
ESN4 0.526 0.528 0.399 0.624 0.193 0.084
ESN5 0.590 0.659 0.350 0.618 0.540 0.373

DDoS2020, RIPE
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.520 0.506 0.452 0.439 0.610 0.988
ESN2 0.529 0.491 0.400 0.437 0.606 0.994
ESN3 0.529 0.491 0.390 0.437 0.607 0.998
ESN4 0.513 0.512 0.453 0.436 0.607 1.000
ESN5 0.539 0.536 0.444 0.453 0.610 0.955

DDoS2020, Route Views
Validation Test

Acc. F-Score FAR Acc. F-Score FAR
ESN1 0.513 0.491 0.400 0.477 0.609 0.877
ESN2 0.516 0.496 0.399 0.577 0.610 0.565
ESN3 0.508 0.483 0.410 0.437 0.603 0.982
ESN4 0.503 0.473 0.408 0.441 0.604 0.971
ESN5 0.553 0.554 0.413 0.595 0.621 0.536

69

Table 6.11: Performance of Bi-LSTM and ESN5 model based on accuracy, F-Score, false
alarm rate (FAR), and training time

Bi-LSTM ESN5
Acc. F-Score FAR Time (s) Acc. F-Score FAR Time (s)

CIC-IDS Datasets:
CIC-IDS2017 0.995 0.994 0.002 2,200 0.973 0.965 0.038 988
CSE-CIC-IDS2018, Thursday 0.996 0.962 0.004 3,417 0.997 0.973 0.003 2,335
CSE-CIC-IDS2018, Friday 0.976 0.979 0.000 3,149 0.999 0.999 0.000 2,369
CIC-DDoS2019 1.000 1.000 0.000 2,619 0.999 0.999 0.001 1,690

BGP Worm Datasets:
Slammer 0.958 0.827 0.024 34 0.900 0.699 0.095 8
Nimda 0.863 0.375 0.029 41 0.818 0.516 0.150 7
Code Red I 0.929 0.491 0.021 37 0.910 0.547 0.062 6

BGP DDoS Datasets:
DDoS2019, RIPE 0.388 0.478 0.837 111 0.677 0.617 0.371 12
DDoS2019, Route Views 0.654 0.791 1.000 99 0.618 0.540 0.373 6
DDoS2020, RIPE 0.346 0.514 1.000 107 0.453 0.610 0.955 9
DDoS2020, Route Views 0.760 0.864 1.000 101 0.595 0.621 0.536 11

are scaled to values [0, 1] representing the model’s predicted probabilities for each class. A
module called torch.optim allows implementation of various optimization algorithms used
for building neural networks. Most of the commonly employed optimization methods are
supported. We use torch.optim.Adam() to calculate the gradients and update the weights
when training the model. The learning rate is a hyperparameter that controls how much
to change the model in response to the evaluated loss each time the model weights are
updated. Selecting a smaller learning rate would result in a slower training causing slow
convergence. With a slow learning rate gradient descent may stuck in a local minimum. Large
learning rate may result in learning a sub-optimal set of weights or an unstable training
process (by diverging from the global minimum). When selecting the learning rate, we are
trying various values such as 0.1, 0.01, 0.001 uniformly sampled on a logarithmic scale and
observing when the objective value (nn.CrossEntropyLoss()) would stop oscillating. With
the selection of learning rate 0.001 the loss goes down considerably. After training the
network and evaluating the loss, we include additional metrics such as accuracy, F-Score,
false alarm rate, and training time.

The Bi-LSTM and ESN5 results are shown in Table 6.11. When evaluated using CIC-
IDS datasets and BGP Nimda and Code Red I datasets, ESN and Bi-LSTM show compa-
rable performance. When evaluated using BGP Slammer dataset and BGP DDoS2019 and
DDoS2020 Route Views datasets, Bi-LSTM outperforms ESN. When evaluated using BGP
DDoS2019 and DDoS2020 RIPE datasets, ESN slightly outperforms LSTM. The ESN train-
ing time is faster because ESN is not employing backpropagation. Low F-Score is produced
when missing anomalies and classifying them as regular.

70

Chapter 7

Conclusions and Future Work

Over the past decades, the Internet has been subjected to various types of malicious in-
trusions such as DoS and DDoS. DoS and DDoS detection is becoming a challenging task
due to changing network behavior and attacks patterns, especially when using classic intru-
sion detection methods. This Thesis applies machine learning techniques to detect DoS and
DDoS attacks and to show that echo state networks (ESNs) is a feasible method. ESNs, a
reservoir computing approach, help train RNNs.

We have selected synthetically generated datasets: CIC-IDS2017, CSE-CIC-IDS2018,
and CIC-DDoS2019, that reflect the characteristics of diverse regular and current mali-
cious network behavior. Synthetically generated datasets contain regular data samples and
randomly added artificial anomalies. Datasets are often unbalanced and contain only a
small portion of anomalous data points, which may affect the classification results. One
approach to create a balanced dataset is to use oversampling in order to adjust the class
distributions. We compare the performance of classification models using both unbalanced
and balanced datasets. We also used data from deployed networks collected from public
repositories Réseaux IP Européens (RIPE) and Route Views. We observed how recent large
DDoS attacks are reflected in BGP traffic records. The results show that ESN models vary
their performance depending on the employed datasets. Possible reasons why ESN models’
performance is better with CIC-IDS datasets than with BGP datasets are that synthetically
generated CIC-IDS datasets contain records of various application layer protocols: HTTPS,
HTTP, SMTP, POP3, IMAP, SSH, and FTP. Additionally, the variety of features may
provide more information of regular and anomalous behavior for machine learning models.
BGP trace collector projects, RIPE and Route Views, do not provide entire AS-level Inter-
net topologies data, and including additional data from route servers and looking glasses
may help capture more complete AS-level topology. The classifier may also have been influ-
enced by the labeling of regular and anomaly data as indicated periods of anomaly might
contain the regular BGP traces that are categorized as anomalous. Finally, training ma-
chine learning models on datasets with larger size significantly improves their performance.

71

CIC-IDS datasets used in the Thesis are approximately in the order of 105 − 106, compared
to BGP datasets available in the order of 103.

Even though k-fold cross-validation may be found problematic in terms of the compu-
tational cost (number of training runs is increased by k) and is not common for models
that rely on time-series data, it may help generate a machine learning model by selecting
optimal hyperparameters. The cross-validation process in ESN may still be computation-
ally less expensive when compared to other models (those that employ backpropagation)
because there is no need to rerun the entire network when training the model.

Performance of ESN depends on feature selection because selecting appropriate fea-
tures decreases the redundancy and enhances the classification performance. The valuable
features that are selected include standard deviation and mean of packet length, flow inter-
arrival time related features, and control flags (ACK, SYN, URG, RST, PSH, FIN). They
may be effective for machine learning classifiers because they reveal variations in packets’
lengths, bursty behavior, and misused control bits that help detect anomalous traffic. We
compare the performance of ESN to Bi-LSTM, an RNN approach, in order to examine the
effectiveness of each approach in identifying network anomalies. Bi-LSTMs treat vanishing
gradient and exploding gradient problems by efficiently coping with long-term dependencies
and gaps in data. ESN and Bi-LSTM models evaluated in this Thesis demonstrate compa-
rable accuracy, F-Score, and false alarm rates. The ESN training time is shorter because
ESNs do not employ backpropagation.

Varying the reservoir configurations, we select echo state network models and observe
the effect of hyperparameters. Increasing the number of processing nodes enhances the per-
formance of echo state networks. Decreasing the radius of the reservoir slightly degrades
the performance. Echo state networks involve a degree of uncertainty in tuning some of
the hyperparameters by trial and error. Therefore, they are less commonly used compared
to LSTM or CNN. They require further research to examine their advantages and con-
straints for identifying anomalies. The efficiency may be improved by further tuning the
hyperparameters of the reservoir and experimenting with output training and feedbacks.
Bi-directional (two-way) technique may be employed to capture dependencies in the data
forward and backward in time by using a large untrained reservoir.

72

Bibliography

[1] E. Chou and R. Groves, Distributed Denial of Service (DDoS): Practical Detection and
Defense. 1st Ed. Sebastopol, CA, USA: O’Reilly Media, 2018.

[2] T. Wong, K. Law, J. Lui, and H. Wong, “An efficient distributed algorithm to identify
and traceback DDoS traffic,” Comput. J., vol. 49, no. 6, pp. 418–442, Nov. 2006.

[3] M. Bhuyan, H. Kashyap, D. Bhattacharyya, and J. Kalita, “Detecting distributed de-
nial of service attacks: methods, tools and future directions,” Comput. J., vol. 57, no. 4,
pp. 537–556, Apr. 2014.

[4] F. Lau, S. H. Rubin, M. H. Smith, and Lj. Trajkovic, “Distributed denial of service
attacks,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., Nashville, TN, Oct. 2000,
pp. 2275–2280.

[5] What was the largest DDoS attack of all time? [Online]. Available:
https://www.cloudflare.com/learning/ddos/famous-ddos-attacks.
Accessed: Apr. 07, 2021.

[6] Mapping Mirai: A botnet case study. [Online]. Available: https://
www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-
study.html. Accessed: Apr. 07, 2021.

[7] DDoS breach costs rise to over $2M for enterprises finds Kaspersky lab report. [Online].
Available: https://usa.kaspersky.com/about/press-releases/
2018_ddos-breach-costs-rise-to-over-2m-for-enterprises-finds-kaspersky-lab-report. Ac-
cessed: Apr. 07, 2021.

[8] Cisco Annual Internet Report (2018–2023) White Paper. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html. Accessed: Apr. 07, 2021.

[9] Kaspersky report finds over half of Q3 DDoS attacks occurred in September.
[Online]. Available: https://usa.kaspersky.com/about/press-releases/2019_kaspersky-
report-finds// over-half-of-q3-ddos-attacks-occurred-in-september. Accessed: Apr. 07,
2021.

[10] Corero Security: 2019 Half-Year DDoS Trends Report. [Online]. Available:
https://www.corero.com/blog/infographic-2019-mid-year-ddos-trends-report/.
Accessed: Apr. 07, 2021.

[11] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense mecha-
nisms,” ACM SIGCOMM Comput. Commun. Rev., 34, Apr. 2004, pp. 39–53.

73

[12] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: a survey,” ACM Com-
put. Surv., vol. 41, no. 3, pp. 15:1–15:58, July 2009.

[13] Z. Zohrevand, U. Glasser, H. Y. Shahir, M. A. Tayebi, and R. Costanzo, “Hidden
Markov based anomaly detection for water supply systems,” in Proc. 2016 IEEE Int.
Conf. Big Data, Washington, DC, Dec. 2016, pp. 1551–1560.

[14] Z. Zohrevand, U. Glässer, M. A. Tayebi, H. Yaghoubi Shahir, M. Shirmaleki, and
A. Yaghoubi Shahir, “Deep learning based forecasting of critical infrastructure data,”
in Proc. 2017 ACM Conf. Inf. Knowl. Manage. (CIKM ’17), New York, NY, USA,
Nov. 2017, pp. 1129–1138.

[15] D. E. Denning, ”An Intrusion-Detection Model,” IEEE Trans. Softw. Eng., vol. SE-13,
no. 2, pp. 222–232, Feb. 1987.

[16] P. Gogoi, D. K. Bhattacharyya, B. Borah, and J. K. Kalita, “A survey of outlier detec-
tion methods in network anomaly identification,” Comput. J., vol. 54, no. 4, pp. 570–
588, Sept. 2011.

[17] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[18] A. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. 236, pp. 433–
460, Oct. 1950.

[19] C. M. Bishop, Pattern Recognition and Machine Learning. Secaucus, NJ, USA:
Springer-Verlag, 2006.

[20] P. Louridas and C. Ebert, “Machine learning,” IEEE Softw., vol. 33, no. 5, pp. 110–115,
Sept./Oct. 2016.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press,
2018.

[22] W. Alhakami, A. Alharbi, S. Bourouis, R. Alroobaea, and N. Bouguila, “Network
anomaly intrusion detection using a nonparametric Bayesian approach and feature
selection,” IEEE Access, vol. 7, pp. 52181–52190, Apr. 2019.

[23] M. Labonne, A. Olivereau, B. Polvé, and D. Zeghlache, “A cascade-structured meta-
specialists approach for neural network-based intrusion detection,” in Proc. 16th IEEE
Annu. Consumer Commun. Netw. Conf., Las Vegas, NV, USA, Jan. 2019, pp. 1–6.

[24] K. A. Taher, B. M. Y. Jisan, and M. M. Rahman, “Network intrusion detection us-
ing supervised machine learning technique with feature selection,” in Proc. Int. Conf.
Robotics, Elect. Signal Process. Techn., Dhaka, Bangladesh, Jan. 2019, pp. 643–646.

[25] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion detection
using recurrent neural networks,” IEEE Access, vol. 5, pp. 21954–21961, 2017.

[26] S. Seufert and D. O’Brien, “Machine learning for automatic defence against distributed
denial of service attacks,”in Proc. IEEE Int. Conf. Commun., Glasgow, 2007, pp. 1217–
1222.

74

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: The
MIT Press, 2016.

[28] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge, MA, USA:
The MIT Press, 2012.

[29] K. Cho, B. van Merriënboer, C. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder–decoder for statistical
machine translations,” in Proc. Conf. Empirical Methods Natural Lang. Process., Doha,
Qatar, Oct. 2014, pp. 1724–1734.

[30] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber, “LSTM:
a search space odyssey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10,
pp. 2222–2232, Oct. 2017.

[31] G. Karatas, O. Demir, and O. K. Sahingoz, “Deep learning in intrusion detection sys-
tems,” in Proc. Int. Congr. Big Data, Deep Learn. Fighting Cyber Terrorism, Ankara,
Turkey, Dec. 2018, pp. 113–116.

[32] T. Kim, S. C. Suh, H. Kim, J. Kim, and J. Kim, “An encoding technique for CNN-
based network anomaly detection,” in Proc. IEEE Int. Conf. Big Data, Seattle, WA,
USA, Dec. 2018, pp. 2960–2965.

[33] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal, and K. Han,
“Enhanced network anomaly detection based on deep neural networks,” IEEE Access,
vol. 6, pp. 48231–48246, Aug. 2018.

[34] Y. Jia, M. Wang, and Y. Wang, “Network intrusion detection algorithm based on deep
neural network,” IET Inform. Secur., vol. 13, no. 1, pp. 48–53, Jan. 2019.

[35] KDD Cup 1999 Data [Online]. Available: http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html. Accessed: Apr. 07, 2021.

[36] NSL-KDD Dataset [Online]. Available: https://www.unb.ca/cic/datasets/
nsl.html. Accessed: Apr. 07, 2021.

[37] Q. Ding, Z. Li, S. Haeri, and Lj. Trajković, “Application of machine learning techniques
to detecting anomalies in communication networks: datasets and feature selection al-
gorithms," in Cyber Threat Intelligence, A. Dehghantanha, M. Conti, and T. Dargahi,
Eds., Berlin: Springer, 2018, pp. 47–70.

[38] Z. Li, Q. Ding, S. Haeri, and Lj. Trajković, “Application of machine learning tech-
niques to detecting anomalies in communication networks: classification algorithms,”
in Cyber Threat Intelligence, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin:
Springer, 2018, pp. 71–92.

[39] P. Batta, Z. Li, and Lj. Trajković, “Evaluation of support vector machine kernels for
detecting network anomalies,” in Proc. IEEE Int. Symp. Circuits Syst., Florence, Italy,
May 2018, pp. 1–4.

[40] A. L. Gonzalez Rios, Z. Li, G. Xu, A. Diaz Alonso, and Lj. Trajković, “Detecting
network anomalies and intrusions in communication networks,” in Proc. 23rd IEEE
Int. Conf. Intell. Eng. Syst., Gödöllö, Hungary, Apr. 2019, pp. 29–34.

75

[41] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep re-
current neural network for intrusion detection in SDN-based networks,” in Proc. 4th
IEEE Conf. Netw. Softwarization Workshops (NetSoft), Montreal, QC, Canada, 2018,
pp. 202–206.

[42] Z. Ran, D. Zheng, Y. Lai, and L. Tian, “Applying stack bidirectional LSTM model to
intrusion detection,” Comput., Mater. & Continua, vol. 65, no. 1, pp. 309–320, May
2020.

[43] C. L. P. Chen and Z. Liu, “Broad learning system: an effective and efficient incremental
learning system without the need for deep architecture,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 1, pp. 10–24, Jan. 2018.

[44] C. L. P. Chen, Z. Liu, and S. Feng, “Universal approximation capability of broad
learning system and its structural variations,” IEEE Trans. Neural Netw. Learn. Syst.,
pp. 1–14, Sept. 2018.

[45] Z. Liu and C. L. P. Chen, “Broad learning system: structural extensions on single-layer
and multi-layer neural networks,” in Proc. Int. Conf. Secur., Pattern Anal., Cybern.,
Shenzhen, China, Dec. 2017, pp. 136–141.

[46] Z. Li, P. Batta, and Lj. Trajković, “Comparison of machine learning algorithms for de-
tection of network intrusions,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., Miyazaki,
Japan, Oct. 2018, pp. 4248–4253.

[47] Z. Li, A. L. Gonzalez Rios, G. Xu, and Lj. Trajković, “Machine learning techniques
for classifying network anomalies and intrusions,” in Proc. IEEE Int. Symp. Circuits
Syst., Sapporo, Japan, May 2019.

[48] A. L. Gonzalez Rios, Z. Li, K. Bekshentayeva, and Lj. Trajkovic, “Detection of denial of
service attacks in communication networks,” in Proc. IEEE Int. Symp. Circuits Syst.,
Seville, Spain, Oct. 2020.

[49] M. Chang, A. Terzis, and P. Bonnet, “Mote-based online anomaly detection using echo
state networks,” Distrib. Comput. in Sensor Syst., Berlin, Germany: Springer Berlin
Heidelberg, 2009, vol. 5516, pp. 72–86.

[50] K. Bekshentayeva, M. Canute, Y. Kim, D. Lee, and A. Wong, “Network intrusion
detection using various deep learning approaches,” Simon Fraser Univ., Burnaby, BC,
Canada, CMPT 419_726 Project Rep., Dec. 2019.

[51] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115–133, Dec. 1943.

[52] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” in Proc. IRE WESCON
Conv. Rec., Part 4, New York, 1960, pp. 96–104.

[53] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms, Washington DC, USA: Spartan Books, 1962.

[54] J. Schmidhuber and D. Prelinger, “Discovering predictable classifications,” Neural
Comput., vol. 5, no. 4, pp. 625–635, July 1993.

76

[55] K. Li, Class lecture, Lecture 19 “Neural Networks: Backpropagation in MLPs” CMPT
726_419 Machine Learning, SFU School of Computing Science, Burnaby BC, Canada,
March 24, 2021.

[56] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9,
no. 8, pp. 1735–1780, Apr. 1997.

[57] H. Jaeger, “The ‘echo state’ approach to analysing and training recurrent neural
networks-with an erratum note,” German Nat. Res. Center for Inf. Technol. GMD,
Bonn, Germany, Tech. Rep. 148, 2001.

[58] M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir computing trends”, KI.
Künstliche Intelligenz, vol. 26, no. 4, pp. 365–371, Nov. 2012.

[59] M. Lukoševičius, “Echo State Networks with trained feedbacks,” Jacobs Univ. Bremen,
Jacobs University Tech. Rep. 4, 2007.

[60] P. Dominey, “Complex sensory-motor sequence learning based on recurrent state repre-
sentation and reinforcement learning,” Biol. Cybern., vol. 73, no. 6, pp. 265–274, Nov.
1995.

[61] P. Dominey and F. Ramus, “Neural network processing of natural language. Sensitiv-
ity to serial,temporal and abstract structure of language in the infant,” Lang. Cogn.
Processes, vol. 15, no. 1, pp. 87–127, June 2000.

[62] H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert, “Optimization and appli-
cations of echo state networks with leaky-integrator neurons,” Neural Netw., vol. 20,
no. 3, pp. 335–352, Dec. 2007.

[63] M. D. Skowronski and J. G. Harris, “Noise-robust automatic speech recognition using
a discriminative echo state network,” in Proc. IEEE Int. Symp. Circuits Syst., New
Orleans, LA, USA, 2007, pp. 1771–1774.

[64] F. Triefenbach, A. Jalalvand, B. Schrauwen, and J. P. Martens, “Phoneme recognition
with large hierarchical reservoirs,” in Proc. Advances Neural Inf. Process. Syst., vol. 23,
MIT Press, Cambridge, Dec. 2011, pp. 2307–2315.

[65] M. Salmen and P. Plöger, “Echo state networks used for motor control,” in Proc. IEEE
Int. Conf. Robotics Automation, Barcelona, Spain, Apr. 2005, pp. 1953–1958.

[66] X. Lin, Z. Yang, and Y. Song, “Short-termstock price prediction based on echo state
networks,” Expert Syst. Appl., vol. 36, no. 3, pp. 7313–7317, Dec. 2009.

[67] X. Lin, Z. Yang, and Y. Song, “Intelligent stock trading system based on improved tech-
nical analysis and Echo State Network,” Expert Syst. Appl., vol. 38, no. 9, pp. 11347–
11354, Apr. 2011.

[68] J. Dan, W. Guo, W. Shi, B. Fang, and T. Zhang, “Deterministic Echo State Networks
based stock price forecasting,” Abstr. Appl. Anal., vol. 2014, pp. 1–6.

[69] Z. Liu, Z. Liu, Y. Song, Z. Gong, and H. Chen, “Predicting stock trend using multi-
objective diversified Echo State Network,” in Proc. 7th Int. Conf. Inf. Sci., Technol.,
Da Nang, 2017, pp. 181–186.

77

[70] P. Buteneers, D. Verstraeten, P. van Mierlo, T. Wyckhuys, D. Stroobandt, R. Raedt,
H. Hallez, and B. Schrauwen, “Automatic detection of epileptic seizures on the intra-
cranial electroencephalogram of rats using reservoir computing,” Artif. Intell. Med.,
vol. 53. no. 3, pp. 215–223, Sept. 2011.

[71] P. -J. Kindermans, P. Buteneers, D. Verstraeten, and B. Schrauwen, “An uncued brain-
computer interface using reservoir computing,” in Proc. Workshop Mach. Learn. As-
sistive Technol., British Columbia, Canada, Dec. 2010.

[72] M. Lukosevicius, “A practical guide to applying Echo State Networks,” in Neural Net-
works: Tricks of the Trade (2nd ed.), G. Montavon, G. B.‘Orr, and K. -R. Müller, Eds.,
Berlin, Heidelberg, Springer, 2012, vol. 7700, pp. 659–686.

[73] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, “Re-visiting the echo state property,” Neural
Netw., vol. 35, pp. 1–9, Nov. 2012.

[74] M. Chen, W. Saad, and C. Yin, “Echo State Networks for self-organizing resource allo-
cation in LTE-U with uplink–downlink decoupling,” IEEE Trans. Wireless Commun.,
vol. 16, no. 1, pp. 3–16, Jan. 2017.

[75] A. Krušna and M. Lukosevicius, “Predicting Mozart’s next note via Echo State Net-
works,” in Proc. Symp. Young Scientists Technol., Eng. Math., Gliwice, Poland, May
2018, pp. 84–91.

[76] M. Lukoševičius and V. Marozas, “Noninvasive fetal QRS detection using Echo State
Network,” in Proc. Noninvasive Fetal ECG - PhysioNet Comp. in Cardiology Challenge,
Zaragoza, Spain, 2013, pp. 205–208.

[77] G. M. Rader, “A method for composing simple traditional music by computer,” Com-
mun. ACM, vol. 17, no. 11, pp. 631–638, 1974.

[78] H. Chu, R. Urtasun, and S. Fidler, “Song from PI: A musically plausible network for pop
music generation.” [Online]. Available: https://arxiv.org/abs/1611.03477H. Accessed:
Apr. 07, 2021.

[79] A. Huang and R. Wu, “Deep learning for music,” [Online] Available:
https://arxiv.org/abs/1606.04930. Accessed: Apr. 07, 2021.

[80] M. Lukosevicius, D. Popovici, H. Jaeger, and U. Siewert, “Time Warping Invariant
Echo State Networks,” IRC-Library, Inf. Resour. Center der Jacobs Univ. Bremen,
Jacobs University Tech. Rep. 2, 2006.

[81] M. Xu and M. Han, “Adaptive elastic Echo State Network for multivariate time series
prediction,” IEEE Trans. Cybern., vol. 46, no. 10, pp. 2173–2183, Oct. 2016.

[82] B. Schrauwen B, M. D‘Haene, D. Verstraeten, and D. Stroobandt, “Compact hardware
liquid state machines on FPGA for real-time speech recognition,” Neural Netw., vol. 21,
no. 2–3, pp. 511–523, Nov. 2008.

[83] K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel
reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw., vol. 22, no. 9,
pp. 1469–1481, Sept. 2011.

78

[84] A. Z. Stieg, A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, M. Aono, and
J. K. Gimzewski, “Emergent criticality in complex Turing B-type atomic switch net-
works,” Adv. Mater, vol. 24, no. 2, pp. 286–293, Nov. 2012.

[85] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera,
C. R. Mirasso, and I. Fischer, “Photonic information processing beyond Turing: an
optoelectronic implementation of reservoir computing,” Opt. Express, vol. 20, pp. 3241–
3249, 2012.

[86] L. Maciel, F. Gomide, D. Santos, and R. Ballini, “Exchange rate forecasting using echo
state networks for trading strategies,” in Proc. Comput. Intell. Fin. Eng. Econ. Conf.,
London, UK, Mar. 2014, pp. 40–47.

[87] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards a reliable
intrusion detection benchmark dataset,” Softw. Netw., vol. 2017, no. 1, pp. 177–200,
July 2017.

[88] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion
detection dataset and intrusion traffic characterization,” in Proc. 4th Int. Conf. Inform.
Syst. Secur. Privacy, Funchal, Portugal, Jan. 2018, pp. 108–116.

[89] I. Sharafaldin, A. H. Lashkari, S. Hakak and A. A. Ghorbani, ”Developing realistic
distributed denial of service (DDoS) attack dataset and taxonomy,“ in Proc. Int. Car-
nahan Conf. Secur. Technol. (ICCST), CHENNAI, India, 2019, pp. 1–8.

[90] Intrusion Detection Evaluation dataset (CIC-IDS2017). [Online]. Available:
https://www.unb.ca/cic/datasets/ids-2017.html. Accessed: Apr. 07, 2021.

[91] A Realistic Cyber Defense dataset (CSE-CIC-IDS2018). [Online]. Available:
https://registry.opendata.aws/cse-cic-ids2018/. Accessed: Apr. 07, 2021.

[92] DDoS Evaluation Dataset (CICDDoS2019). [Online]. Available:
https://www.unb.ca/cic/datasets/ddos-2019.html. Accessed: Apr. 07, 2021.

[93] CICFlowMeter. [Online]. Available: http://netflowmeter.ca/
netflowmeter.html. Accessed: Apr. 07, 2021.

[94] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” RFC 1771, IETF,
Mar. 1995. [Online]. Available: http://tools.ietf.org/rfc/rfc1771.txt [Jan. 2021].

[95] D. P. Watson and D. H. Scheidt, “Autonomous systems,” Johns Hopkins APL Technical
Digest, vol. 26, no. 4, pp. 368–376, Oct.–Dec. 2005.

[96] D. Dolev, S. Jamin, O. Mokryn and Y. Shavitt, “Internet resiliency to attacks and
failures under BGP policy routing,” Comp. Netw., vol. 50, no. 16, pp. 3183–3196,
Jan. 2006.

[97] B. Zhang, R. Liu, D. Massey, and L. Zhang, “Collecting the Internet ASlevel topology,”
ACM Computer Communication Review, vol. 35, no. 1, pp. 53–62, Jan. 2005.

[98] RIPE NCC: RIPE Network Coordination Center. [Online]. Available:
http://www.ripe.net/data-tools/stats/ris/ris-raw-data. Accessed: Apr. 07, 2021.

79

[99] University of Oregon Route Views project. [Online]. Available:
http://www.routeviews.org. Accessed: Apr. 07, 2021.

[100] Center for Applied Internet Data Analysis. The Spread of the Sapphire/Slammer
Worm [Online]. Available: http://www.caida.org/publications/papers/2003/sapphire/.
Accessed: Apr. 07, 2021.

[101] Sans Institute. Nimda worm — why is it different? [Online]. Available:
http://www.sans.org/reading-room/whitepapers/malicious/nimda-worm-different-
98. Accessed: Apr. 07, 2021.

[102] Sans Institute. The mechanisms and effects of the Code Red worm. [Online]. Avail-
able: https://www.sans.org/reading-room/whitepapers/dlp/mechanisms-effects-code-
red-worm-87. Accessed: Apr. 07, 2021.

[103] MRT routing information export format. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-grow-mrt-13. Accessed: Apr. 07, 2021.

[104] Zebra-dump-parser. [Online]. Available: https://github.com/ rfc1036/zebra-dump-
parser. Accessed: Apr. 07, 2021.

[105] BGP C-Sharp Tool [Online]. Available: https://github.com/communication-networks-
laboratory/BGP_c_sharp_tool. Accessed: Apr. 07, 2021.

[106] Institute for Critical Infrastructure Technology: Rise of the machines. [On-
line]. Available: https://icitech.org/wp-content/uploads/2016/12/ICIT-Brief-Rise-of-
the-Machines.pdf. Accessed: Apr. 07, 2021.

[107] DDoS attack: How AWS going down affected business. [Online]. Available:
https://www.panopta.com/resources/ddos-attack-on-amazon/. Accessed: Apr. 07,
2021.

[108] Learning from the Amazon Web Services (AWS) DDoS attack. [Online]. Avail-
able: https://www.corero.com/blog/learning-from-the-amazon-web-services-aws-ddos-
attack/. Accessed: Apr. 07, 2021.

[109] AWS Shield. Managed DDoS protection. [Online]. Available:
https://aws.amazon.com/shield/. Accessed: Apr. 07, 2021.

[110] South African banks resilient in the face of latest DDoS attacks. [Online].
Available: https://www.sabric.co.za/media-and-news/press-releases/south-african-
banks-resilient-in-the-face-of-latest-ddos-attacks/. Accessed: Apr. 07, 2021.

[111] AWS shield threat landscape report - Q1 2020. [Online]. Available: https://aws-shield-
tlr.s3.amazonaws.com/2020-Q1_AWS_Shield_TLR.pdf. Accessed: Apr. 07, 2021.

[112] DDoS attack on AWS sets a new size record. [Online]. Available:
https://www.corero.com/blog/ddos-attack-on-aws-sets-a-new-size-record/. Accessed:
Apr. 07, 2021.

[113] D. Meyer, “BGP communities for data collection,” RFC 4384, IETF, Feb. 2006. [On-
line]. Available: http://www.ietf.org/rfc/rfc4384.txt. Accessed: Apr. 07, 2021.

80

[114] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F. Wu, and L. Zhang,
“Observation and analysis of BGP behavior under stress,” in Proc. 2nd Workshop on
Internet Meas., New York, NY, USA, 2002, pp. 183–195.

[115] S. Deshpande, M. Thottan, T. K. Ho, and B. Sikdar, “An online mechanism for BGP
instability detection and analysis,” IEEE Trans. Comput., vol. 58, no. 11, pp. 1470–
1484, Nov. 2009.

[116] D. Blazakis and J. S. Baras, “Analyzing BGP ASPATH behavior in the Internet,” in
Proc., 9th IEEE Glob. Int. Symp., Barcelona, Spain, Apr. 2006.

[117] T. Shorey, D. Subbaiah, A. Goyal, A. Sakxena, and A. K. Mishra, “Performance com-
parison and analysis of Slowloris, GoldenEye and Xerxes DDoSattack tools,” in Proc.
Int. Conf. Adv. Comput. Commun. Inform., Bangalore, India, Sept. 2018, pp. 318–322.

[118] J. Sermersheim, “Lightweight Directory Access Protocol (LDAP): The Protocol,”
IETF, RFC 4511, June 2006. Available: https://www.ietf.org/rfc/rfc4511.txt. Accessed:
Apr. 07, 2021.

[119] Directory Services LDAP [Online]. Available:
https://docs.oracle.com/cd/A87860_01/doc/ois.817/a83729/adois09.html.
Accessed: Apr. 07, 2021.

[120] D. L. Mills, “Network Time Protocol (NTP),” IETF, RFC 958, Sept. 1985. Available:
https://tools.ietf.org/html/rfc958. Accessed: Apr. 07, 2021.

[121] J. Woo, J. Song, and Y. Choi, “Performance enhancement of deep neural network
using feature selection and preprocessing for intrusion detection,” in Proc. Int. Conf.
Artif. Intell. Inform. Commun., Okinawa, Japan, Feb. 2019, pp. 415–417.

[122] H. U. Kobialka and U. Kayani, 2010) “Echo State Networks with Sparse Output Con-
nections,” in Artif. Neural Netw. – 2010. Lecture Notes in Computer Science K. Dia-
mantaras, W. Duch, and L. S. Iliadis, Eds., ICANN 2010, Berlin, Heidelberg, Springer,
2010, vol. 6352.

[123] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn.,
vol. 63, no. 1, pp. 3–42, Apr. 2006.

[124] Sklearn.ensemble.ExtraTreesClassifier. [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.ExtraTrees
Classifier.html. Accessed: Apr. 07, 2021.

[125] C. R. Harris, et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825,
pp. 357–362, Sept. 2020.

[126] W. McKinney, “Data structures for statistical computing in Python,” in Proc. 9th
Python in Sci. Conf., Austin, TX, USA, 2010, pp. 51–56.

[127] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al.,
“Scikit-learn: machine learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825-
2830, Jan. 2011.

81

[128] F. M. Bianchi, S. Scardapane, S. Løkse, and R. Jenssen, “Reservoir computing ap-
proaches for representation and classification of multivariate time series,” IEEE Trans.
Neural Netw. Learn. Syst. pp. 1–11, June 2020.

[129] G. Van Rossum, The Python Library Reference, release 3.8.2. Python Softw. Found.,
2020.

[130] H. He and Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications.
Hoboken, New Jersey, USA: Wiley-IEEE Press, 2013.

[131] Resampling strategies for imbalanced datasets. [Online]. Available:
https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets#t1.
Accessed: Apr. 07, 2021.

[132] C. M. Bishop, “Training with noise is equivalent to Tikhonov regularization,” Neural
Comput., vol. 7, no. 1, pp. 108–116, Jan. 1995.

[133] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the gap to
human-hevel performance in face verification,” in Proc. IEEE Conf. on Comp. Vision
and Pattern Recogn., Columbus, OH, USA, June 2014, pp. 1701–1708.

[134] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE Trans. on
Neural Netw., vol. 22, no. 1, pp. 131–144, Jan. 2011.

[135] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Im-
proving neural networks by preventing co-adaptation of feature detectors,” [Online].
Available: https://arxiv.org/pdf/1207.0580.pdf. Accessed: Apr. 07, 2021.

[136] M. Lukoševičius and A. Uselis, “Efficient implementations of echo state network cross-
validation,” [Online]. Available: https://arxiv.org/abs/2006.11282. Accessed: Apr. 07,
2021.

[137] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-
dient descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157–166, Mar.
1994.

[138] M. Lamons, R. Kumar, and A. Nagaraja, Python Deep Learning Projects, Packt Pub-
lishing, 2018. [E-book] Available: O’Reilly Online Learning (formerly Safari Books On-
line).

[139] Understanding LSTM Networks. [Online].
Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
Accessed: Apr. 07, 2021.

[140] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Trans.
Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[141] PyTorch. [Online]. Available: https://pytorch.org/docs/stable/nn.html. Accessed:
May 31, 2021.

82

Appendix A

Figures: CIC-IDS and BGP
Datasets

Figure A.1: CSE-CIC-IDS2018: Average backward packet length. The GoldenEye packet
length is comparable to benign traffic.

Figure A.2: CIC-DDoS2019: Average backward packet length. The length of NTP and Web-
DDoS packets is smaller or comparable to benign traffic. The length of other attacks packets
is negligibly small.

83

Figure A.3: CSE-CIC-IDS2018 dataset: Standard deviation of total length of packets. While
benign packets usually have high variation in length, Slowloris attack also exhibits high
standard deviation.

84

Figure A.4: CIC-DDoS2019: Standard deviation of packet length. NTP attack packet length
has higher standard deviation.

Figure A.5: CSE-CIC-IDS2018: While GoldenEye and Slowloris keep comparable IAT to
2017, Hulk and SlowHTTPTest have lower flow IATs in case of the CSE-CIC-IDS2018
dataset.

85

Figure A.6: CIC-IDS2017: ACK, SYN, and URG flag counts. Hulk attack overwhelms the
server with ACK packets. Other attacks are not employing TCP control bits for malicious
purposes.

Figure A.7: CSE-CIC-IDS2018: ACK, SYN, and URG flag counts. A large amount of ACK
and URG packets is observed at 1 PM.

86

Figure A.8: Slammer (top), Nimda (middle), and Code Red I (bottom): Number of an-
nounced NLRI (Network Layer Reachability Information) prefixes. The red dotted line
indicates two classes: regular and anomaly.

87

Figure A.9: Slammer (top), Nimda (middle), and Code Red I (bottom): Maximum edit
distance. The red dotted line indicates two classes: regular and anomaly.

88

Figure A.10: Slammer: Number of duplicate announcements (top), number of implicit with-
drawals (middle), and number of EGP packets (bottom). The red dotted line indicates two
classes: regular and anomaly.

89

Figure A.11: DDoS2019-v1: Number of announced NLRI prefixes (top), number of duplicate
announcements (middle), and number of implicit withdrawals (bottom). The red dotted line
indicates two classes: regular and anomaly.

90

Appendix B

Scripts for Detecting Anomalies
Using CIC-IDS2017,
CSE-CIC-IDS2018,
CIC-DDoS2019, and BGP Datasets

Script 1. Read a .csv file, count instances in each class, oversample to create
a balanced dataset (skip oversampling if no need to create balanced datasets),
save a new .csv

Import l i b r a r i e s :
import numpy as np
import pandas as pd
import matp lo t l i b . pyplot as p l t

df = pd . read_csv (’ Wednesday2017raw . csv ’) # open ’ csv ’
df . head () # output header , 5 f i r s t rows , and a l l columns

df [" Label "] . value_counts () # count i n s t a n c e s in each c l a s s

Create a t a r g e t vec to r :
de f t a r g e t i f y (s) :

i f s == ’BENIGN’ :
r e turn 0

e l s e :
r e turn 1

df [’ Target ’]= df [’ Label ’] . apply (t a r g e t i f y)

Output amount o f i n s t a n c e s in each c l a s s , c r e a t e a bar p l o t :
target_count = df . t a r g e t . value_counts ()
p r i n t (’ Class 0 : ’ , target_count [0])

91

pr in t (’ Class 1 : ’ , target_count [1])
p r i n t (’ Proport ion : ’ , round (target_count [0] / target_count [1] , 2) , ’ : 1 ’)
target_count . p l o t (kind=’bar ’ , t i t l e =’Count (t a r g e t) ’) ;

Divide by c l a s s :
df_class_0 = df [df [’ ta rget ’] == 0]
df_class_1 = df [df [’ ta rget ’] == 1]

Oversample the minor i ty c l a s s :
df_class_1_over = df_class_1 . sample (count_class_1 , r e p l a c e=True)
df_test_over = pd . concat ([df_class_0 , df_class_1_over] , ax i s =0)

Output the r e s u l t s o f oversampl ing with a bar p l o t :
p r i n t (’ Oversampling : ’)
p r i n t (df_test_over . t a r g e t . value_counts ())
df_test_over . t a r g e t . value_counts ()
. p l o t (kind=’bar ’ , t i t l e =’Count (t a r g e t) ’) ;
df_test_over [" Label "] . value_counts ()

Shu f f l e , trim , and save a new . csv f i l e :
d f = df_test_over . sample (f r a c =1)
df . head (800000) . to_csv (’ oversampled_ csv ’) # save 800 ,000 po in t s
d f s = pd . read_csv (’ oversampled_CIC−IDS2017_Wed . csv ’)
d f s . head ()
d f s [" Label "] . value_counts ()

Script 2. Select 20 most important features

Import l i b r a r i e s :
import pandas as pd
import numpy as np
import matp lo t l i b . pyplot as p l t
import sk l e a rn
from sk l ea rn import p r ep ro c e s s i ng
from sk l ea rn . ensemble import E x t r a T r e e s C l a s s i f i e r
from sk l ea rn . mode l_se lect ion import t r a i n _ t e s t _ s p l i t

df1 = pd . read_csv (’ oversampled_CIC−IDS2017_Wed . csv ’)
Create a new f e a t u r e " BiFlowsCount " and s o r t by " Timestamp " :
df2 = df1 . groupby ([’ Timestamp ’]) [’ Flow Duration ’] . count ()
df2 = pd . DataFrame (df2) . reset_index ()
df2 . columns =[’ Timestamp ’ , ’ BiFlowsCount ’]
d f = df1 . merge (df2 , l e f t_on =’ Timestamp ’ , right_on=’ Timestamp ’)
df = df . sor t_va lues (’ Timestamp ’)
df . columns # output column names (f e a t u r e s)

L i s t a l l column names except t a r g e t :
f e a t u r e s = [’ Flow ID ’ , ’ Source IP ’ , . . .]

92

Def ine X and convert a l l c a t e g o r i c a l va lue s to numeric :
X = df [f e a t u r e s]
X[f e a t u r e s] = X[f e a t u r e s] . apply (pd . to_numeric , e r r o r s =’ coerce ’ , ax i s =1)

y = df [’ Target ’] # d e f i n e y

X = X. f i l l n a (0) # f i l l " not a number " with 0 in X

S p l i t data in to t r a i n and t e s t s e t s and pr in t shape o f each s e t :
X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e =0.2)
p r i n t (X_train . shape , y_train . shape)
p r i n t (X_test . shape , y_test . shape)

Features ranking :
f o r e s t = E x t r a T r e e s C l a s s i f i e r (n_est imators =100 , random_state=2)
f o r e s t . f i t (X_train , y_train)
importances = f o r e s t . feature_importances_
std = np . std ([t r e e . feature_importances_ f o r t r e e in
f o r e s t . est imators_] ,
ax i s =0)
i n d i c e s = np . a r g s o r t (importances) [: : − 1]

p r i n t (" Feature ranking : ")
f o r f in range (X_train . shape [1]) :

p r i n t ("%d . f e a t u r e %d : %s (%f) " %
(f + 1 , i n d i c e s [f] , X_train . columns [i n d i c e s [f]] ,
importances [i n d i c e s [f]]))

Plot the top x f e a t u r e importance o f the f o r e s t :
top_x = 20
p l t . f i g u r e ()
p l t . bar (range (X_train . shape [1]) , importances [i n d i c e s] ,

c o l o r ="r " , ye r r=std [i n d i c e s] , a l i g n =" cente r ")
p l t . x t i c k s (range (top_x) , i n d i c e s)
p l t . xl im ([−1 , top_x])
p l t . show ()

p l t = pd . S e r i e s (f o r e s t . feature_importances_ ,
index=X_train . columns) . n l a r g e s t (top_x) . p l o t (kind=’barh ’)
f i g = p l t . g e t_f i gure ()
f i g . s a v e f i g (’ f i g u r e . jpg ’ , bbox_inches = " t i g h t ")

Script 3. Apply echo state networks [72, 128]

Import l i b r a r i e s :
import numpy as np
import pandas as pd

93

import s c ipy . i o
from sc ipy import spar s e
from sk l ea rn . decomposit ion import PCA
from sk l ea rn . l inear_model import Ridge
from sk l ea rn . met r i c s import accuracy_score , f1_score
from sk l ea rn import p r ep ro c e s s i ng
from sk l ea rn . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
import math

Create a c l a s s ESN_Reservoir with the hyperparameters :
proc_nodes , s_radius , leak , connec t i v i ty , inp_scale , no i se ,
d e t e r m i n i s t i c _ r e s :

c l a s s ESN_Reservoir (ob j e c t) :
de f __init__(s e l f , proc_nodes=30, s_radius =0.9 , l eak=None ,

c o n n e c t i v i t y =0.25 , inp_sca le =0.3 , no i s e =0.01 ,
d e t e r m i n i s t i c _ r e s=False) :

I n i t i a l i z a t i o n :
s e l f . _proc_nodes = proc_nodes
s e l f . _inp_scale = inp_sca le
s e l f . _noise = no i s e
s e l f . _leak = leak

Input weights r e l y on the s i z e o f input data
(they are con f i gu r ed when data i s g iven) :

s e l f . _input_W = None

Generate r e s e r v o i r weights :
i f d e t e r m i n i s t i c _ r e s :

s e l f . _reservoir_W =
s e l f . _ in i t i a l i z e_rese rvo i r_W_Determin i s t i c (proc_nodes , s_radius)

e l s e :
s e l f . _reservoir_W =
s e l f . _ in i t i a l i z e_rese rvo i r_W (proc_nodes , connec t i v i ty , s_radius)

de f _ in i t i a l i z e_rese rvo i r_W_Determin i s t i c (s e l f , proc_nodes , s_radius) :
reservoir_W = np . z e ro s ((proc_nodes , proc_nodes))
reservoir_W [0 , −1] = s_radius
f o r i in range (proc_nodes −1):

reservoir_W [i +1, i] = s_radius
re turn reservoir_W

def _in i t i a l i z e_rese rvo i r_W (s e l f , proc_nodes , connec t i v i ty , s_radius) :
Generate sparse , uni formly d i s t r i b u t e d r e s e r v o i r weights :

np . random . seed (args . seed)
reservoir_W = spar se . rand (proc_nodes , proc_nodes ,
dens i ty=c o n n e c t i v i t y) . todense ()

94

D i s t r i b u t e the nonzero va lue s between [−0.5 , 0 . 5] :
reservoir_W [np . where (reservoir_W > 0)] −= 0.5

Calcu la te the rad iu s o f the r e s e r v o i r :
E, _ = np . l i n a l g . e i g (reservoir_W)
e_max = np . max(np . abs (E))
reservoir_W /= np . abs (e_max)/ s_radius

re turn reservoir_W

(4) Compute past s t a t e :
de f _design_matrix (s e l f , X, n_drop=0):

N, T, _ = X. shape
past_state = np . z e ro s ((N, s e l f . _proc_nodes) , dtype=f l o a t)

(5) Generate s t a t e matrix with the s i z e [N, T−n_drop , _proc_nodes] :
design_matrix =
np . empty ((N, T − n_drop , s e l f . _proc_nodes) , dtype=f l o a t)

f o r t in range (T) :
current_input = X[: , t , :]
State equat ion :
s t a t e =
s e l f . _reservoir_W . dot (past_state .T)

+ s e l f . _input_W . dot (current_input .T)
Apply no i s e :
np . random . seed (args . seed)
s t a t e += np . random . rand (s e l f . _proc_nodes , N)∗ s e l f . _noise
Non l in ea r i t y and leakage may be inc luded :

i f s e l f . _leak i s None :
past_state = np . tanh (s t a t e) .T

e l s e :
past_state =
(1 . 0 − s e l f . _leak)∗ past_state + np . tanh (s t a t e) .T

Store everyth ing a f t e r the dropout per iod
i f (t > n_drop − 1) :

design_matrix [: , t − n_drop , :] = past_state
re turn design_matrix

(2) Compute the input weights :
de f r e s e r v o i r _ s t a t e s (s e l f , X, n_drop=0):

N, T, V = X. shape
np . random . seed (args . seed)
i f s e l f . _input_W i s None :

s e l f . _input_W =
(2 . 0∗ np . random . binomial (1 , 0 . 5 ,
[s e l f . _proc_nodes , V]) − 1 . 0) ∗ s e l f . _inp_scale

(3) Compute the forward s t a t e matrix :
s t a t e s = s e l f . _design_matrix (X, n_drop)

95

re turn s t a t e s

de f Embed_Reservoir (s e l f , X, pca , ridge_embedding , n_drop=0,
t e s t = False) :

(1) Obtain the i n i t i a l r e s e r v o i r s t a t e s :
r e s_s ta t e s = s e l f . r e s e r v o i r _ s t a t e s (X, n_drop=0)

(6) Reshape the i n i t i a l s t a t e matrix r e s_s ta t e s from
[N, T−n_drop , _proc_nodes] to r e s_s ta t e s [N∗(T−n_drop) ,
_proc_nodes] :

N_samples = re s_s ta t e s . shape [0]
r e s_s ta t e s = re s_s ta t e s . reshape (−1 , r e s_s ta t e s . shape [2])

(7) PCA:
i f t e s t :

r ed_states = pca . trans form (r e s_s ta t e s)
e l s e :

r ed_states = pca . f i t_t rans fo rm (r e s_s ta t e s)
red_states = red_states . reshape (N_samples , −1 , red_states . shape [1])
p r i n t (" red_states : " + s t r (red_states . shape))

Ridge embedding :
c o e f f _ t r = []
b i a s e s_tr = []
f o r i in range (X. shape [0]) :

ridge_embedding . f i t (red_states [i , 0: −1 , :] ,
r ed_states [i , 1 : , :])
c o e f f _ t r . append (ridge_embedding . coef_ . r a v e l ())
b ia s e s_tr . append (ridge_embedding . inte rcept_ . r a v e l ())
#pr in t (np . array (c o e f f _ t r) . shape , np . array (b ia s e s_tr) . shape)
input_repr = np . concatenate ((np . vstack (c o e f f _ t r) ,
np . vstack (b ia s e s_tr)) , ax i s =1)

re turn input_repr

Dataset and f e a t u r e s :
df1 = pd . read_csv (’ oversampled_CIC−IDS2017_Wed . csv ’) # Open a . csv f i l e
df2 = df1 . groupby ([’ Timestamp ’]) [’ Flow Duration ’] . count ()
df2 = pd . DataFrame (df2) . reset_index ()
df2 . columns =[’ Timestamp ’ , ’ BiFlowsCount ’]
d f = df1 . merge (df2 , l e f t_on =’ Timestamp ’ , right_on=’ Timestamp ’)
df = df . sor t_va lues (’ Timestamp ’)
num_features = 20 # Change the number o f f e a t u r e s here
Input ranked by importance f e a t u r e s :
features_wed = [’ . . . ’]
f e a t u r e s = features_wed [0 : num_features]
S e l e c t a f r a c t i o n o f a datase t :

96

f r a c t i o n = 0 .5
p r i n t (s t r (num_features) + " f e a t u r e s ")
p r i n t (" f r a c t i o n : " + s t r (f r a c t i o n))
data = df . sample (f r a c=f r a c t i o n , r e p l a c e=True , random_state=1)

Get X and y . Normalize X and 3D−reshape f o r r e s e r v o i r :
num_col = data . shape [1]
num_row = data . shape [0]
X_data = data [f e a t u r e s]
X_data [f e a t u r e s] = X_data [f e a t u r e s] . apply (pd . to_numeric ,

e r r o r s =’ coerce ’ , ax i s =1)
min_max_scaler = prep ro c e s s i ng . MinMaxScaler ()
x_scaled = min_max_scaler . f i t_t rans fo rm (X_data . va lue s)
X = np . nan_to_num(x_scaled)
i f l en (X. shape) < 3 :

X = np . at least_3d (X)

de f t a r g e t i f y (s) :
i f s == ’BENIGN’ :

r e turn 0
e l s e :

r e turn 1
y = data [’ Label ’] . apply (t a r g e t i f y)
p r i n t (" F in i shed load ing X and y ")

S p l i t i n to t r a i n i n g (80%) and t e s t data (20%):
X_train , X_test , y_train , y_test =

t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e =0.2 , random_state=100)
p r i n t (" X_train shape : " + s t r (X_train . shape) ,

" y_train shape : " + s t r (y_train . shape))
p r i n t (" X_test shape : " + s t r (X_test . shape) ,

" y_test shape : " + s t r (y_test . shape))

pca = PCA() # l i n e a r d imens i ona l i t y reduct i on
ridge_embedding = Ridge (alpha =10, f i t _ i n t e r c e p t=True)
readout = Ridge (alpha=5)

Change the number o f p r o c e s s i ng (i n t e r n a l) nodes :
n = 30
pr in t (s t r (n) + " p ro c e s s i ng nodes ")

Run through r e s e r v o i r :
r e s = ESN_Reservoir (proc_nodes=n , s_radius =0.9 , l eak =0.2 ,

c o n n e c t i v i t y =0.25 , inp_sca le =0.3 , no i s e =0.01 , d e t e r m i n i s t i c _ r e s=False)
input_repr = r e s . Embed_Reservoir (np . array (X_train) , pca , ridge_embedding ,
n_drop=0, t e s t = False)
p r i n t (" F in i shed load ing t r a i n i n g r e s e r v o i r embedding ")

97

input_repr_te = r e s . Embed_Reservoir (np . array (X_test) , pca , ridge_embedding ,
n_drop=0, t e s t = True)
p r i n t (" F in i shed load ing t e s t i n g r e s e r v o i r embedding ")

Fit output :
readout . f i t (input_repr , y_train)
pred_class = readout . p r e d i c t (input_repr_te)
t rue_c la s s = l i s t (y_test)

Evaluate :
compdf = pd . DataFrame ({ ’ pred_class ’ : pred_class , ’ t rue_c lass ’ : t rue_c la s s })
compdf = compdf . sor t_va lues (’ pred_class ’ , ascending=False)
p r i n t (s t r (compdf . head (1 0)))

de f myRound(x , r) :
i f x>r / f l o a t (1 0 0 0) :

r e turn 1
e l s e :

r e turn 0

de f eqArray (a , b) :
r e turn np . where (a == b , 1 , 0)

p r e d i c t i o n s = l i s t (compdf [’ pred_class ’] . apply (myRound , r =225))
t rue_c la s s = l i s t (compdf [’ t rue_c lass ’])
accuracy =

np . sum(l i s t (map(eqArray , p r ed i c t i on s , t rue_c la s s))) / l en (t rue_c la s s)
accuracy

from sk l ea rn . met r i c s import confus ion_matrix
confm = confus ion_matrix (t rue_c lass , p r e d i c t i o n s)
confm

98

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview of Denial of Service and Distributed Denial of Service Attacks
	Types of DoS and DDoS Attacks
	DoS and DDoS Detection Methods and Anomaly-Based Detection
	Overview of Machine Learning
	Machine Learning Algorithms for Network Anomaly Detection
	Research Contributions
	Organization of the Thesis

	Echo State Networks
	Recurrent Neural Networks
	Long Short-Term Memory and Bidirectional Long-Short Term Memory

	Reservoir Computing as a Paradigm for Training RNNs
	Description of Echo State Networks
	Echo State Networks: Related Work
	Purpose and Hyperparameters of the Reservoir in ESNs
	Finding Optimal Parameters in ESNs
	Output Feedbacks in ESNs

	CIC-IDS Datasets: CIC-IDS2017, CSE-CIC-IDS2018, and CIC-DDoS2019
	CIC-IDS2017 Dataset
	CSE-CIC-IDS2018 Dataset
	CIC-DDoS2019 Dataset
	Attacks and Features

	Border Gateway Protocol Datasets
	Border Gateway Protocol
	Border Gateway Protocol Data Collections
	Anomalies and Features

	Feature Selection, Performance Metrics, and Experimental Procedure
	Feature Selection
	Performance Metrics
	Experimental Procedure
	Data Preprocessing: CIC-IDS Datasets
	Data Preprocessing: BGP Datasets

	Cross-Validation in ESN

	Performance Results
	Performance of ESN Models with Balanced and Unbalanced Datasets
	Comparing Performance of ESN and Bi-LSTM in Detecting the Denial of Service Attacks

	Conclusions and Future Work
	Bibliography
	Appendix Figures: CIC-IDS and BGP Datasets
	Appendix Scripts for Detecting Anomalies Using CIC-IDS2017, CSE-CIC-IDS2018, CIC-DDoS2019, and BGP Datasets

