
Machine Learning Classification of
Internet Worms and Ransomware Attacks

and Effect of BGP Feature Properties
by

Hardeep Kaur Takhar

B.A.Sc. (Honours), Simon Fraser University, 2020

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Applied Science

in the
School of Engineering Science
Faculty of Applied Sciences

© Hardeep Kaur Takhar 2023
SIMON FRASER UNIVERSITY

Spring 2023

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Hardeep Kaur Takhar

Degree: Master of Applied Science (Engineering Science)

Title: Machine Learning Classification of Internet Worms
and Ransomware Attacks and Effect of BGP
Feature Properties

Committee: Chair: Shawn Sederberg
Assistant Professor, Engineering Science

Ljiljana Trajković
Supervisor
Professor, Engineering Science

Uwe Glässer
Committee Member
Professor, Computing Science

Qianping Gu
Examiner
Professor, Computing Science

ii

Abstract

Cyberattacks cause significant disruptions to communication networks and it is cruicial
to detect and prevent such malicious behaviors to provide secure and reliable network
connections. Detecting these intrusions is challenging and conventional intrusion detection
techniques are insufficient to identify such malicious activities. Machine learning techniques
offer effective intrusion detection due to their computational abilities. In this thesis, we apply
machine learning techniques to classify anomalies such as Internet worms and ransomware
attacks. We employ Border Gateway Protocol (BGP) datasets that contain routing records
from Réseaux IP Européens (RIPE) collection sites.

Supervised machine learning algorithms Support Vector Machine, Long Short-Term Mem-
ory (LSTM), Gradient Boosting Decision Tree (GBDT) algorithms are employed for clas-
sifications. Dynamic learning rate scheduling and attention mechanism are employed to
enhance the performance of LSTM models to classify ransomware attacks. While LSTM
models proved effective in classifying attacks using sequential BGP data, their performance
may degrade in case of lengthy data sequences. Feature transformation and selection tech-
niques are applied to enhance performance of GDBT models. We perform feature selection
to determine the most important features and identify the best fitting distributions. Ex-
perimental results indicate that a number of features follow heavy-tailed distributions. We
evaluate performance of models generated using worms (Code Red, Nimda, and Slammer)
and ransomware attack (WannaCrypt and WestRock) BGP datasets. Models generated
using principal component analysis (PCA) transformed BGP data led to improved classi-
fication performance using the WestRock BGP dataset. Selecting important features using
extra-trees algorithm led to the best classification performance of GBDT models. GBDT
models offer short training time and may be suitable for designing scalable and real-time
anomaly detection systems.

Keywords: Communication networks; cybersecurity; intrusion detection; malware; worms;
ransomware attacks; anomaly detection; Border Gateway Protocol; goodness of fit test;
supervised and unsupervised machine learning; feature selection; gradient boosting algo-
rithms.

iii

Dedication

To my parents, sister, and brother.

iv

Acknowledgements

I would like to thank my family and friends for their unconditional love and support. I give
my sincere thanks and appreciation to my advisor Prof. Ljiljana Trajković for her guidance
that has greatly influenced my career. I thank her for all her efforts and time spent guiding
me in my research journey and providing me with all the opportunities to learn and grow
in my career. I would like to give my special thank to my former colleague Zhida Li for his
guidance and support.

v

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures xii

List of Abbreviations xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2

1.2.1 Anomaly Detection . 3
1.2.2 Border Gateway Protocol . 4
1.2.3 BGP Messages . 5
1.2.4 BGP Anomalies . 6

1.3 BGP Data Collections . 7
1.3.1 Réseaux IP Européens . 7
1.3.2 Route Views . 8

1.4 Machine Learning for Anomaly Detection 8
1.5 Research Publications . 9
1.6 Overview of Related Work . 10
1.7 Roadmap . 12

2 Description of BGP Datasets 14
2.1 Viruses and Worms . 14
2.2 Power System Blackouts . 15

vi

2.3 Ransomware Attacks . 16
2.3.1 WannaCrypt . 18
2.3.2 WestRock . 19

2.4 Extraction of BGP Features . 19

3 Dimension Reduction and Feature Selection 23
3.1 Unsupervised Machine Learning Approaches 24

3.1.1 Dimension Reduction Using Principal Component Analysis 24
3.1.2 Data Clustering Using k–Means . 26
3.1.3 Cluster Refinement Using PCA and k-Means Algorithms 30

3.2 Feature Selection . 30
3.2.1 Person Correlation . 30
3.2.2 Spearman Correlation . 34
3.2.3 Supervised Machine Learning . 35

3.2.3.1 Random Forest . 36
3.2.3.2 Extra-Trees . 37

3.3 Feature Analysis . 37
3.3.1 Probability Distributions of BGP Features 38
3.3.2 Goodness of Fit Test . 39

4 Machine Learning Approaches for Anomaly Detection 41
4.1 Support Vector Machine . 41
4.2 Deep Learning Networks . 42

4.2.1 Recurrent Neural Networks . 43
4.2.1.1 Long Short-Term Memory 43
4.2.1.2 Gated Recurrent Unit . 44

4.3 Learning Rate Scheduling . 45
4.4 Ensemble Learning . 46

4.4.1 Bagging, Boosting, and Stacking . 46
4.4.2 Gradient Boosting Decision Trees . 47

4.4.2.1 XGBoost . 48
4.4.2.2 LightGBM . 48
4.4.2.3 CatBoost . 49

4.5 Attention Mechanism . 49
4.6 Performance Metrics . 50
4.7 Cross-Validation . 51

5 Performance of Algorithms Used for Dimension Reduction and Feature
Selection 53
5.1 Dimension Reduction Using Principal Component Analysis 54

vii

5.1.1 Feature Selection Using Correlation 54
5.1.1.1 Pearson Correlation . 54
5.1.1.2 Spearman Correlation . 58

5.1.2 Feature Selection Using Random Forests 58
5.1.3 Feature Selection Using Extra-Trees 61

5.2 Goodness of Fit Test . 61

6 Performance of Classification Models 69
6.1 Performance Enhancement Using Machine Learning Approaches 69

6.1.1 Support Vector Machine . 70
6.1.2 Long Short Term Memory . 70

6.1.2.1 Learning Rate Scheduling 70
6.1.2.2 Attention Mechanism . 71

6.2 GBDT Models . 72
6.2.1 Principal Component Analysis . 73
6.2.2 Features Selection . 74

6.2.2.1 Pearson Correlation . 75
6.2.2.2 Spearman Correlation . 75
6.2.2.3 Random Forests . 76
6.2.2.4 Extra-Trees . 78

7 Conclusion 82

Bibliography 84

Appendix A Principal Component Analysis 96

Appendix B Correlation Coefficient 101

viii

List of Tables

Table 1.1 Sample BGP update message [1]. 6

Table 2.1 List of features (AS-path and volume) extracted from BGP update
messages. 20

Table 2.2 Definition of volume and AS-path features extracted From BGP update
messages [1]. 21

Table 2.3 BGP Internet worm datasets: number of data points. Note that Route
Views data collection began in 2003 [1]. 22

Table 2.4 BGP ransomware attack datasets: Number of data points [1]. 22

Table 3.1 Probability distribution functions. 39

Table 5.1 Variance retained in BGP training datasets that consists of the 10
selected principal components. 54

Table 5.2 Worms BGP RIPE datasets: Feature pairs with strong positive Pearson
correlation coefficients (ρ ≥ 0.90). 57

Table 5.3 Ransomware attack BGP RIPE datasets: Feature pairs with strong
positive Pearson correlation coefficients (ρ ≥ 0.90). 58

Table 5.4 Worm BGP RIPE datasets: Spearman correlation coefficient ≥ 0.90. 59
Table 5.5 Ransomware attack BGP RIPE datasets: Spearman correlation coeffi-

cient ≥ 0.90. 60
Table 5.6 BGP datasets: important features and number of estimators using ran-

dom forest based on accuracy. 60
Table 5.7 BGP datasets: important features and number of estimators using ran-

dom forest based on F-Score. 60
Table 5.8 BGP datasets: important features based on accuracy or F-Score eval-

uated using the extra trees. 61
Table 5.9 K-S test results for Burr, log-normal, and log-logistic distribution using

worm BGP RIPE datasets. 66
Table 5.10 K-S test results for Burr distribution of ransomware attack BGP RIPE

datasets. 67
Table 5.11 Features and distributions: accepted null hypothesis. 68
Table 5.12 Parameters of Burr, log-normal, and log-logistic distributions. 68

ix

Table 6.1 BGP datasets: F-Scores of SVM models generated using various kernel
functions and regularization coefficients. 70

Table 6.2 LSTM models: Best hyperparameters before and after applying cyclic
learning rate scheduler. 71

Table 6.3 Ransomware attack datasets: best performing hyperparameters and F-
Score. 71

Table 6.4 Ransomware attack datasets: performance results using attention mech-
anism. 72

Table 6.5 Best hyperparameters: number of estimators and learning rate (LR)
based on accuracy using normalized data using z-score and unnormal-
ized data. 72

Table 6.6 Performance of models generated using hyperparameters based on ac-
curacy or F-Score using normalized (z-score) and unnormalized BGP
ransomware attack data. 73

Table 6.7 GBDT models: performance based on the F-Score using datasets with
10 PCA components. 74

Table 6.8 GBDT models: best hyperparameters based on the F-Score and confu-
sion matrix using datasets with 10 PCA components. 74

Table 6.9 GBDT models: hyperparameters based on F-score after eliminating
highly correlated features. 75

Table 6.10 GBDT model performance based on F-score with eliminated high Pear-
son correlated features. 76

Table 6.11 Confusion matrix of GBDT models generated with eliminated high
Pearson correlated features from BGP datasets. 76

Table 6.12 Hyperparameters for models generated using datasets with eliminated
high Spearman correlated features. 77

Table 6.13 GBDT models: performance using datasets with eliminated Spearman
correlated features. 77

Table 6.14 GBDT models: confusion matrix using datasets with eliminated high
Spearman correlated features. 78

Table 6.15 GBDT models: best hyperparameters based on accuracy or F-Score.
Important features are selected using random forest. 78

Table 6.16 GBDT models: best performance based on F-Score. Important features
are selected using random forest. 79

Table 6.17 GBDT models: precision and recall based on accuracy or F-Score. Im-
portant features are selected using the random forest. 79

Table 6.18 GBDT Models: Confusion matrix based on accuracy or F-Score. Im-
portant features are selected using the random forest. 80

x

Table 6.19 GBDT models: best hyperparameters based on accuracy and F-Score.
Important features are selected using extra-trees. 80

Table 6.20 GBDT models: best performance results based on F-Score. Important
features are selected using extra-trees. 81

xi

List of Figures

Figure 1.1 Examples of IDS architectures: host-based (left) and network-based
(right). 3

Figure 3.1 WannaCrypt RIPE training dataset: variance ratio (left) and cumu-
lative variance ratio (right) of PCA components vs. the number of
components. The principal components are generated so that the
variance in data is preserved in descending order. The first 10 prin-
cipal components preserve over 70% of data variance. 25

Figure 3.2 WannaCrypt RIPE training dataset: scatter plot of regular and anoma-
lous clusters based on principal components 1 and 2. The majority
of data points belonging to both classes after PCA transformation
still overlap. 26

Figure 3.3 WannaCrypt RIPE training dataset: scatter plot of the first three
principal components that belong to regular and anomalous classes
in three-dimensional. 27

Figure 3.4 WannaCrypt RIPE training dataset: scatter plot number of announce-
ments vs. number of withdrawals. While blue data points belong to
the regular class and red data points belong to the anomalous class.
Partial separation is observed between the two clusters. 28

Figure 3.5 Scatter plot of three features of the WannaCrypt RIPE training data
segregated into multiple clusters (k = 2, 3, 4, and 5). 29

Figure 3.6 WannaCrypt RIPE dataset: silhouette coefficient (left) and cluster
scatter (right) plots for k = 2, 3, and 4. 31

Figure 3.7 WannaCrypt RIPE training dataset: silhouette coefficient (left) and
cluster scatter (right) plots for k = 5 and 6. 32

Figure 3.8 WannaCrypt RIPE data: k–means clustering measures: Silhouette
coefficient (left) and inertia (right) vs. number of PCA components.
The silhouette coefficients decrease with the increase in the number
of PCA components. They indicate that clusters are more balanced
for a smaller number of PCA components. 33

xii

Figure 3.9 WannaCrypt RIPE data: k–means clustering on PCA (components
= 3) transformed features. The PCA transformation applied to the
training data has enhanced the separation between clusters. 34

Figure 4.1 Neural network composed of LSTM cells. The current input xt, pre-
vious cell state ct−1, and output ht−1 are employed to calculate the
current output ht and cell state ct [1]. 43

Figure 4.2 Neural network composed of GRU cells. The expanded architecture
of the GRU cell with input xt at time t, current output ht, and past
output ht−1 [1]. 44

Figure 4.3 Time series split cross validation for k = 5. In the first iteration, the
first subset is used for training while the second subset is used for
validation. 52

Figure 5.1 WannaCrypt RIPE training dataset: Pearson Correlation matrix.
The strength of the correlation between features is indicated by color
strengths. The squares filled with dark blue and red colors correspond
to +1 and −1, respectively. 55

Figure 5.2 WannaCrypt RIPE training dataset: lower Pearson correlation ma-
trix. The intensity and size of the filled color fades as the value of
the coefficient decreases. 56

Figure 5.3 Feature importance of top 16 important features of WannaCrypt
and WestRock datasets calculated using extra-trees algorithm. Note
that the top 16 important features for both datasets are identical for
ransomware attacks that occurred a decade apart. 62

Figure 5.4 Features with at least one PDF accepted using the K-S test. BGP
data: Code Red (1st row), Nimda (2nd row), Slammer (3rd row),
WannaCrypt (4th row), and WestRock (5th row). Nine PDFs are
considered. Heavy-tailed PDFs are the best fit for features F1, F3,
F4, F9, F10, and F34. 63

Figure 5.5 Burr distribution Q-Q plots of number of announcements (F1): Code
Red, top row (left); Nimda top row (right); Slammer, middle row
(left); WannaCrypt, middle row (right); and WestRock, bottom (row). 65

xiii

List of Abbreviations

AdaBoost Adaptive Boosting
AES Advanced Encryption Standard
AI Artificial Intelligence
ANNs Artificial Neural Networks
ARPAnet Advanced Research Projects Agency Network
ASes Autonomous Systems

Bagging Bootstrap Aggregation
BGP Border Gateway Protocol
Bi-GRU Bidirectional GRU
BLS Broad Learning System

CART Classification and Regression Trees
CatBoost Categorical Boosting
CBC Cipher Block Chaining
CDF Cumulative Distribution Function
CIDR Classless Inter-Domain Routing
CNNs Convolutional Neural Networks
CV Critical Value

DCNs Data Center Networks
DDoS Distributed Denial of Service
DoS Denial of Service
DT Decision Trees

ECG Electrocardiogram
EFB Exclusive Feature Bundling
EGP Exterior Gateway Protocol
Extra-Trees Extremely Randomized Trees

xiv

GBDT Gradient Boosting Decision Tree
GBMs Gradient Boosting Machines
GOSS Gradient-Based One-Side Sampling
GRU Gated Recurrent Unit

ID3 Iterative Dichotomiser 3
IDSs Intrusion Detection Systems
IIS Internet Information Service
IP Internet Protocol
IRR Internet Routing Registry
ISPs Internet Service Providers
IXP Internet Exchange Point

K-S Kolmogorov–Smirnov

LANs Local Area Networks
LightGBM Light Gradient Boosting Machine
LSTM Long Short-Term Memory

MLP Multilayer Perceptron
MOAS Multiple Origin AS
MRT Multi-threaded Routing Toolkit
MVS Minimal Variance Sampling

NCC Network Coordination Centre
NIDS Network Intrusion Detection Systems
NLRI Network Layer Reachability Information
NML Neural Machine Translation
NSA National Security Agency

OS Operating System

PCA Principal Component Analysis
PDFs Probability Distribution Functions

RaaS Ransomware-as-a-Service
RBF Radial Basis Function
RFE Recursive Feature elimination
RIPE Réseaux IP Européens

xv

RIRs Regional Internet Registries
RIS Routing Information Service
RNNs Recurrent Neural Networks
RRCs Remote Route Collectors

SMBv1 Server Message Block version 1
SQL Structured Query Language
SVD Singular Value Decomposition
SVM Support Vector Machine

TCP Transport Control Protocol

UDP User Datagram Protocol

VNE Virtual Network Embedding

XGBoost eXtreme Gradient Boosting

xvi

Chapter 1

Introduction

The Internet is a global network that facilitates communication, collaboration, and access
to information for businesses, educational institutions, healthcare institutes, governments,
and non-profit organizations. Corporations and individuals rely on the Internet to perform
their daily professional, social, and personal activities [2]. Therefore, secure and reliable
Internet connectivity is crucial for effectively sustaining daily operations. Digital presence
and device connectivity have immensely grown due to continued Internet expansion and to
meet the increased user demands. This increase in digital presence exposes users to numer-
ous exploitation incidents and security risks. Hence, managing secure connections of devices
connecting to the Internet is a major challenge. The users are misled to browse compro-
mised websites and are persuaded to download malicious software and files with hidden
malicious intentions. Once downloaded on host devices, the software often automatically
executes and corrupts the system. The evolution of attacks and increase in the complexity
of devices connected to the Internet have outpaced current infrastructural and cybersecu-
rity solutions. Therefore, new network architectures are being designed and implemented to
address challenges in network security [3]. Network designers and administrators also moni-
tor network traffic for malicious activities and manage permissions to prevent unauthorized
system access and protect users against potential threats.

1.1 Motivation

Attackers invade enterprise networks by employing sophisticated and advanced techniques
including connections via remote command-and-control (C&C) servers to gain access and
steal users’ data. C&C servers are malicious servers that first establish connections with
infected hosts to enable communication. The C&C server then sends commands to infected
machines and installs additional malicious software to gain complete control over compro-
mised hosts and launch any commands [4]. Devices connected to a network are compromised
by exploiting system vulnerabilities. Large corporations such as RSA, Target, Sony Pictures
Entertainment, and Anthem were targeted in 2011 and 2014 [5]. Severe damages were caused

1

due to stolen security tokens, personal and credit card information, proprietary documents,
and malfunction of industrial operational equipment. Cyberattacks jeopardize the integrity,
confidentiality, and availability of a system to legitimate users. Examples of cyberattacks
include sniffing, phishing, man-in-the-middle attacks, end-point and source masquerading,
trojans, viruses, worms, botnets, Denial of Service (DoS), Distributed Denial of Service
(DDoS), and ransomware attacks [2, 5]. Network security is an essential topic in the field
of computer networking given a surge in cyberattacks and the use of sophisticated attack
techniques. Traditional intrusion detection approaches are insufficient to detect these at-
tacks, given the plethora of attack techniques and immense volume of data. Hence, machine
learning approaches might offer feasible solutions for network security.

1.2 Background

Malware, attack vectors, and exploits are employed to launch a successful attack. Mal-
ware is malicious software designed to harm or misuse any programmable device, service,
or network. Spyware, keyloggers, rootkits, malicious adware, bots, trojans, viruses, worms,
and ransomware are examples of malware [6, 7]. Spyware is software that collects users’
information such as browsing history, search queries, login credentials, and other sensitive
data without the consent of users. Keyloggers collect personal data by recording keyboard
strokes. Rootkits are malicious softwares that are used to obtain administrative privileges
in a system to perform harmful actions. Attackers employ rootkits to hide the presence of
malware in compromised devices, steal sensitive data, create backdoors, and evade security
systems [6]. Malicious adware are malicious softwares that are embedded in digital advertise-
ments. They are designed to install additional malware on a device to monitor user activity
or perform illicit activities without users’ permission. They are also used as clickbait to
steal money, redirect the user to malicious websites, and create bots for additional attacks.
Bots are software programs that are designed to automatically execute repetitive tasks.
Bots target vulnerable devices and employ them to send spam or perform illicit activities.
Trojans are malicious softwares that are disguised as legitimate software. They gain remote
access to systems by exploiting backdoors. Viruses and worms are a type of self-replicating
malware. Viruses require user action to activate and infect devices. Worms do not require
user interaction to infect and propagate. Ransomware is a type of malware that locks users’
devices by employing encryption techniques and demanding ransom [7].

An attack vector is a method of obtaining unauthorized access to a system to perform
an illicit activity by delivering malware in the form of attachments and by applying social
engineering techniques. SQL injection, exploits, phishing, and passive monitoring are widely
used attack vectors [8]. SQL injection is a technique of using malicious SQL code to obtain
access to data from the backend databases. Exploits are tools that search for vulnerabilities
in a system to launch an attack by installing malware. For example, attack vectors such

2

as phishing emails are used to spread infected attachments. Phishing is a social engineer-
ing technique where the attacker masquerades as a credible person and tricks the victims
into revealing sensitive information. Phishing emails usually contain malicious attachments
and URLs. After the user opens the infected attachment or URL, the hidden exploit then
searches the system for vulnerabilities to execute malware. Disruptions to the regular func-
tioning of a network cause significant delays, financial damages, and data losses. Various
passive attack vectors such as social engineering based techniques and active vectors such
as malware are employed to gain unauthorized access to a network [9]. These malicious
activities are inevitable in communication networks and may be detected using Intrusion
Detection Systems (IDSs).

IDSs are categorized as host-based and network-based. Host-based IDSs are directly
installed on host devices to monitor operating system files and processes [10]. Network
Intrusion Detection Systems (NIDS) are passive devices that monitor traffic flows for mali-
cious activities by inspecting packet flow or packet headers. Traffic flows are monitored from
an internal port of the firewall. NIDs rely on matching signatures or detecting anomalous
patterns in traffic data. Signature-based approaches match the attack signature against the
database of pre-known events to identify threats, while anomaly-based approaches search for
an activity deviating from an expected behavior [9]. Sample architectures of the host-based
and network-based IDSs are shown in Fig. 1.1.

Figure 1.1: Examples of IDS architectures: host-based (left) and network-based (right).

1.2.1 Anomaly Detection

Anomalies are deviations of data from expected behavior. Such non-adhering patterns de-
pending on the application domains are called outliers, discordant observations, exceptions,
aberrations, surprises, peculiarities, or contaminants. The process of detecting these pat-
terns is called anomaly detection. Anomaly detection is the most critical task of the Inter-

3

net Service Providers (ISPs) to maintain network security and reliability. It is applied in
diverse fields such as cybersecurity (network intrusion detection), finance (credit card and
insurance fraud), healthcare (disease detection), and equipment operation (malfunction or
failure detection). For example, an anomaly in network traffic data indicates a cyberat-
tack or intrusion; theft in credit card and insurance transactions; an underlying health
issue in medical imaging data; or an equipment malfunction for industrial operational data.
Detecting anomalies is a challenging task because the regular behavior of a system keeps
evolving, the context of behavior might vary for different domains, noise may reassemble as
an anomaly, and the limited availability of labeled training data. Due to these challenges,
anomaly detection solutions are designed specifically for the application domains.

Anomalies may be categorized as point, contextual, or collective anomalies. Point anoma-
lies are data points that do not resemble the behavior of other data points in a dataset.
For example, if a user residing in Canada makes a transaction in another country and that
unusual transaction from the user’s usual spending activity may be flagged as an anomaly.
Contextual anomalies are data points that are considered anomalous in a specific setting
and are otherwise regular. For example, a temperature monitor displaying high tempera-
tures in summer months is considered regular, while it would indicate a faulty recording
device during winter months. Collective anomalies are data points that are collectively con-
sidered anomalous in a dataset while they are otherwise individually considered regular. For
example, a low value for a relatively long period in an Electrocardiogram (ECG) output
might indicate an underlying heart disease. Point anomalies may occur in any dataset while
contextual anomalies may only occur in datasets where instances are related and contextual
attributes are available. Network activity should be critically monitored to flag suspicious
activities and prevent attacks from recurring [11]. Anomaly detection is applied for intru-
sion detection in communication networks by employing rule-based and machine learning
approaches. The cost of misclassifying data points depends on the application domain. In
this thesis, we consider network anomalies in time series data collected from communication
networks.

1.2.2 Border Gateway Protocol

The Internet Data Network model consists of five layers: application, transport, network,
link, and physical layer. Routing protocols and algorithms are implemented in the net-
work layer. The network layer is divided into the control plane and the data plane. All
the routing decisions are implemented in the control plane, while packets are routed in the
data plane. Border Gateway Protocol (BGP) [12] is a de-facto interdomain routing proto-
col that is developed from experience gained with Exterior Gateway Protocol (EGP) [13].
It is implemented in the network layer to facilitate Internet Protocol (IP) traffic routing
between source and destination Autonomous Systems (ASes). Routing algorithms are em-

4

ployed to calculate an optimal path for packets to traverse through the Internet. BGP is an
incremental protocol, that employs path vector, a variant of distance vector protocol.

ASes are groups of networks of routers that are managed by a single administration do-
main. They perform tasks such as packet delivery and assist with network connectivity [14].
Each AS has a unique identifier known as the AS number. The Internet is composed of such
network of networks (ASes) that adhere to common routing policies designed by a network
provider. The current version of BGP (BGP-4) supports Classless Inter-Domain Routing
(CIDR) by removing the network class option. The BGP destination address is a CIDR
network prefix of a subnet or collection of subnets. The existence and reachability informa-
tion of each subnet is known to the Internet through an exchange of routing information
by BGP. BGP facilitates the selection of efficient routing paths within the constraints of
various network policies. It includes a new set of mechanisms for CIDR such as enabling IP
prefix advertisement. It also allows the aggregation of routes, incremental additions, and an
option to set routing policies [12].

The BGP connections are established between routers via Transport Control Protocol
(TCP) connection using port 179 [14]. BGP peering session is the process where different
ASes connect and exchange routing information. During a peering session, routers exchange
BGP routing tables and apply existing routing policies to discover the best path for a packet
to traverse. There are two types of BGP sessions: external BGP (eBGP) and internal BGP
(iBGP). The gateway routers use eBGP to obtain reachability information for peers residing
in distinct ASes. The gateway router then further shares routing information with all peers
within the AS using iBGP. In summary, BGP enables communication between organizations
by sharing network reachability information.

1.2.3 BGP Messages

BGP messages exchanged by BGP routers are open, keepalive, update, and notification.
Open messages are exchanged after establishing a TCP connection. They include the BGP
version, sender AS number, hold time (maximum number of elapsed seconds between con-
secutive keepalive and update messages), BGP identifier (IP address of the BGP speaker),
and optional parameter length. After a BGP session is established, keepalive messages are
exchanged among peers to ensure active BGP connections. BGP update messages are then
exchanged to distribute information of available routes among routers. BGP is an incremen-
tal routing protocol and, hence, update messages are exchanged when network reachability
or topological paths change. Otherwise, update messages of the existing prefix withdrawals
are exchanged. BGP update messages include critical information about protocol status
and configuration. Therefore, datasets may be generated by extracting fields of BGP up-
date messages during an event of interest. Notification messages are exchanged to close an
existing peering connection when there is a disagreement about the configuration parame-
ters [14,15].

5

A sample BGP update message is shown in Table 1.1. Important routing information
such as AS-path, Next-hop, and announced NLRI prefix may be extracted from the BGP
update message to examine traffic activities [16]. For example, the BGP update message is
shown in Table 1.1 illustrates that the packet is routed from ASes listed in the AS-path field
using the shortest path. The packet has a source IP address “192.65.185.195” and is en-route
to the destination IP address “192.65.185.40” within the same AS with the subnet prefix
“192.65.185”. Network prefix subnet and length are listed in the Network Layer Reachability
Information (NLRI) field. The network may be reached via neighboring BGP routers [15,17].

Table 1.1: Sample BGP update message [1].

Field Value
TIME 2022-1-16 01:40:06
TYPE BGP4MP/BGP4MP_MESSAGE_AS4 AFI_IP
FROM 192.65.185.195
TO 192.65.185.40
BGP PACKET TYPE UPDATE
ORIGIN IGP
AS-PATH 15547 6939 4788 45259 10094 10030
NEXT-HOP 192.65.185.195
ANNOUNCED NLRI PREFIX 183.171.121.0/24
ANNOUNCED 183.171.120.0/24

BGP is prone to errors, misconfigurations, and lacks security mechanisms to validate
legitimate route updates [18]. Events such as genuine policy changes or route flapping that
are caused by the swift retraction of advertised routes might be perceived as anomalous
BGP behaviors [19]. Power outages and routing table leaks destabilize the global network
routing and disrupt Internet connectivity. An attacker may eavesdrop in a network by re-
routing the traffic to an illegitimate AS or may disrupt traffic flows by dropping packets.
This may lead to large-scale Internet disconnections.

1.2.4 BGP Anomalies

BGP was designed on a trust mechanism to exchange routing information between routers
in different ASes. The protocol does not have any inbuilt mechanism to validate the au-
thenticity of shared routing information. Due to this established trust between routers, it
is susceptible to attacks. An intruder may misuse the trust to propagate false routing in-
formation across the Internet leading to eavesdropping or disconnections. These undesired
changes in traffic patterns result in significant disruptions to network operations. Such un-
usual incidents are referred to as BGP anomalies. BGP anomalies may be caused due to
hijacking attacks, misconfigurations, routing overloads, link failures, and changes in network
topologies [20]. BGP hijacking attacks are launched by redirecting traffic from a legitimate

6

AS to desired ASes for malicious reasons. Attackers accomplish this by falsely advertising
the ownership of IP prefixes that belong to other ASes to re-route the traffic. The re-routed
traffic may be directed to non-existing paths, monitored for eavesdropping, obstructed by
dropping packets, and prone to spoofing. Spoofing is a method of masquerading legitimate
IP addresses for spam purposes. Multiple Origin AS (MOAS) is an example of a BGP hi-
jacking event. MOAS conflict occurs when an IP prefix has more than one point of origin.
Each IP prefix should belong to only one originating AS [21]. BGP misconfigurations lead
to routers announcing used or unused prefixes. Both cases pose danger and may result in
traffic overload on routers or loss of packets due to routing traffic through illegitimate or
non-existing routes. BGP link failures are caused due to loss of connectivity and reachability
between private and public BGP peers. The accurate identification of a BGP anomaly is
a complex and challenging task. In the case of network anomaly, the cost of misclassifying
anomalous data points is very high. Hence, it is critical to correctly identify anomalies and
implement measures to prevent damage.

1.3 BGP Data Collections

The interdomain level routing information may be collected from BGP trace collectors,
route servers, looking glasses, and Internet Routing Registry (IRR) databases. BGP trace
collectors peer with ISPs to receive routing tables and updates from their peers [22]. The
exchanged information is periodically stored in archives. BGP data may be generated by
extracting fields of BGP update messages. Réseaux IP Européens (RIPE) [23] and Route
Views [24] are two publicly available BGP trace collection sites. These repositories collect
data from the BGP control plane.

RIPE Network Coordination Centre (NCC) is one of the five globally known Regional
Internet Registries (RIRs) that provide service to Europe, the Middle East, and parts of
Central Asia. Since 2001 RIPE Routing Information Service (RIS) project is managed by
RIPE NCC, a non-profit organization. Route Views is a research project at the University
of Oregon founded by the advanced network technology center. These organizations collect
and store chronologically the collected routing data. BGP update messages collected by
RIPE and Route Views repositories are publicly available to the community to download.
They are stored in the Multi-threaded Routing Toolkit (MRT) format.

1.3.1 Réseaux IP Européens

RIPE RIS project was established to collect BGP routing data via globally distributed
Remote Route Collectors (RRCs) at major Internet Exchange Point (IXP) sites. The rrcs
employ Quagga routing software [25] to collect data as dump and update files. Dump files
store the state of the routing system at a given time instance. The update files store all the
changes in the routing system for a given period. A total of 25 rrcs are globally located in

7

the following locations: Europe (16), North America (4), Asia (2), South America (2), and
Africa (1) [26]. Gateway routers collect the routing data for their peers at the IXP peering
Local Area Networks (LANs) collector. The routing data may also be collected by collectors
that peer via a multihop mechanism. The following naming scheme is available to down-
load files: “https://data.ris.ripe.net/rrcXX/YYYY.MM/TYPE.YYYYMMDD.HHmm.gz”,
where XX is the rrc number, YYYY is the year, MM is the month, TYPE is the file type
(bview for dumps or update for updates), DD is the date, HH is the hour, and mm is the
minute.

1.3.2 Route Views

The Route Views project was initially established to collect real-time routing data to en-
hance the understanding of the global routing system. Data are collected from various
backbone routers at globally distributed locations. Route Views [24] project employs three
types of collectors: FRRouting, Quagga, and Cisco. The FRRouting and Quagga collectors
are based on Zebra routing software. BGP update messages and routing tables are collected
by FRRouting and Quagga collectors every 15 mins and 2 hrs, respectively. The Cisco col-
lectors obtain data every 2 hrs starting at 00:00. There are 36 Route Views collectors: 29
FRRouting, 6 Quagga, and 1 Cisco. These rrcs are distributed across the five RIRs: ARIN
(14), LACNIC (6), APNIC (7), AFRINIC (4), and RIPE NCC (5). The available data are
used to visualize AS paths and utilization of IPv4 address space. Various studies of Internet
topology have also been performed to map IP addresses to the origin AS.

1.4 Machine Learning for Anomaly Detection

Network intrusions are detected by employing various approaches from the fields of machine
learning and data mining. In the past, signature-based models have been widely adopted to
detect anomalies. However, they lack adaptability as the techniques employed to attack keep
evolving with time and it is not feasible to keep track of all the signatures of attacks. The
limitations include a lack of contextual knowledge about the constantly evolving threats,
detection systems that rely on expert training, and a single point of failure if the IDS is
compromised. Therefore, intelligent cybersecurity solutions have been adapted to develop
automated systems to address the increase in data volume and intrusions. Machine learning
is a branch of Artificial Intelligence (AI) and statistics. It relies on data to build models for
pattern recognition. Machine learning models are built on the foundation of human learning:
memorizing, adapting, and generalizing.

A well-defined machine learning problem consists of a learning task, performance mea-
sure, and task experience [27,28]. The four learning tasks in machine learning include clas-
sification, association, clustering, and regression. In classification tasks, the output variable
contains finite discrete output categories. Binary classification is a task of identifying two

8

distinct classes: regular and anomaly. In association, a relationship between observations is
required. In clustering, the algorithm is applied to group alike observations. In regression,
the output variable consists of multiple continuous output variables. The learning task of a
machine learning model depends on the input training data. The machine learning models
are trained to reduce the difference between the expected and predicted outcome. Machine
learning approaches are categorized based on the availability of the data labels as unsuper-
vised, supervised, and semi-supervised [29]. Unsupervised machine learning approaches are
used when data labels are not available. They are employed to perform clustering. Super-
vised machine learning techniques are used when data labels are available. They are applied
to perform classification and regression. Semi-supervised machine learning approaches use
partially labeled training data to generate models. They may be implemented to solve a va-
riety of problems such as classification, regression, clustering, and association. We perform
binary classification of BGP anomalies using various unsupervised and supervised machine
learning approaches.

1.5 Research Publications

[1] H. K. Takhar, A. L. Gonzalez Rios, and Lj. Trajković, “Comparison of virtual network
embedding algorithms for data center networks,” in Proc. IEEE Int. Symp. Circuits Syst.,
Austin, TX, USA, May 2022, pp. 1660–1664.

Software defined networks are a new Internet architecture paradigm that allows co-
existence of heterogeneous network architectures. They optimize network management (main-
tenance, operability, and effective content delivery) by provisioning a centralized network
intelligence. Virtual Network Embedding (VNE) algorithms improve scalability and utiliza-
tion of physical resources in Data Center Networks (DCNs). In this paper, we implement
various DCN topologies and evaluate performance of VNE algorithms using the VNE-Sim
simulator. We compare performance by implementing both server-centric and switch-centric
DCN topologies.
[2] H. K. Takhar and Lj. Trajković, “BGP feature properties and classification of Internet
worms and ransomware attacks,” in Proc. IEEE Trans. Syst. Man Cybern., submitted.

Machine learning approaches for anomaly detection heavily depend on the training data
and their properties. In this paper, we analyze the impact of data probability distribution
on the performance of machine learning models developed based on worms and ransomware
attack Border Gateway Protocol datasets. We perform feature selection to determine the
most important features and identify the best fitting distributions. Experimental results
indicate that a number of features follow heavy-tailed distributions. Classification of traffic
anomalies is evaluated using the gradient boosting decision tree models that offer short
training time thus being suitable for designing real-time and scalable intrusion detection
systems.

9

1.6 Overview of Related Work

In this Section, we provide a literature review dealing with signature-based and machine
learning intrusion detection techniques. Network intrusion attacks severely disrupt the In-
ternet connectivity and result in dire financial losses. Therefore, it is crucial to investigate
the cause of these attacks and employ measures to terminate the attack and prevent network
intrusions from recurring. An efficient approach involves first correctly identifying intrusions
and then employing specific steps to terminate the attack. Since different attacks target dif-
ferent system and software vulnerabilities, therefore it is crucial to first correctly identify
the type of attack before deploying resources to terminate the attack. This methodology
will preserve resources and time in the case of an attack.

The resources employed in an attack may include numerous active (malware attacks) and
passive (social engineering techniques) attack vectors. Active attack vectors are designed to
exploit a system’s resources by modifying or hindering its functionality. Vulnerabilities are
exploited by employing techniques such as botnets, trojans, malware installation, hijacking,
phishing attacks, and scanning systems. Various attack vectors employ social engineering
techniques to mislead users and attack systems by gaining unauthorized access. The victims
are forced to pay a ransom, attempt to remove malware, or restart the device to recover
the system. Data retrieval is not guaranteed after the payment of ransom [30,31].

A survey conducted by Sophos gathered statistics about different sized organizations
ranging between 0.1k–1k and 1k–5k employees in 26 countries [32]. Sophos calculated the
social and economic impact of ransomware attacks. It discovered that from the surveyed
countries, 51% of the companies were attacked and the successful encryption rate of the
attacks was 73%. Ransom was paid by 26% of the attacked companies to regain access to
their data while other organizations relied on backups to recover the encrypted files. Overall,
the revenue lost by organizations that paid a ransom ranged between $ 0.7 – 1.4 million
USD.

Various surveying methods and tools to detect network intrusions in routing data have
been reported [33]. BGP is the interdomain routing protocol of the Internet. Attacks
launched to compromise its regular operation affect the Internet integrity. Network anoma-
lies and numerous approaches were surveyed to detect BGP anomalies [20]. The report
highlights the vulnerability of the BGP protocol and difficulties to differentiate between
BGP anomaly and reliability. For example, measures taken by ISPs to optimize utilization
of the network resources may be falsely perceived as an anomaly. The techniques suggested
to detect BGP anomalies are categorized as cryptographic-based prevention, anomaly mit-
igation, mitigation of unstable route propagation, and anomaly detection. Cryptographic
techniques employ public key infrastructure (PKI) to authenticate routing announcements.
PKI are encryption methods that employ public keys to confirm the validity of digital
transactions. Anomaly mitigation relies on deferring suspicious updates of routes to pre-

10

vent damage. The unstable routes as referred to in the report, are routes that do not inhibit
the ability of BGP to share routing information. The mitigation of unstable route propaga-
tion approach refers to deferring sharing of unstable routes. Anomaly detection techniques
rely on searching unusual patterns in traffic data [20].

Due to the shortcomings of the existing security approaches, the Internet is still exposed
to hijacks, misconfigurations, and a lack of deployable security infrastructure. A rule-based
approach [34] is designed using machine learning to detect network anomalies based on
IP flow statistics. Network traffic may be analyzed by inspecting packet headers or packet
payloads for pre-known behaviors known as signatures. The authors analyze and identify the
challenges associated with signature-based detection systems such as Snort [35] that inspects
packet signatures. A snort detection system is difficult to deploy in a large-scale network
with high-capacity links due to high computational costs. It is favorable to analyze patterns
in traffic for anomalous activity due to their smaller size compared to packet signatures.
The suggested architecture uses the correlation between packet payload and flow data (flow
signatures) to develop a scalable machine learning based detection system. The rules are
defined by analyzing the IP flow traffic to replicate the actions of packet-based detection
systems. Support Vector Machine (SVM), AdaBoost, and maximum entropy were selected
for binary classification. The models were successfully able to detect anomalous traffic by
monitoring flow signatures [34].

A generalized approach [36] was proposed to automatically generate features from raw
data rather than applying manual feature extraction techniques that depend on observa-
tions. Techniques employed to manually generate features rely on extracting statistics such
as the number of BGP update messages and AS-Path length. The authors criticize this
feature extraction approach for lack of generality because the process is dependent on the
observations. The datasets used were obtained using data collected by RIPE rrc04 located
in Geneva. The BGP update messages are transformed using mathematical relationships
into regularized vectors that are mapped to word indexes. Bag-of-words approach is then
employed to generate sentence vectors. The neural networks are used to automatically ex-
tract features from the generated sentence vectors. The experimental results show improved
results than the standard manual approach for extracting features. However, the approach
has an extensive computational cost for sentence vectors with large dimensions.

Security mechanisms such as secure-BGP (S-BGP) and BGPsec are developed to secure
the networks from vulnerabilities of BGP. A different type of attack called TIGER [37]
evades the existing security mechanisms and falsely advertises non-existent network routes.
TIGER attacks are launched by building fraudulent BGP sessions via tunneling between two
routers residing in different ASes. After establishing a connection, non-existing connections
are advertised to re-route the traffic for attackers’ gain. TIGER attacks are difficult to detect
because the routers exchange valid signatures for the forged routing paths. The routers also
receive verification for the existence of forged routing paths in the data plane. A monitoring

11

service Anti-TIGER was proposed to detect these attacks that rely on building neighbor
AS graphs (NAGs). The direct spread spectrum technique is employed to add a watermark
bit to the probing packets for detecting attacks. Covert channels are also built between
intermediate and victim ASes to decode the hijacked traffic. The proposed approach [37]
provides an effective solution to the condition when routers collude to attack a system by
evading the existing BGP security schemes.

Implementation and configuration of routing policies is a challenging task. Unintended
routing behavior degrades the efficacy of resources allocated by the operators and may
lead to global connectivity issues. Networks suffer from unreliable connections due to prefix
misconfigurations or fraudulent routing policies. Such anomalous behavior may be prevented
by visualizing assigned prefixes. A BGP visibility toolkit [38] was developed for ISPs to
monitor the connectivity status of interdomain prefixes. This visual tool is used by network
providers to monitor assigned prefixes and detect faulty configurations by analyzing the
global BGP routing tables. A global routing table contains the complete routing list provided
by the ISPs to customers. The visibility of a prefix depends on the presence of an active
route between a prefix and all ASes. Performance is evaluated using RIPE and Route Views
data to illustrate that the tool provides reliable triggers for anomalous behaviors. In the
past, routing leak events such as Dodo (February 2022) and YouTube prefix hijack in the
case of Pakistan Telecom resulted in the inability of users to connect to the Internet. These
disruptions can be reduced or prevented from recurring by utilizing BGP visibility toolkits.

Fast training time is desired for machine learning models to facilitate real-time anomaly
detection, scalability with large-scale datasets, and to be computationally effective. The
training time to generate intrusion detection models is investigated [39] using Light Gradient
Boosting Machine (LightGBM) [40], Gated Recurrent Unit (GRU), Bidirectional GRU (Bi-
GRU) [41], Broad Learning System (BLS) [42], and its extension algorithms. The models
are generated using BGP [43], NSL-KDD [44], and CIC [45] datasets. The authors discover
that the shortest training time as desired by most real-time IDSs is obtained using BLS
models.

1.7 Roadmap

The thesis is organized as follows: In Chapter 1, we describe the motivation and background
related to cyberattacks, anomaly detection, routing protocol BGP, and BGP messages. We
also discuss the data collection repositories and the importance of applying machine learn-
ing in intrusion detection systems. We then list the research publications emanating from
this project, followed by an overview of related work, and present the roadmap of the thesis.
In Chapter 2, we describe network anomalies (viruses, worms, power blackouts, and ran-
somware attacks) and datasets employed in this thesis. Dimension reduction, data clustering,
and feature selection approaches are discussed in Chapter 3. Various machine learning ap-

12

proaches such as Support Vector Machine (SVM), deep learning networks Long Short-Term
Memory (LSTM), ensemble learning boosting algorithms, learning rate scheduling, and at-
tention mechanism are described in Chapter 4. We perform feature selection by evaluating
correlation coefficients and supervised machine learning tree-based models in Chapter 5
and identify underlying feature distributions of BGP features using goodness of fit test.
Performance of models generated by using SVM, LSTM, and gradient boosting algorithms
are evaluated in Chapter 6. We conclude with Chapter 7.

13

Chapter 2

Description of BGP Datasets

Malicious attempts exploit vulnerabilities of systems for monetary gains, political agen-
das, and the intentional spread of false information. Infected email attachments, malicious
advertisements, infected USB drives, phishing emails, and texts are used to spread mal-
ware. These attacks result in major network disruptions and network anomalies. Network
anomalies may be categorized based on their effect on network performance and security.
Performance-related anomalies include file server failures, network congestion, and packet
flooding that may result in network failures. Security-related anomalies include attacks such
as trojans, viruses, worms, DoS, DDoS, rootkits, and ransomware attacks [46–49]. In this
Chapter, we first describe network anomalies such as viruses, worms, power outages, and
ransomware attacks. We then describe the process employed to generate datasets used in
this thesis.

2.1 Viruses and Worms

Network viruses and worms are self-replicating malicious programs that compromise systems
by consuming excessive network resources thus making the targeted resources and systems
inaccessible to legitimate users [46]. Viruses are embedded as payloads in downloadable files
and other software programs [50]. They invade a system through the activation of a host
file prompted by a user. The first known virus Creeper was designed in 1971 as a test pro-
gram. It harmlessly propagated through the Advanced Research Projects Agency Network
(ARPAnet) (predecessor of the Internet) and displayed the message “I’m the creeper, catch
me if you can”. The virus gained access to servers and propagated by self-replication [51,52].
Worms are malicious programs that contaminate a system by self propagation and replica-
tion. Worms rely on social engineering techniques and target system vulnerabilities to invade
networks. The world’s first known worm Morris was launched on November 2, 1988 [53]. It
was first detected by a student at the University of California, Berkeley. The worm targeted
computers running a specific Unix OS and was designed to remain undetected. It com-
promised approximately 6, 000 computers out of the 60, 000 computers connected to the

14

ARPAnet. It employed multiple attack vectors to spread across the network and exploited
loopholes in e-mail and user authentication systems. The casualties of the worm amounted
to approximately a million dollars and resulted in major delays for essential operations and
email deliveries. Measures such as erasing data of systems and disconnecting devices for
weeks were taken to repair damages. Although creeper was originally called a virus, it prop-
agated through networks without host activation, thus having the propagation properties
of a worm.

Viruses and worms infect a system upon download of a malicious file. An executable file
is embedded in virus infected files and a user action is required to activate the executable
for the virus to infect. In contrast, in the case of worm infected files, the download of an
infected file is sufficient to infect a system by exploiting vulnerabilities of a system. Email
applications and scan engines are employed to spread malware (viruses and worms) in a
network [54,55]. Code Red [56], Nimda [57,58], and Slammer [59,60] are well-known worms
that caused severe disruptions by flooding networks with BGP update announcements and
by exploiting vulnerabilities of Microsoft Internet Information Service (IIS) web servers.

The unchecked buffer in IIS web servers was located in the section of code that regulated
the input URL. And by overflowing this buffer, the attacker gains complete control of the
server and executes any code. Code Red worm exploited vulnerable IIS servers by causing
buffer overflows. The code gained system-level access and generated a list of random IP
addresses using a random seed generator and then spread the worm by probing these IP
addresses [61]. The IP addresses generated each time using the random seed generator
were unpredictable. Hence, the worm rapidly spread and infected thousands of vulnerable
systems.

Nimda exploited vulnerabilities of Internet Explorer 5 running on IIS web servers and
propagated via infected attachments using email messages, websites, and shared network
drives [58]. Slammer infected systems by exploiting buffer overflow vulnerability in the MS
Structured Query Language (SQL) servers and propagated using User Datagram Protocol
(UDP) on port 1434 [59].

2.2 Power System Blackouts

Societies depend on the reliable availability of electrical power for conducting their daily
activities. Power system blackouts are the loss of electrical power to end users. They are
caused by transmission line failures, overload of transmission lines, malfunction of the pro-
tection equipment, human error, and natural calamities. Power outages pose a threat to
public safety, have severe secondary repercussions, and cascading effects. The absence of
reliable power backup may also affect ISPs during large-scale power outages. During a com-
ponent failure, the neighboring components experience increased load leading to failures of
multiple components. Therefore, it is crucial to study these events to maintain public and

15

environmental safety. For example, the Moscow power system blackout occurred in May
2005 due to a transformer failure in the Changino substation of the Moscow energy ring.
The power outage disconnected MSK-IX, a major Internet traffic exchange point. Users ex-
perienced disruption in the Internet connectivity for long periods because of disconnection
between ISP peers and IXP [62].

2.3 Ransomware Attacks

Ransomware is a malicious software program that targets networks with weak security. Sys-
tem files are encrypted to restrict access and ransom payment is demanded from owners to
regain access to the system. A variety of code obfuscation techniques like runtime packers
and encryption methods are employed to evade security systems. Obfuscation may be em-
ployed to conceal information to make it difficult for a user to analyze. Code obfuscation
techniques are implemented by attackers to prevent cybersecurity personnel from analyz-
ing and reverse engineering the process employed to launch the malware. Runtime packers
are software programs that are employed to obfuscate the content of files by using data
compression. A new executable file, called runtime packer, is generated by compressing the
content of the original malicious executable file. The compressed content is embedded as a
payload in the newly generated executable file. Upon execution of this obfuscated executable
file, the malicious executable is automatically decompressed in the system memory, hence,
compromising the system security. Attackers prefer runtime packers to obfuscate malware
because security systems may not be able to read the content of compressed files.

Ransomware attacks employ repeated actions to attack and encrypt the victim’s data
and, hence, may depict repeating local patterns. Detecting ransomware attacks by using
endpoint protection systems that rely on matching signatures and using automated un-
packing tools are challenging. Ransomware attack variants have distinct attack signatures
and the new variant and old variants may differ. Hence, it is inefficient to detect ransomware
attacks by matching signatures. Automated unpacking tools are employed to decompress
executable files and detect malicious files. However, ransomware packages are designed using
advanced techniques to evade automated unpacking tools [32].

Propagation methods are different approaches employed by attackers to enter a system.
Ransomware attacks may be classified based on their propagation method as Ransomware-
as-a-Service (RaaS), cryptoworm, and automated active adversary.

• RaaS are readily available ransomware kits, that are easy to deploy. Hackers with
minimum skills purchase RaaS kits to exploit system vulnerabilities. Attackers then
threaten to publish sensitive and confidential data of victims that could be protected in
exchange for ransom payment [32]. Advanced cryptography techniques are employed to
lock users’ data. However, the decryption of data is not guaranteed [63,64]. Examples
of RaaS are DarkSide, REvil, Dharma, and LockBit [65].

16

• Cryptoworm is a type of ransomware that reproduces itself for optimal reach and
effect. It encrypts victims’ data and self-replicates without host file activation, thus
imitating the properties of a worm. The stolen sensitive information may then be
sold on the dark web as a distribution kit. WannaCrypt is a cryptoworm ransomware
variant.

• During an automated active adversary ransomware attack, intruders employ tools to
automatically search systems for backdoors and inadequate security. The tools obtain
access to devices and launch attacks for damage.

Ransomware attacks may also be categorized as locker, crypto, and scareware [66,67]:

• Locker ransomware attacks disrupt primary access to users’ devices by disabling basic
operation functions in a system. The goal of locker ransomware attacks is to restrict
access by locking system displays and keyboards [68].

• Crypto ransomware attacks encrypt files to make data inaccessible to legitimate
users [30, 69]. Ransom payments are demanded in exchange for regaining system ac-
cess [66, 70]. Symmetric, asymmetric, or hybrid encryption techniques are used in
crypto ransomware attacks [71]. Symmetric encryption is a fast approach that em-
ploys one key for both encryption and decryption. The encryption key is embedded
in the encrypted file and the victim might recover the key by using reverse engi-
neering tools. Asymmetric encryption uses pair of keys to encrypt (public key) and
decrypt (private key) data. RSA is a popular asymmetric encryption algorithm used
in crypto ransomware attacks. In this case, the private key cannot be recovered by
having access to the public key. Asymmetric encryption methods are time-consuming
and require plenty of memory on the host system. Therefore, the encryption process
may be interrupted by the host’s IDS before the complete execution of an attack.
Hybrid encryption uses a combination of symmetric and asymmetric encryption tech-
niques. It is one of the most difficult mechanisms to decrypt. A random key is first
generated to encrypt users’ files and a command–and–control server is then used to
generate public-private key pair [69,72]. The private key is encrypted using the public
key and data may only be decrypted using the private key.

• Scareware is employed to threaten users without posing a danger. Hackers disguise
themselves as authoritarian individuals and falsely accuse victims of performing illegal
activities. Victims are convinced to pay ransom payments to avoid legal repercussions
such as litigation and social repercussions.

The PC Cyborg is the first known ransomware attack that targeted systems in December
1989 [73, 74]. Infected floppy discs were mailed to contacts of hijacked subscriber mailing
lists (World Health Organization AIDS conference and PC Business World magazine). The

17

encryption software was disguised as a survey. The malware hid hard drive files and en-
crypted file names making the system unusable. Ransom was demanded to regain access
and protect compromised sensitive information from being leaked.

Spam emails, exploits, compressed executables, signed code, and code obfuscation tech-
niques are employed to download illegitimate files and software packages. Attackers employ
compressed executables to launch attacks and avoid being detected by security systems.
The administrative privileges are gained by exploiting backdoors and vulnerabilities in the
Operating System (OS) by using tools such as EternalBlue, Windows Event Viewer pro-
cess, and CVE-2018-8453 [32,75]. The data encrypted during a ransomware attack is usually
stored on the same disk (overwritten) or copied on a separate disk. Data may be partially or
fully manipulated during the encryption process. Examples of ransomware attacks include
Tescrypt, Crowti, Cerber, and Locky [76] as well as WannaCrypt [32] and Petya [77]. Sev-
eral expert-based and machine learning approaches are employed to enhance detection of
ransomware attacks. Machine learning approaches have strong computational capabilities
to process large-scale datasets and more effectively address the detection of ransomware
attacks than conventional techniques [76]. Deep learning models such as RNNs [78] have
been advocated in the literature for their efficient performance in detecting anomalies.

2.3.1 WannaCrypt

In May 2017, WannaCrypt [32] cryptoworm infected over 230, 000 computers in 150 coun-
tries. It is also known as a network worm because it self-replicates throughout a network.
System vulnerabilities are probed to gain administrative privileges by employing Eternal-
Blue [79] exploit, and DoublePulsar [80] backdoor tool to replicate and execute the ran-
somware. ExploitBlue is a cyberattack tool developed by the US National Security Agency
(NSA). It was leaked publicly by hackers on 14 April, 2017. ExploitBlue exploits the loop-
hole in Server Message Block version 1 (SMBv1) [81] protocol to invade networks. SMBv1
is MS Windows 7 application layer protocol that allows users to obtain shared access to files
and printers. Microsoft was notified by US NSA about the potential leak of the cyberattack
tool. Subsequently, a security patch was released by Microsoft. However, not all computers
were updated with this security patch and attackers succeeded in deploying ExploitBlue
as a backdoor to infect vulnerable computers. The cryptoworm then self-propagated and
infected large numbers of systems. The cryptoworm copied and encrypted important doc-
uments using encryption methods. In exchange, the attacker demanded bitcoins as ransom
payments.

A symmetric encryption algorithm Advanced Encryption Standard (AES) based on
128-bit Cipher Block Chaining (CBC) mode was employed to encrypt files [32]. A single-
threaded encryption process was used to encrypt files one at a time. After encryption,
the cryptoworm either copies files or overwrites manipulated data. The encrypted files are
renamed and replaced by adding the “.wncry” extension. The keyword “WannaCry!” is

18

added to the combination of the AES key and encrypted data. Older versions of the data are
stored in the system using Volume Shadow Service. During a ransomware attack, the volume
shadow copies are deleted from the system by using a Windows utility VSSADMIN.EXE or
WBADMIN.exe to prevent data recovery [32, 79, 82, 83]. The ransomware targets the boot
system data and prohibits the MS Windows diagnostics and repair tool to run automatically
after the third failed boot. It then attempts to execute a normal boot in case of a failed boot,
shutdown, or checkpoint. Entire encrypted data is saved in a storage drive and buffers are
flushed from the system. The wallpaper of the computer is replaced with a message stating
that the data are locked and that ransom payment is required to recover data. WannaCrypt
variants continue to remain a high risk for IT systems.

2.3.2 WestRock

WestRock [84], a USA manufacturing company with over 320 manufacturing facilities world-
wide was attacked in late January 2021. The company’s information (IT) and operational
(OT) systems were targeted resulting in major shipments and production delays. The at-
tack was detected on 23 January, 2021 and lasted over six days. The company immediately
initiated response protocols to identify, contain, and recover from the attack. The pro-
cess included systematically shutting down systems for security. Additional measures were
employed to scan and enhance the existing security infrastructure. The company executed
alternative manual processes for delivering packaging solutions. The shutdown systems were
slowly brought back online in controlled phased stages. The production was 85, 000 tons
lower than the projected goals [85,86].

2.4 Extraction of BGP Features

Performance of machine learning models relies on the quality of data used for training and
testing models. In this thesis, we use BGP data from communication networks. Datasets
are generated by processing BGP update messages downloaded from the RIPE repositories.
Data are captured by these collection sites using the Quagga [25] software suite derived from
the multi-server routing software Zebra [87]. The BGP update messages are available for
download in MRT format. The downloaded files are converted to ASCII format using the
zebra-dump-parser [88] tool. The 37 BGP numerical features are generated by extracting
statistics of the features from BGP update messages using the C# [89] tool. These numerical
features are continuous, categorical, and binary [90]. Each data point corresponds to the
collected messages over one minute time intervals. The extracted BGP features listed in
Table 2.1 [1] are categorized as AS-path and volume features.

The AS-path field contains lists of routers that a packet traverses to reach its destina-
tion. Features that are extracted from the AS-path field of the BGP update message fields
are called AS-path features. The remaining extracted features are categorized as volume

19

Table 2.1: List of features (AS-path and volume) extracted from BGP update messages.

Feature Name Category
1/2 Number of announcements/withdrawals volume
3/4 Number of announced/withdrawn NLRI prefixes volume
5/6/7 Average/maximum/unique AS-path length AS-path
8/10 Number of duplicate announcements/withdrawals volume
9 Number of implicit withdrawals volume
11/13 Maximum/average edit distance AS-path
12 Arrival rate volume
14-23/ Maximum AS-path length = n/edit distance = n,
24-33 where n = (11, ... , 20) AS-path
34/35/36 Number of IGP, EGP or, incomplete packets volume
37 Packet size (B) volume

features. The definition of the extracted features is listed in Table 2.2. For example, the fea-
ture F1 (volume) corresponds to the number of announcements is the number of routes that
are available for packet delivery. The feature F5 (AS-path) is the average path size of the
respective AS. During a worm attack, the routers experience a surge of EGP packets. The
incomplete BGP messages indicate that the incoming packet has an unknown source of ori-
gin. BGP is highly vulnerable to misconfigurations and attacks due to the trust relationship
with BGP peers. During an attack, a manipulator may propagate false routing information
throughout a network. This propagation of false information results in an increased number
of announcements (volume feature). The volume features compose 65% of the influential
features. The AS-path features show high variance during an anomalous event [16].

The details of the Code Red, Nimda, and Slammer worm training and test RIPE datasets
are listed in Table 2.3. The details of training and test RIPE datasets for WannaCrypt and
WestRock ransomware attacks are listed in Table 2.4. The Route Views data collection for
Internet worms are only available for the Slammer dataset because Route Views have begun
collecting update messages from October 2001. Numerous experiments were performed to
select the partition for the datasets that obtain the best performance. The training and test
datasets are created such that they contain 60% and 40% of the anomalous data points,
respectively [1].

The data are normalized using a z-score to have a mean 1 and a standard deviation 0.
The z-score is calculated as:

z = x − µ

σ
, (2.1)

where x is the input data, µ is the mean, and σ is the standard deviation.
The datasets contain two labels: regular (0) and anomaly (1). For simplicity, all data

collected during the periods of reported anomalous events are labeled as anomalies. The
remaining data points are labeled as regular. However, data points in the considered time
window for anomalous events may also contain regular data points. It may not be very pre-

20

Table 2.2: Definition of volume and AS-path features extracted From BGP update mes-
sages [1].

Feature Name Definition
1 Number of announcements Routes available for delivery of data
2 Number of withdrawals Routes no longer reachable
3/4 Number of announced/ BGP update messages that have

withdrawn NLRI prefixes type field set to announcement/withdrawal
5/6/7 Average/maximum/ Various AS-path lengths

average unique AS-path length
8/10 Number of duplicate Duplicate BGP update messages with

announcements/withdrawals type field set to announcement/withdrawal
9 Number of implicit withdrawals BGP update messages with type field

set to announcement and different AS-path
attribute for already announced NLRI prefixes

11/13 Maximum/average edit distance Maximum/average of edit distances of messages
12 Arrival rate
14–23/24–33 Maximum AS-path length/ Various AS-path lengths/maximum edit distances

edit distance
34/35/36 Number of IGP, EGP, or, BGP update messages generated by IGP, EGP,

incomplete packets or unknown sources

cise to label all data points in a given time window as anomalous. Therefore, the considered
anomalous data points may be further analyzed to discover hidden regular data points. This
process of analyzing data to precisely label data points is called label refinement. Unsuper-
vised clustering algorithms such as k-means and isolation forest may be employed to refine
data labels by identifying regular data points in the considered anomalous data.

21

Ta
bl

e
2.

3:
BG

P
In

te
rn

et
wo

rm
da

ta
se

ts
:n

um
be

r
of

da
ta

po
in

ts
.N

ot
e

th
at

R
ou

te
V

ie
w

s
da

ta
co

lle
ct

io
n

be
ga

n
in

20
03

[1
].

C
ol

le
ct

io
n

D
at

as
et

R
eg

ul
ar

A
no

m
al

y
R

eg
ul

ar
A

no
m

al
y

R
eg

ul
ar

A
no

m
al

y
C

ol
le

ct
io

n
da

te
si

te
(m

in
)

(m
in

)
(t

ra
in

in
g)

(t
ra

in
in

g)
(t

es
t)

(t
es

t)
St

ar
t

E
nd

R
IP

E
C

od
e

R
ed

6,
60

0
60

0
3,

67
9

36
1

2,
92

1
23

9
17

.0
7.

20
01

00
:0

0:
00

21
.0

7.
20

01
23

:5
9:

59
N

im
da

7,
30

8
1,

30
1

3,
67

3
82

7
3,

63
5

47
4

16
.0

9.
20

01
00

:0
0:

00
21

.0
9.

20
01

23
:5

9:
59

Sl
am

m
er

6,
33

1
86

9
3,

21
0

53
0

3,
12

1
33

9
23

.0
1.

20
03

00
:0

0:
00

27
.0

1.
20

03
23

:5
9:

59
R

ou
te

V
ie

w
s

Sl
am

m
er

6,
31

9
86

9
3,

19
8

53
0

3,
12

1
33

9
23

.0
1.

20
03

00
:0

0:
00

27
.0

1.
20

03
23

:5
9:

59

Ta
bl

e
2.

4:
BG

P
ra

ns
om

wa
re

at
ta

ck
da

ta
se

ts
:N

um
be

r
of

da
ta

po
in

ts
[1

].
C

ol
le

ct
io

n
D

at
as

et
R

eg
ul

ar
A

no
m

al
y

R
eg

ul
ar

A
no

m
al

y
R

eg
ul

ar
A

no
m

al
y

C
ol

le
ct

io
n

da
te

si
te

(m
in

)
(m

in
)

(t
ra

in
in

g)
(t

ra
in

in
g)

(t
es

t)
(t

es
t)

St
ar

t
E

nd

R
IP

E
/

R
ou

te
V

ie
w

s

W
an

na
C

ry
pt

5,
76

0
5,

76
0

2,
88

0
3,

42
0

2,
88

0
2,

34
0

10
.0

5.
20

17
00

:0
0:

00
17

.0
5.

20
17

23
:5

9:
59

ra
ns

om
wa

re
W

es
tR

oc
k

5,
83

2
10

,0
08

2,
95

2
6,

00
8

2,
88

0
4,

00
0

21
.0

1.
20

21
00

:0
0:

00
31

.0
1.

20
21

23
:5

9:
59

22

Chapter 3

Dimension Reduction and Feature
Selection

Machine learning is the process of learning and identifying patterns in data. Machine learn-
ing algorithms are trained using data to generate models. The dataset used during the
training process is called training dataset. Training data are employed to fine-tune models
to obtain the best performing hyperparameters for creating generalized models. The dataset
used to evaluate the performance of a model is called test dataset. Models generated using
the best performing hyperparameters are evaluated using test datasets. The input datasets
for the algorithms are feature matrices with rows representing data points and columns
representing features. The robustness of machine learning models relies on the quality of
data. Selecting features that do not capture relationships between input data may lead to
poor classification results. The generated model may also misclassify test data points if the
training data are unbalanced or contains redundancies (noise). In the case of unbalanced
datasets, the classifier may be biased to accurately identify data points belonging to the ma-
jority class and may misclassify data points belonging to the minority class. The presence of
redundancies in datasets increases training time, computational complexity of models, and
memory usage. These factors negatively impact performance of machine learning models.
Therefore, it is critical to select relevant features and appropriate combinations of features
to enhance classification performance [91, 92]. Spatial separation between features may be
enhanced by selecting an appropriate combination of features [16].

Techniques such as dimension reduction are employed to eliminate irrelevant features.
Dimension of data may be reduced by either transforming features or by selecting a subset
of the dataset. Data are transformed to a lower dimension so that their characteristics are
preserved. The transformed data may then be used as input for supervised machine learning
algorithms [93]. Data with lower dimension may also be used to visualize high dimensional
data. Examples of unsupervised dimension reduction techniques include Principal Compo-
nent Analysis (PCA) and autoencoders [94].

23

Relevant features may be identified by measuring importance of features and ranking
them based on a pre-defined criteria. Feature selection is a pre-processing step employed to
select a subset of features to enhance performance of machine learning models. It reduces the
dimension of the original dataset. Data with lower dimension lead to reduced computational
complexity of a model, decreased training time, and prevent data overfitting. By selecting
a sufficient number of relevant features, generalized models may be built to classify data
with a lower error rate. Some widely used feature selection techniques include correlation,
Decision Trees (DT), RF, and extra-trees [95,96].

Traffic anomalies cause significant disruptions to communication networks and, hence,
various techniques including machine learning have been used to prevent such malicious ac-
tivities. We apply dimension reduction and feature selection techniques to pre-process data
and identify important features. The important features are then used as an input for the
machine learning algorithms. We perform BGP anomaly detection as a binary classification
task using time series BGP data. The datasets employed in this thesis contain numerical
features. The expected classification outputs of machine learning models are categorical
(binary) values containing regular or anomaly class labels. We compare the important fea-
tures selected by feature transformation and selection approaches. Performance of models
generated using new features are evaluated to identify the best performing models. The
experiments performed using various feature transformation and selection approaches to
analyze the classification performance are discussed in Chapter 6. Performance is evaluated
by measuring performance metrics such as training time, accuracy, F-Score, precision, recall,
and confusion matrix.

3.1 Unsupervised Machine Learning Approaches

Unsupervised machine learning approaches are employed to extract the underlying prop-
erties of data when data labels are unknown. These approaches may also be applied to
reduce the data dimension and to perform data clustering. We employ PCA and correlation
techniques to reduce data dimension.

3.1.1 Dimension Reduction Using Principal Component Analysis

PCA is a popular dimension reduction approach. It is applied to generate new features called
principal components [97] that are orthogonal to each other. It is employed to identify linear
relationships between features. A span of vectors is all linear combinations of a given set of
vectors. In a given feature matrix, the span of feature vectors represents a column space.
The linearly dependent vectors should be eliminated from a column space to identify the
most relevant vectors. Vector space is a set of vectors that may be added together and mul-
tiplied with a scalar to generate new vectors. A subset of a vector space (subspace) includes
zero vector and addition and scalar multiplication to generate new vectors. Orthogonal

24

subspaces include a set of vectors that are orthogonal to each other. Principal components
are eigenvectors of orthogonal subspace. The PCA principal components are generated by
projecting the original features onto orthogonal subspaces ranked in descending order of
variance. The first and last principal components contain the highest and the least data
variance, respectively.

The PCA is employed to retain important information from the data by eliminating
dependent features. PCA is a computationally expensive approach especially when used
with larger datasets because it employs Singular Value Decomposition (SVD) [97]. The data
should be normalized using a z-score to have zero mean and unit variance before applying
PCA to transform features. The evaluated PCA variance ratio (left) and cumulative variance
(right) with the increase in a number of principal components, using the WannaCrypt RIPE
training dataset are shown in Fig. 3.1. The number of principal components to be selected for
dimension reduction depends on retaining the desired level of variance. In our experiments,
we select the number of principal components to preserve approximately 70% of the data
variance [98]. In the case of WannaCrypt data, the first 10 principal components of PCA
preserve 71.70% of the data variance.

Figure 3.1: WannaCrypt RIPE training dataset: variance ratio (left) and cumulative vari-
ance ratio (right) of PCA components vs. the number of components. The principal com-
ponents are generated so that the variance in data is preserved in descending order. The
first 10 principal components preserve over 70% of data variance.

The separation between two classes of WannaCrypt data is visualized using the first and
second principal components in two-dimensional and three-dimensional plots. The scatter
plot of the first two principal components in two-dimensional space is illustrated in Fig. 3.2.
We observe that the majority of data points belonging to regular and anomalous class
overlap. Hence, the data are visualized in a higher dimension to examine data separation.
The scatter plot of the first three principal components in a three-dimensional space is
shown in Fig. 3.3. The orange colored (*) data points represent the anomalous class while
the blue colored (o) data points represent the regular class. Four clusters are observed where

25

data points belonging to regular and anomaly classes still overlap. Note that the majority
of the regular and anomalous points are overlapping after the PCA transformation. Hence,
other classification algorithms may further be employed to enhance the separation between
clusters.

Figure 3.2: WannaCrypt RIPE training dataset: scatter plot of regular and anomalous
clusters based on principal components 1 and 2. The majority of data points belonging to
both classes after PCA transformation still overlap.

3.1.2 Data Clustering Using k–Means

The k–means [99] algorithm is a widely used unsupervised iterative machine learning clus-
tering algorithm. It is employed to separate data points into pre-defined number of clusters.
The algorithm uses Euclidean distance as a measure to cluster data. The k centroids are
randomly initialized. Data are then assigned to the nearest clusters to minimize their intra-
cluster distance from the centroid (inertia). Intra-cluster distance is the average distance
between each data point within a cluster and its centroid. Inter-cluster distance is the av-
erage distance between all clusters. After data points are assigned to the clusters based on
the nearest centroid, the centroids are recalculated by taking the average distance of all
data points in a given cluster. The intra-cluster distances of data points are re-calculated to
re-assign data points to the nearest cluster. This process is repeated until the recalculated
centroids remain unchanged. The process of centroid recalculations and data reassignments
to the nearest clusters may also be controlled by pre-defining the maximum number of iter-
ations. The algorithm will repeat the process until one of these conditions is met. Clusters
with the lowest possible intra-cluster distance are called homogeneous. Domain knowledge
or evaluation criteria are employed to select the optimal number of clusters, since the labels

26

Figure 3.3: WannaCrypt RIPE training dataset: scatter plot of the first three principal
components that belong to regular and anomalous classes in three-dimensional.

are unknown in unsupervised learning approaches. Evaluation measures for the k-means
algorithm include elbow curve, silhouette analysis, inertia, and Dunn index [100].

• The elbow curve method is used to evaluate the sum of the squared distance between
cluster centroids and data points within a cluster. The sum of squared distance and
number k is plotted to identify the optimal number of clusters. The optimal k value
is selected as the first lowest sum of squared distance before the graph flattens.

• The silhouette analysis is applied to infer the inter-cluster and intra-cluster distances.
The silhouette coefficient is calculated as:

Silhouette coefficient = b − a

max(a, b) , (3.1)

where a is the average intra-cluster distance and b is the average inter-cluster distance.
The value of the silhouette coefficient ∈ [−1, 1]. Silhouette coefficient 0 indicates that
the data points are very close to the neighboring clusters and are poorly clustered.
The value 1 indicates that the clusters are homogeneous and well separated. The
value −1 indicates that the points are assigned to the wrong clusters. Silhouette plots
are analyzed to illustrate the quality of the clusters. The thickness of the silhouette
plots indicates the size and quality of the clusters. A value of k is selected such that
the thickness of the plots is uniform and the silhouette coefficient value is above the
average silhouette score.

27

• Inertia is a measure of the sum of distances between data points and the centroid of
a cluster (intra-cluster distances). A homogeneous cluster should have a small value
of inertia.

• The Dunn index for given clusters is a ratio of the minimum inter-cluster and the
maximum intra-cluster distances. A high value of the Dunn index is desired to form
homogeneous and well separated clusters. Evaluation of the Dunn index is computa-
tionally expensive for large-sized datasets.

The k-means algorithm performs effectively for data that form spherical clusters. High-
dimensional transformation approaches may be considered to enhance data separation in
the case when data cannot be spherically clustered. The scatter plot of the number of an-
nouncements and the number of withdrawals is shown in Fig. 3.4. The two clusters that
belong to regular and anomalous class overlap and might not be identified with high accu-
racy by machine learning models. Data may contain different types of anomalies that may be

Figure 3.4: WannaCrypt RIPE training dataset: scatter plot number of announcements
vs. number of withdrawals. While blue data points belong to the regular class and red
data points belong to the anomalous class. Partial separation is observed between the two
clusters.

categorized into different classes by performing multi-class classification. We perform binary
classification to classify anomalous and regular data points. Experiments are performed us-
ing WannaCrypt RIPE training data by varying the number of clusters (k) to achieve better
clustering. The data are normalized using a z-score to contain zero mean and unit variance.
The Fig. 3.5 illustrates a three-dimensional scatter plot with the number of announcements

28

vs. number of withdrawals vs. number of announced NLRI prefixes clustered into multiple
clusters. The data are clustered is into two (top left), three (top right), four (bottom left),
and five (bottom right) clusters. Several additional experiments are performed to cluster
data into a larger number of clusters. The k-means is an unsupervised clustering machine
learning algorithm the labels predicted by the model are assigned by the algorithm based
on the distance and do not represent any of the classes. Therefore, the data points included
in the clusters may belong to more than one class. Note that a cluster O shown in Fig. 3.5
(top left) of similar shape and size appears in all figures using a varied number of clusters.
This cluster with a consistent size may represent the regular data points.

Figure 3.5: Scatter plot of three features of the WannaCrypt RIPE training data segregated
into multiple clusters (k = 2, 3, 4, and 5).

The silhouette coefficients are analyzed to evaluate the quality of clusters. The silhouette
plots using WannaCrypt RIPE training data using k = 2, 3, ..., 6 clusters and the
generated clusters are shown in Fig. 3.6 and Fig. 3.7 left and right columns, respectively.
The dashed line indicates the average value of the silhouette coefficient. The silhouette
coefficients evaluated for k = 4, 5, and 6 clusters are lower than the average value of the
coefficient. A major imbalance in the cluster size is observed in the silhouette plot for k = 2.
The cluster labeled 0 in Fig. 3.6 (left, top) has a similar shape in silhouette plots for k =
3, 4, 5, and 6 cluster values. It indicates similar data properties and that this cluster of
data may represent regular data. As the number of clusters increases, the cluster labeled 0

29

(k = 2) is subdivided into smaller clusters. The shape of clusters consisting of a majority
of data points is preserved for all selected values of k.

3.1.3 Cluster Refinement Using PCA and k-Means Algorithms

PCA (a statistical dimension reduction technique) and k-means (an unsupervised machine
learning algorithm) are combined to improve the clustering of data by increasing the sepa-
ration between data points belonging to regular or anomalous classes [101]. The silhouette
coefficient of the two clusters generated using k-means with k = 2 as shown in Fig. 3.4
formed using the number of announcements and the number of withdrawals is 0.3393. The
silhouette score is rather low and may indicate that the test data may not be adequately
classified. We employ PCA to transform the original dataset to enhance the separation be-
tween the two classes. Various experiments are performed to identify the best number of
PCA components to obtain higher silhouette scores and lower inertia as shown in Fig. 3.8.
Transforming the data to 3 PCA components generates the highest silhouette coefficient
0.5222. The silhouette coefficients decrease with the increase in the number of PCA com-
ponents.

Clustering performed using the PCA transformed features is shown in Fig. 3.9. The
silhouette score increases to 0.5222 by clustering PCA transformed features using the first
2 principal components. Clustering after using PCA shows a visible separation between the
two classes.

3.2 Feature Selection

Feature selection is a pre-processing step that involves selecting a subset of features from
a given dataset based on ranking criteria. Important features are then employed as input
for the machine learning algorithms. Classification performance of machine learning models
may be enhanced by selecting important (relevant) features. Datasets with correlated fea-
tures may negatively influence the model’s performance. In machine learning the features
should be correlated with the output to obtain high performance. Therefore, correlated
features may be eliminated from the datasets before training. We evaluate Pearson and
Spearman correlation coefficients to identify correlated features and perform feature selec-
tion by eliminating correlated features. Supervised machine learning tree-based algorithms
such as random forests and extra-trees are employed to identify important features.

3.2.1 Person Correlation

Covariance is a measure of the strength and direction of a relationship between variables:

Cov(X, Y) =
∑n

i=1(xi − x̄)(yi − ȳ)
n − 1 , (3.2)

30

Figure 3.6: WannaCrypt RIPE dataset: silhouette coefficient (left) and cluster scatter (right)
plots for k = 2, 3, and 4.

31

Figure 3.7: WannaCrypt RIPE training dataset: silhouette coefficient (left) and cluster
scatter (right) plots for k = 5 and 6.

32

Figure 3.8: WannaCrypt RIPE data: k–means clustering measures: Silhouette coefficient
(left) and inertia (right) vs. number of PCA components. The silhouette coefficients decrease
with the increase in the number of PCA components. They indicate that clusters are more
balanced for a smaller number of PCA components.

where X and Y are variables. Column vectors X and Y consist of n samples (n ̸= 1) and i

is the index variable. Variables xi and yi are ith elements of vectors X and Y , respectively.
Variables x̄ and ȳ are the mean values of X and Y , respectively.

Correlation is a statistical measure of linear relationships between vectors:

Correlation(X, Y) = Cov(X, Y)
σXσY

, (3.3)

where Cov(X, Y) is the covariance of the two vectors X and Y while σX and σY are standard
deviations of vectors X and Y , respectively. The correlations between features are measured
in terms of the Pearson and Spearman correlation coefficients.

Pearson correlation coefficient ρ is:

ρ =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2 , (3.4)

where n is the number of elements in vectors X and Y while i is the index term. The Pearson
correlation coefficient is calculated to measure the linear correlation between variables. The
Pearson correlation coefficient ρ ∈ [−1, 1], where −1 indicates a strong negative linear
relationship, 0 indicates no linear relationship, and +1 indicates a strong positive linear
relationship between variables. Positive correlation values represent that the features will
increase and decrease in the same direction. Negative correlation represents that features are
negatively related to each other when both features will move in directions opposite to each
other. For example, if two variables are negatively correlated, the increase in the value of one
feature will decrease the value of the other feature. If the features are related to each other,
they will have high correlation values and lead to the problem of multicollinearity [102,
103]. In machine learning, we are training models to find relationships between input data

33

Figure 3.9: WannaCrypt RIPE data: k–means clustering on PCA (components = 3) trans-
formed features. The PCA transformation applied to the training data has enhanced the
separation between clusters.

and output labels. When input features are highly correlated with each other and not
with the output label, they may not classify data points accurately. Therefore, to reduce
redundancies, correlated features may be eliminated from datasets to generate new datasets
for training machine learning models. Correlated features increase computational model
cost and do not carry additional information relevant to the output. Therefore, they should
be eliminated from the datasets to eliminate redundancies and enhance the performance
of models. Pearson correlation coefficients are calculated under the assumption that the
considered two variables are dependent on each other and are normally distributed.

3.2.2 Spearman Correlation

Pearson correlation coefficient captures only linear relationships, while nonlinear relation-
ships between variables may be captured by measuring Spearman correlation coefficients.
Other statistical measures may be evaluated to identify hidden data patterns and properties
beyond linear data relationships. In monotonically related variables, change in one variable
results in change in the other variable either in the same or opposite directions. Spearman
correlation coefficient is a non-parametric statistical measure that evaluates monotonic re-
lationships between variables [104]. It is employed to measure rank correlations (degree of
similarity) between BGP features.

In order to calculate the coefficient of two vectors X and Y of size n, the data values
should be ranked. The data are sorted in descending order, and values are then ranked so

34

that the highest value has rank 1 and the lowest value has rank n. Spearman correlation
coefficient is calculated as:

rs(X, Y) = 1 − 6 ∑n
i=1 d2

i

n(n2 − 1) , (3.5)

where X and Y are column vectors of size n > 1, di is the ith difference between the ranks
of the ith values of X and Y . Any correlated features should be eliminated from the datasets
because they do not contain new information and may generate models that overfit.

The value of Spearman correlation coefficient rs ∈ [−1, 1]. Values of +1 and −1 repre-
sent a very strong positive and negative monotonic relationship between the two variables,
respectively. A value of 0 indicates no monotonic relationship between the two variables.
The monotonic features might be selected to generate models based on the given problem.
For example, in the case of small-sized datasets, generating models using monotonically
related features might increase the risk of overfitting. Therefore, correlated features may be
eliminated from the datasets as they do not provide additional information to generate a
generalized model.

3.2.3 Supervised Machine Learning

Selecting relevant features to generate models may enhance the performance of models
and reduce their computational cost. Supervised machine learning techniques are employed
if data labels are available. The supervised feature selection methods are categorized as
wrapper, filter, and intrinsic.

• Wrapper methods employ subsets of features to generate various models using machine
learning algorithms. The performance of the generated models is inferred based on
evaluation criteria, and the process is repeated until the features that generate the
best performing model are obtained. Recursive Feature elimination (RFE) is a wrapper
feature selection method.

• Filter methods evaluate relationships between input and target variables by calculat-
ing scores using statistical methods. The features are then ranked based on the score.
They include statistical and feature importance techniques.

• Intrinsic feature selection methods are machine learning approaches that perform
feature selection while generating models as a part of the training process. Examples
of intrinsic feature selection models are tree and rule-based methods.

Decision trees [105] are a widely employed algorithm in data mining. The trees are built
by recursively splitting nodes based on evaluation criteria. The decision tree model has a
root node, branches, and internal and leaf nodes. The topmost node in a decision tree model
is the root node. Tree branches direct data from the previous node to the next node after
evaluating splitting criteria. Each internal node is labeled with an input feature. The nodes

35

are split using a threshold value. Leaf nodes are nodes in a tree that contain predicted
classification or regression output value.

During each iteration, the best features are selected by evaluating criteria to split the
data further. Trees rely on evaluating metrics such as Gini impurity, information gain, and
entropy [106]. Algorithms such as Iterative Dichotomiser 3 (ID3), C4.5, and Classification
and Regression Trees (CART) are employed to determine the splitting criteria of nodes.
The ID3 algorithm uses information gain and entropy to determine the splitting criteria.
The C4.5 algorithm is a variation of the ID3 algorithm. It evaluates information gain to
split nodes in decision trees. CART algorithm evaluates Gini impurity to identify the ideal
splitting criteria.

The training dataset serves as the root node and each internal node (decision node)
is labeled with a feature. The decision nodes are evaluated based on the decision criteria
to best further split the data into sub-nodes. The internal nodes are selected so that they
reduce the impurity of a tree. The tree branches until leaf nodes containing the expected
category are obtained. The impurity of a decision tree is measured by calculating metrics
such as Gini impurity, entropy, and information gain. Entropy is a measure of randomness
(variance) in data. Data with high randomness will have high entropy. Information gain
is a measure of randomness (variance) removed in data. Therefore, in decision trees, the
desired spitting should be performed to remove the randomness in data so that each branch
contains data belonging to a specific class [107]. For example, decision trees with the ID3
algorithm employ a greedy approach to obtain nodes with minimum entropy and maximum
information gain. We employ random forests and extra-trees algorithms to identify relevant
features.

3.2.3.1 Random Forest

Random forest [108] algorithm employs multiple decision trees to form predictions and
Bootstrap Aggregation (Bagging) to generate multiple uncorrelated decision trees. Bagging
is a technique of selecting samples with replacement, and a single sample may be selected
multiple times to generate a tree. Each model is independently trained in parallel using
samples selected by bagging. After decision trees are built, each classifier makes a prediction,
and the outcome with a majority vote is selected as the output.

Random forests employ a random approach to select a subset of features and threshold
values for splitting. The quality of a split is measured using the Gini impurity:

H(Qm) =
∑

k

pmk(1 − pmk)

pmk = 1
nm

∑
y∈Qm

I(y = k), (3.6)

36

where Qm is the data at node m, k is the class label, m is the node number, pmk is the
proportion of observation in node m. Random forests are generated by splitting data so
that the data after the split result in reduced Gini impurity.

3.2.3.2 Extra-Trees

Extremely Randomized Trees (Extra-Trees) [109] algorithm, derived from random forest
algorithm, is an ensemble method that uses multiple decision trees to calculate the final
output. Extra-trees have faster execution time than random forest algorithms. Each decision
tree is trained using a complete dataset without employing sampling techniques. The split
point for each decision tree is selected randomly instead of searching for an optimal split
point. The quality of the split is not evaluated, unlike the random forests algorithm. The
generated trees are more diversified trees that are less prone to high bias and variance. The
feature scores are calculated using Gini importance [110]:

Importance(Xc) = 1
NT

∑
T

∑
t∈T :v(st)=Xc

p(t)∆i(st, t), (3.7)

where Xc is the subset of input data X corresponding to a single feature, NT is the number
of trees, t is the node index in a tree, st is the direction of the split, v(st) is a randomly
generated threshold, p(t) is the weight, and ∆i(st, t) is the decrease of the node impurity
equivalent to its importance.

3.3 Feature Analysis

Data distributions are mathematically represented using Probability Distribution Functions
(PDFs). The characteristics of probability distributions are defined by their first four mo-
ments: mean, standard deviation, skewness, and kurtosis [111]:

• The mean of a probability distribution is its average value.

• Standard deviation is a measure of the spread of a distribution from the mean value.
Therefore, mean and standard deviations are location and scale parameters, respec-
tively.

• Skewness and kurtosis are employed to infer the shape of a given distribution [112].
The skewness of a probability distribution is a measure of its symmetry. The shift in
the shape of the data distribution to either the left or right side from the symmetrical
(Gaussian) probability distribution curve determines its skewness. A distribution is
positively skewed (right-tailed) or negatively skewed (left-tailed) if a majority of data
points are located on the right or the left of the distribution median. The median
value of a probability distribution is a central point of sorted values in a distribution.

37

The mean of a positively skewed distribution is larger than its median while the mean
of a negatively skewed distribution is less than its median.

• Kurtosis is the measure of the number of data points residing further from the mean
value. It identifies the heaviness of tails. Heavy kurtosis also indicates the presence of
outliers. For a given distribution, the kurtosis is measured w.r.t the normal distribu-
tion. Note that the kurtosis of a normal distribution is three, and all measurements
for kurtosis are obtained by subtracting three from the calculated value.

Machine learning approaches for anomaly detection heavily depend on the training and
test data and their properties including probability distributions. Therefore, we analyze
BGP features to estimate the best fitting distributions by measuring the skewness of worms
and ransomware attack datasets.

3.3.1 Probability Distributions of BGP Features

The PDFs of Gaussian (normal), exponential, gamma, Weibull, Rayleigh, Burr, t Location-
Scale, log-normal, and log-logistic distributions are used to estimate the best fit for BGP
features. The evaluated distributions are listed in Table 3.1 [113]. The Gaussian, exponential,
and gamma distributions are variations of a Poisson process [114]. The Gaussian (normal)
distribution of a random variable X is defined as X ∼ N(µ, σ2), where µ is the mean
(location parameter) and σ is the standard deviation (scale parameter). The Gaussian
distribution is one of the most widely used symmetric distributions [115]. The exponential
distribution of a random variable X is defined as X ∼ Exp(λ) where λ is a positive rate
parameter. It is memoryless, and the event at time t is independent of the event occurring
at time t+1. Its coefficient of variance is 1. It is used to calculate the probability of the first
event’s waiting time [116, 117]. The gamma distribution of a random variable X is defined
as X ∼ Γ(k, θ). It is a probability of the kth future event. Its parameters are k shape and θ

scale. When k ≤ 1, the distribution resembles exponential distribution. With the increase
in k, the distribution resembles a normal distribution.

The heavy-tailed distributions such as Weibull, Rayleigh, Burr, t Location-Scale, log-
normal, and log-logistic [118,119] are of interest because many processes in communication
networks are heavy-tailed. The Weibull distribution is used to model skewed (left or right)
data. It is defined by shape parameter γ, location parameter µ, and scale parameter α.
The shape of the Weibull distribution falls between exponential and normal distributions
based on the selection of parameters [116]. A widely used Rayleigh [120] distribution is a
special case of two-parameter Weibull distribution [117, 121, 122] and has the scale param-
eter b. Burr [123] distribution is widely used to model heavy-tailed statistical events [124].
Burr (type XII) distribution is a right-skewed distribution also known as Pareto-IV or the
Singh–Maddala distribution [115]. It is formed by combining Weibull and gamma distri-
butions with scale parameter α and shape parameters c and k. The t Location-Scale is

38

a heavy-tailed distribution that approaches the normal distribution as its shape param-
eter approaches infinity. The distribution uses location parameter µ, scale parameter σ,
and shape parameter ν. A right-skewed probability distribution log-normal [125] is used to
model distributions whose logarithm yields a normal distribution [126]. The PDF of log-
normal distribution employs the location µ and the scale σ parameters. A special case of
Burr distribution is the log-logistic heavy-tailed distribution [117]. It also has the location
µ and the scale σ parameters.

Table 3.1: Probability distribution functions.

Distribution Expression
Normal f(x) = 1

σ
√

2π
e

−1
2 (x−µ

σ
)2

Exponential f(x|λ) = λe−λx ; x > 0
Gamma f(x|k, θ) = 1

θkΓ(k)xk−1e
−x
θ

Γ(k) = (k − 1)!
Weibull f(x|γ, µ, α) = γ

α(x−µ
α)γ−1e−(x−µ

α
)γ

Rayleigh f(x|b) = x
b2 e(−x2

2b2)

Burr f(x|α, c, k) =
ck
α

(x
α

)c−1

(1+(x
α

)c)k+1

t Location-Scale f(x|µ, σ, ν) = Γ(ν+1
2)

σ
√

νπ Γ(ν
2)

[
ν+(x−µ

σ
)2

ν

]−(ν+1
2)

Log-normal f(x|µ, σ) = 1
xσ

√
2π

exp −(log(x)−µ)2

2σ2

Log-logistic f(x|µ, σ) = 1
σx

ez

(1+ez)2

where z = log(x)−µ
σ

3.3.2 Goodness of Fit Test

The goodness of fit Kolmogorov–Smirnov (K-S) test is used to compare the reference prob-
ability distributions with the distribution of sampled data [127–129]. The goodness of fit
tests that do not make assumptions about parameters of the sampled data are called non-
parametric tests. They make no assumptions about the sample parameters. K-S test cal-
culates the difference (Dn) between the Cumulative Distribution Function (CDF) of a ref-
erence probability distribution and the distribution of considered data. They are employed
to compare sampled data distributions for given n sample data points [130,131]. The Dn is
calculated as:

max|F 1
n(x) − F 2

n(x)|, (3.8)

where F 1
n and F 2

n are CDFs of random variable x. The two CDFs may be calculated using
sampled data distributions or reference data and sampled data distributions. The CDF is
calculated as:

Fn(a) = P (x ≤ a), (3.9)

39

where P is the probability function applied to a random variable x and the selected threshold
value a [132].

40

Chapter 4

Machine Learning Approaches for
Anomaly Detection

Machine learning is a process of generating models from data for predictions (classification).
The performance of machine learning models is influenced by data quality, selected learning
algorithm and loss function, presence of bias, variance, and noise [133]. Loss function mea-
sures the difference between the expected and predicted outputs during the training phase.
Bias is the difference between expected and predicted outputs using the test data during
the testing phase. Models with high bias and low variance do not learn the properties of the
training data and, therefore, do not make accurate predictions using unseen data resulting
in high prediction errors. Variance is the difference between the expected and predicted
outputs achieved by models trained using different training datasets. Models with low bias
and high variance learn only the properties of the employed training data. However, they do
not make accurate predictions using unseen test data. In the case of underfitting, the model
does not learn data properties during training to make accurate predictions using unseen
data. While in the case of overfitting, the model closely learns the data properties during
training. The performance of overfitted models is tailored to the properties of the training
data, and they perform poorly on unseen data. Models with high bias and low variance
underfit the training data, while models with high variance and low bias overfit the training
data. These models are not generalized and lead to poor classification results. Therefore, a
robust machine learning model should have low bias and low variance (referred to as the
bias-variance trade-off) to generalize using the unseen data [134].

4.1 Support Vector Machine

SVM is a supervised machine learning algorithm that generates a decision boundary (hyper-
plane) to separate data points into distinct classes for classification tasks [29]. The decision
surface is generated to maximize the distance (margin) between the closest data points
belonging to distinct classes. The data points that lie close to the decision boundary are

41

called support vectors. Data are either linearly or non-linearly separable. Kernel functions
are designed to transform non-linearly separable data into higher dimensions such that the
data becomes linearly separable in higher dimensional feature space. Linear hyperplanes
are designed to linearly separate data to either side of the decision boundary. Examples of
non-linear kernel functions include polynomial, Gaussian Radial Basis Function (RBF), and
sigmoid kernels [135]. The decision boundary of SVM models is modified using the regular-
ization parameter. Hard and soft margin kernels in SVM models are generated using high
and low regularization values, respectively. Hard margin kernels are prone to overfitting.

4.2 Deep Learning Networks

Deep learning approach employs depth to map input and output values using an estimator
function. Complex data relationships may be modeled by using nonlinear mapping called
activation functions that transform input data to learn important features. A deep learning
model consists of three or more layers: input, hidden, and output layers [93]. Artificial
Neural Networks (ANNs) are deep learning models that consist of interconnected nodes with
weighted connections. The ANNs interconnections may be cyclic or acyclic. Feedforward
neural networks are networks with unidirectional connections. Multilayer Perceptron (MLP)
network is an example of a widely used feedforward neural network. It is a multi-layer
network with interconnected nodes between each subsequent layer. The learning is divided
into steps by first mapping input to the subsequent layer and then mapping data from
the intermediate layer to the final layer. The mappings of nonlinear data relationships are
optimized using iterative approaches that employ the gradient of the loss function to update
model hyperparameters. The important data features are learned by adjusting the weights
of each layer using backpropagation to calculate the gradient of a loss function w.r.t the
weight vector. The weights are adjusted in each layer of a network to obtain the minimum
loss [96].

Deep learning is widely advocated for its performance using large datasets. With suffi-
cient number of hidden units and appropriately selected activation function, neural networks
approximate continuous functions. These activation functions are required to be nonlinear,
bounded, decreasing, and continuous. Neural networks are also known as universal func-
tion approximators [136]. Examples of deep learning architectures include deep neural net-
works, deep belief networks, deep reinforcement learning [137], Recurrent Neural Networks
(RNNs) [138], and Convolutional Neural Networks (CNNs) [139]. Deep learning is widely
applied in computer vision, natural language processing, and anomaly detection [140]. Per-
formance of deep learning networks depends on the selected number of hidden nodes, number
of hidden layers, activation functions, and optimization algorithms.

42

4.2.1 Recurrent Neural Networks

RNNs are a class of ANNs that use recurrent (cyclic) connections between nodes and are
employed to extract contextual information in sequential data. The memory of previous
inputs is preserved in the internal state of the network to predict output with the help of
recurrent connections. Although RNN models perform effectively using sequential data, their
architecture suffers from vanishing or exploding gradient problem. The calculated gradient
may be extremely large or small depending on the activation function used to train model
layers. The chain rule is applied to compute gradients using backpropagation. As the n
(number of layers) increases, the gradients will either explode or vanish. Approaches such
as simulated annealing and discrete error propagation [141] were introduced in the 1990s to
handle the vanishing gradient problem. However, they introduced other challenges such as
delays, added time constants [142], and hierarchical sequence compression [143].

4.2.1.1 Long Short-Term Memory

LSTM algorithm was introduced to solve the vanishing gradient problem [144]. LSTM is
an RNN known for its effective performance using sequential and temporal data [78]. It
utilizes information between sequential events. An LSTM block consists of a memory block
and has three gates: input (i), forget (f), and output (o). A single LSTM cell is shown in
Fig. 4.1. The hidden states in RNNs are replaced with memory blocks in LSTM models.
LSTM memory cells store sequential information to form memory. The new information is
regulated using the input gate and it is updated only if the input gate is open. Otherwise,
the old information is retained [145]. However, as the length of the sequence increases, the
models are unable to retain information from previous sequences. Therefore, they might not
perform as efficiently using data containing long sequences.

Figure 4.1: Neural network composed of LSTM cells. The current input xt, previous cell
state ct−1, and output ht−1 are employed to calculate the current output ht and cell state
ct [1].

43

The outputs of input (it), forget (ft), and output (ot) gates at time t are [146]:

it = σ(Wiixt + bii + Uhiht−1 + bhi)

ft = σ(Wif xt + bif + Uhf ht−1 + bhf)

ot = σ(Wioxt + bio + Uhoht−1 + bho), (4.1)

where σ(·) is the sigmoid activation function with values ∈ [0, 1], xt is the current input,
Wii, Uhi, Wif , Uhf , Wio, and Uho are the weight matrices, and bii, bhi, bif , bhf , bio, and bho

are the bias vectors. The current cell state (ct) is calculated using:

ct = ft ∗ ct−1 + it ∗ tanh(Wicxt + bic + Uhcht−1 + bhc), (4.2)

where ∗ denotes element-wise multiplications, tanh is the activation function with values ∈
[−1, 1], Wic, Uhc are weight matrices, bic, bhc are bias vectors. The output of the LSTM cell
is

ht = ot ∗ tanh(ct). (4.3)

4.2.1.2 Gated Recurrent Unit

GRU is designed to solve the problem of vanishing or exploding gradients. It is a simplified
version of the LSTM model and has two gates: update (z) and reset (r). The update gate
regulates the information from previous time steps to calculate the next output. The reset
gate regulates past information to be forgotten. The architecture of a GRU cell is shown in
Fig. 4.2

Figure 4.2: Neural network composed of GRU cells. The expanded architecture of the GRU
cell with input xt at time t, current output ht, and past output ht−1 [1].

The outputs of the update gate (zt) and the reset gate (rt) at time t are [146]:

zt = σ(Wizxt + biz + Uhzht−1 + bhz)

rt = σ(Wirxt + bir + Uhrht−1 + bhr), (4.4)

44

where (·) is the sigmoid activation function with values ∈ [0, 1], xt is the current input, ht−1

is the previous cell output, Wiz, Uhz, Wir, and Uhr are the weight matrices, and biz, bhz,
bir, and bhr are the bias vectors. The output of the GRU cell is:

ht = (1 − zt) ∗ nt + zt ∗ ht−1, (4.5)

where nt is:
nt = tanh(Winxt + bin + rt ∗ (Uhnht−1 + bhn)), (4.6)

tanh is the activation function with values ∈ [−1, 1], Win and Uhn are the weight matrices,
and bin and bhn are the bias vectors.

4.3 Learning Rate Scheduling

Machine learning models are generated by learning patterns in the training dataset. The
goal of machine learning is to train models so that they achieve the lowest possible loss.
The loss functions are optimized using analytical or iterative approaches. Analytical op-
timization approaches are employed if the expected output and model hyperparameters
are linearly related. If the relationship between expected output and model hyperparame-
ters is nonlinear, they are optimized using iterative approaches. Examples of optimization
approaches are least squares (analytical) and gradient descent (iterative).

The learning rate is an optimizer hyperparameter employed to solve the gradient-based
minimization of loss functions. It is the rate at which model parameters such as weights
are updated during backpropagation to reduce the training loss. Ideally, the loss function
is desired to be differentiable and convex. However, the loss function may be multi-modal
and include saddle points. The objective is to discover the minima of the loss function using
optimization techniques. Gradient-based optimization approaches may iteratively converge
to a minimum of the loss function. The optimization algorithm relies on update steps while
performing iterations and searching the grid for the best performing values. The model may
converge very slowly to the minima or even remain in a saddle point if small steps are taken
to optimize the model. Conversely, the model may diverge from the optimal point if very
large steps are taken to optimize the loss function. An ideal approach gradually converges to
a minima point in a finite time. Therefore, managing the speed at which machine learning
models learn is critical.

Leaning rate schedulers are pre-defined static or dynamic functions employed to update
the learning rate parameter [147]. Static schedulers use constant learning rates initialized
before training models. Dynamic schedulers are pre-defined functions that dynamically up-
date learning rates in each training iteration. It is beneficial to initialize the learning rates
to high values to obtain suitable model weights. The model is then fine-tuned by slowly re-

45

ducing the learning rate to gradually converge to a minima. Popular learning rate schedulers
include time-based decay, step decay, exponential decay, and adaptive optimizers.

Cosine annealing is a periodic dynamic learning rate scheduler. It is applied to period-
ically initialize the learning rate to a high value and then rapidly decrease its value. This
periodic restart of the learning rate is employed to benefit from the restart of the learning
process and to reuse the learned weights obtained using training data. The subsequent cy-
cle uses weights learned during the previous cycle (warm restart) instead of starting with a
new set of weights. The warm restart process is applied to optimize the learning rate and
enhance the convergence rate [147].

4.4 Ensemble Learning

Ensemble learning is the branch of machine learning that combines multiple indepen-
dent models called weak (base) learners to generate a final high performing prediction
model [148]. This technique relies on using the strengths of each weak base learner to gen-
erate a final generalized (strong) model with a lower bias and variance. Ensemble learning
is categorized as bagging, boosting, and stacking.

4.4.1 Bagging, Boosting, and Stacking

Datasets with missing values when used for training may generate models with high vari-
ance resulting in overfitting. Bagging (bootstrap aggregation) is employed to generate lower
variance models than the individual weak learners to avoid overfitting. A single base learner
is selected to train models with various datasets. Decision trees are the most commonly
used base learners. Bagging employs the bootstrapping re-sampling technique that uni-
formly samples data using replacement to generate training sets. A data point might ap-
pear multiple times in a given training set. The selected bootstrap samples are then used to
independently train multiple base learners in parallel. Bagging models employ deterministic
approaches such as aggregation (regression) and majority vote (classification) to obtain the
final output. A major drawback of this technique is the high computational cost associated
with large-sized datasets due to the increase in the number of iterations [149,150]. Bagging
is a widely adopted solution in healthcare, information technology, environmental studies,
and finance. Random forests are an example of an algorithm that employs bagging [151].

Boosting is an effective approach to reduce data overfitting because it combines multiple
classifiers and datasets. It is a variant of ensemble learning that sequentially combines
multiple weak base learners to obtain a high performing model. This approach generates
models by iteratively fitting data to multiple base learners. Heavier weights are assigned to
the misclassified data points and the following model is generated by using these weighted
data points for training. This approach for generating models by emphasizing misclassified
data points generates low bias models. Two types of boosting techniques are: adaptive

46

and gradient boosting. Adaptive Boosting (AdaBoost) initially assigns equal weights to
all data points and then re-assigns weights after assessing the performance of the decision
tree. Data points with heavier weights have a higher probability to be selected for the
following model’s training. Models are trained iteratively until the residual error is below
the threshold [152,153].

Gradient Boosting Machines (GBMs) [154] are greedy algorithms that generate models
using forward stage-wise additive modeling. Models are sequentially added one by one in the
case of forward stage-wise additive modeling. GBMs employ gradient using the loss function
that should be differentiable. Its objective is to reduce the residuals of previous models. The
negative gradient is calculated and the model hyper-parameters are then updated in opposite
directions to optimize the model performance. Gradient boosting decision tree algorithms
are a variant of GBMs.

Stacking is a process that uses a combination of multiple models trained using various
algorithms for a given dataset. It consists of two-level architecture: first-level (level-0) and
second-level (level-1) models. The first-level models are individual models that are trained
on training datasets, while second-level models are used to combine the individual first-level
models to generate the final output. In this thesis, we apply GBDT algorithms to generate
classifiers using BGP data and evaluate model performances.

4.4.2 Gradient Boosting Decision Trees

Gradient boosting algorithms that use decision trees as their base learner are called Gra-
dient Boosting Decision Tree (GBDT) algorithms. Widely used GBDT algorithms are:
eXtreme Gradient Boosting (XGBoost) [155], LightGBM [40], and Categorical Boosting
(CatBoost) [156]. The predicted output (ŷ) of a GBDT model during training is:

ŷi =
K∑

k=1
fk(xi), (4.7)

where K is the number of estimators, fk represents the kth decision tree, X is the input
data matrix, and xi is the ith row vector of matrix X. The output (ŷ(k)

i) of the kth iteration
is:

ŷ
(k)
i = ŷ

(k−1)
i + fk(xi), (4.8)

where ŷ
(k−1)
i is the previous predicted output. The objective function of a GBDT model is:

L(k) =
N∑

i=1
l(yi, ŷ

(k)
i) + Ω(fk), (4.9)

where l(.) is the loss function, yi is the expected label of the ith input, and Ω(fk) is the
optional regularization term.

47

4.4.2.1 XGBoost

XGBoost is a scalable tree boosting algorithm that optimizes the loss function by adding the
regularization term. The loss function cannot be optimized in the Euclidean space due to
the presence of functions as parameters. Hence, an iterative additive approach is employed
to train the model. The L2 regularization term (Ω(.)) is added to the loss function to reduce
overfitting:

Ω(fk) = γT + 1
T

λ||ω||2, (4.10)

where γ and λ are the regularization coefficients, T is the number of leaves in the tree, and ω

are the leaf weights. XGBoost employs second-order Taylor series approximation to simplify
the loss function and discover optimal weights. The algorithm employs a histogram-based
splitting using each feature and then selects the optimal split. The trees are generated
using an asymmetric level-wise growth approach that splits the tree branches at a given
level of the tree depth irrespective of the variance gain [157]. This approach may lead to
overfitting and increased model complexity due to large tree depth and excessive number
of branches. It might also construct highly biased models towards the majority class if
generated using imbalanced datasets. Growing trees level-wise using large-sized datasets
may be computationally expensive. Categorical features are features that have discrete
values belonging to a defined number of categories. They may be encoded using a one-
hot encoding that increases the number of binary features in a dataset if the number of
categories for a given feature is large [158]. XGBoost employs one-hot encoding to convert
categorical features to numerical features. XGBoost employs a cache-aware block structure
to generate models faster by using parallel and distributed computing [155].

4.4.2.2 LightGBM

The LightGBM algorithm uses histogram-based Gradient-Based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB) to enhance the training speed [40]. It requires lower
memory than the XGBoost algorithm. It employs a histogram-based approach to discover
faster the best splitting point for each feature. Feature histograms are created by bundling
together mutually exclusive features. The feature bundling results in a lower dimension than
the original feature space and increases computational speed. The GOSS technique sorts
training data in descending order based on the absolute gradient values. Top Nt data points
are selected using the sampling ratio a with the largest gradient to create a subset A. The
random sampling is performed using sampling ratio b on the remaining low gradient data
points to create a subset B. Note that during training gradients are calculated in each itera-
tion. GOSS retains data points with high gradient values and does not use data points with
low gradients to train the subsequent models because they contribute to high information
gain. This approach is more effective for calculating information gain rather than a uniform
random sampling of data points. LightGBM trees employ asymmetric leaf-wise growth by

48

selecting the leaf with the maximum loss. LightGBM is more effective than using level-wise
tree growth. LightGBM trees are asymmetrically grown by splitting the leaves and, hence,
the model may potentially overfit the data. LightGBM employs gradient statistics to handle
categorical features. The gradient statistics in LightGBM are calculated in each iteration
and for each category. This might increase the associated computational cost and memory
consumption. Training GBDT models based on the residuals increase the bias and may
increase overfitting.

4.4.2.3 CatBoost

CatBoost is a scalable algorithm designed to handle categorical features [156]. It employs an
ordered target statistic approach to convert the categorical features to numerical features
based on the expected output labels (classes) while keeping the dimension of the original
data. The ordered boosting employs permutations to train and evaluate decision trees using
different sets of samples. It is employed to prevent data overfitting. CatBoost trees are
grown level-wise using the same splitting criteria for a given tree level (oblivious trees). The
generated trees are symmetric and less prone to overfitting. The CatBoost models have faster
training time and perform effectively using smaller datasets. Minimal Variance Sampling
(MVS) is a random sampling technique employed to sample data to train stochastic gradient
boosting models. CatBoost employs a weighted version of MVS. The data are sampled
so that each data point is selected at least once. This might reduce the model variance
and, thus, optimize model performance. CatBoost also performs effectively when used with
numerical and text features.

4.5 Attention Mechanism

The length of the sequence may become a challenge when dealing with sequential and
temporal data. As the duration of the sequence increases, gradient-based learning algorithms
may suffer from vanishing gradient problem and the past information of long sequences is not
retained. For example, in an encoder-decoder model, the entire encoded input information
is encapsulated into a context vector of fixed length (usually smaller than the input vector).
The context vector is the last hidden state of the encoder model. The decoder uses this
context vector to generate the decoded output. However, as the length of the input sentence
increases, the fixed-length context vector does not encode information from earlier input
sequences [159].

Attention mechanism [160, 161] overcomes the shortcoming of the fixed-length context
vector that loses information as the size of the input vector increases. To form predic-
tions, it relies on using selective information from a sequence instead of using the entire
sequence [159]. To calculate the output, the relevant information is retained from the entire
input by using weighted combinations of hidden states of the encoder. This weighted combi-

49

nation (context vector) helps emphasize the contribution of the local sequences in detecting
patterns in long sequences. The context vector of each input keeps relative information of
the previous sequences to obtain the desired output. This mechanism has been implemented
in diverse fields such as computer vision, speech processing [162], image captioning [163],
and Neural Machine Translation (NML) [164]. Attention mechanism has been proved to
enhance the model performance by highlighting the desired sequences during the training
phase.

The context vector ct at time t is calculated using alignment scores et,i and attention
weights αt,i:

et,i = a(st−1, hi)

αt,i = softmax(et,i)

ct =
T∑

i=1
αt,ihi, (4.11)

where a(.) and softmax are the activation functions, st−1 is the previous hidden decoder
state, hi is the current encoded hidden state, and T is the number of hidden states.

4.6 Performance Metrics

Datasets may be balanced or unbalanced based on the number of data instances that belong
to each class. Balanced datasets consist of a uniform number of data instances in each class
while the data instances belonging to a particular class outnumber the data points belonging
to the other classes in unbalanced datasets. Hence, there is a higher probability of classifying
data points that belong to the majority class.

Performance of models may be measured using training time, confusion matrix, preci-
sion, recall, accuracy, and F-Score 4.12. The confusion matrix is generated by calculating:
true positive (TP), true negative (TN), false positive (FP), and false negative (FN).

precision = TP

TP + FP
, (4.12)

sensitivity (recall) = TP

TP + FN
, (4.13)

accuracy = TP + TN

TP + TN + FP + FN
, (4.14)

F-Score = 2 × precision × sensitivity
precision + sensitivity . (4.15)

True positives and true negatives are data points that are correctly classified as anomalies
and regular data points, respectively. False positives and negatives are data points that are
incorrectly classified as anomalies and regular data points, respectively.

50

• Precision is the measure of correctly identified positive cases (TPs) from all identified
positives (TPs + TNs) by the classifier model. It is beneficial to calculate when the
cost of classifying false positives is high.

• Recall is the measure of correctly identified positive cases (TPs) from all the identified
positives (TPs + FPs). It is an important measure when the cost of classifying false
negatives is high.

• Accuracy is the measure of correctly identified anomalies (TPs) and regular data
points (TNs) from all classified data. It may be employed when the cost of identify-
ing each class is equal. It may be a misleading performance measure in the case of
unbalanced datasets where the probability of identifying data belonging to one class
is higher.

• F-Score is the harmonic mean of the precision and recall. It measures the correctly
classified true positive data points (TPs). Therefore in the case of unbalanced datasets,
F-Score is a better performance metric than accuracy.

4.7 Cross-Validation

Cross-validation generates a distribution of training and validation datasets from a single
dataset. The input dataset is partitioned into k equally sized subsets Si : S1, ..., Sk, where
i = 1, ..., k are known as folds. After partitioning the dataset, the learning algorithm is
applied k times to the selected pair of training and validation datasets. Cross-validation
is a time-consuming process employed to select hyperparameters of the best-performing
model. Various approaches may be applied to select subsets of training and test datasets
in each iteration. In this thesis, we employ the 10-fold time series split cross-validation: the
ith subset in the ith iteration is selected as the test dataset where i = 1, ..., k = 10. The
ith and (i + 1)th subsets are selected as the training and test datasets, respectively. The
cross-validation techniques are employed to obtain generalized models. Time series split
cross-validation is employed to maintain the time sequence of temporal data. An example
of the 5-fold time series split cross-validation is shown in Fig 4.3.

51

Figure 4.3: Time series split cross validation for k = 5. In the first iteration, the first subset
is used for training while the second subset is used for validation.

52

Chapter 5

Performance of Algorithms Used
for Dimension Reduction and
Feature Selection

Dimension reduction and feature selection techniques are applied to eliminate redundan-
cies and thus identify the most relevant features. Dimension reduction techniques such as
autoencoders and PCA may be employed for data compression. Autoencoders are unsuper-
vised neural networks that are employed to learn a representation of a dataset [96]. They
consist of an encoder, a central layer, and a decoder. The encoder and decoder networks
consists of an equal number of layers and a number of nodes. The central layer in an au-
toencoder is called the latent or context vector. The central layer is shared between the
encoder and decoder network. The encoder and decoder networks are used for data com-
pression and reconstruction, respectively. The Input data is mapped to a lower dimension
using an encoder network to the central layer. This compressed data (output of the central
layer) is then used as input to the decoder that reconstructs the original input. Autoen-
coders consisting of a single fully-connected hidden layer, linear activation function, and
mean squared loss function are identical to PCA. We employ PCA to transform data to
a lower dimension. PCA generates principal components that are orthogonal and uncor-
related to each other. Pearson and Spearman correlations are evaluated to identify highly
correlated features. Features with high correlations are eliminated to identify the relevant
features, thus selecting important features. Supervised feature selection techniques such as
tree-based machine learning algorithms (random forests and extra-trees) are employed to
identify the most important features using rank-based criteria.

53

5.1 Dimension Reduction Using Principal Component Anal-
ysis

Experimental data used for PCA are first normalized using z-score. In experiments, we
select the number of principal components to preserve ≈ 70% of the variance [98]. The data
variance in each BGP training dataset using 10 PCA components is listed in Table 5.1. Per-
formance of machine learning models depends on the combinations of selected features [16].
It is important to have a spatial separation between features to accurately classify data.
PCA is applied to enhance the data separation between features because the generated prin-
cipal components are orthogonal to each other. If the features are well separated the data
points belonging to regular and anomaly classes may be well separated. This may enhance
the classification performance of models.

Table 5.1: Variance retained in BGP training datasets that consists of the 10 selected
principal components.

Dataset Variance (%)
Code Red 69.58
Nimda 68.46
Slammer 67.70
WannaCrypt 71.70
WestRock 69.02

5.1.1 Feature Selection Using Correlation

Correlation is a statistical technique employed to measure the strength of a relationship
between two features. It is desirable in machine learning techniques to have features related
to the output. Models generated using data consisting of features correlated with each other
they may contain duplicate information and may not be able to generate high performing
models. Therefore, feature selection may be performed by eliminating highly correlated
features. We calculate Pearson and Spearman correlation coefficients to identify correlated
features in worms and ransomware attack BGP datasets. Pearson and Spearman correlation
coefficients are employed to identify linear and nonlinear relationships between features,
respectively.

5.1.1.1 Pearson Correlation

A Pearson correlation matrix consists of Pearson correlation coefficients computed for all
combinations of feature pairs. The Pearson correlation matrix calculated using WannaCrypt
RIPE training data is shown in Fig. 5.1. The diagonal of the Pearson correlation matrix is
equal to 1. The value of the Pearson coefficient corresponds to the color and filling of squares.
The squares filled with dark blue and red colors correspond to +1 and −1, respectively.

54

The intensity of the color fades as the value of the coefficient decreases. Weakly correlated
features are identified with smaller shaded portions.

Figure 5.1: WannaCrypt RIPE training dataset: Pearson Correlation matrix. The strength
of the correlation between features is indicated by color strengths. The squares filled with
dark blue and red colors correspond to +1 and −1, respectively.

The Pearson correlation matrix is symmetric and, hence, the lower triangle of the matrix
shown in Fig. 5.2 is used to identify strongly correlated features. Features with a Pearson
correlation coefficients ≥ 0.90 are considered highly correlated. Pearson correlation coef-
ficient of features F24, F25, and F26 are 0 because the values of these features, which
represent the maximum edit distance for n = 7, 8, and 9, are 0.

The pairs of positively correlated features belonging to BGP worms and ransomware at-
tack datasets with correlation coefficient ≥ 0.90 are listed in Tables 5.2 and 5.3, respectively.
One feature from each correlated feature pair is selected as an important feature in both
training and test datasets. For example, F1 of the Code Red dataset is highly correlated
with F3 and F36 with a high correlation coefficient of 0.97. Correlated features contain du-

55

Figure 5.2: WannaCrypt RIPE training dataset: lower Pearson correlation matrix. The
intensity and size of the filled color fades as the value of the coefficient decreases.

plicate information, therefore, F1 is selected to be removed from training and test datasets.
The majority of the highly correlated features are identical for the three worms. Linear rela-
tionships are observed between the maximum AS-path and edit distance features, indicating
an increase in AS-path lengths due to the announced malicious prefixes that may reside at
a geographically far location. The feature F34 (number of IGP packets) is highly correlated
to F36 (number of incomplete packets), F3 (number of announced NLRI prefixes), and F1
(number of announcements). This may indicate that during the worm attacks the increase
in the announced prefixes and announcements from within the AS and number of packets
that have an unknown source of origin increases. It may indicate that during these worm
attacks, the infected systems residing in a given AS are used to propagate the malicious
prefixes. These NLRI prefixes to be announced are generated by worms and therefore have
no source of origin. The majority of correlated features for ransomware attack datasets are

56

AS-path features. Linear relationships are also observed between the maximum AS-path
and edit distance, indicating an increase in AS-path lengths during ransomware attacks.
It is also observed that feature F34 (number of IGP packets) is highly correlated with F1
(number of announcements). This may indicate that upon infection the false information is
immediately widely spread within the AS.

Table 5.2: Worms BGP RIPE datasets: Feature pairs with strong positive Pearson correla-
tion coefficients (ρ ≥ 0.90).

Dataset Feature Correlated features Correlation value
Code Red F1 F3, F36 0.97, 0.97

F7 F5 0.90
F11 F6 0.99
F28 F14 0.99
F29 F15 0.99
F30 F16 0.99
F31 F17 0.99
F32 F18 0.99
F33 F19 1.0
F34 F3, F36, F1 0.97, 0.97, 0.99
F36 F3 0.96

Nimda F1 F3, F36 0.99, 0.98
F4 F2 0.99
F7 F5 0.90
F11 F6 0.99
F28 F14 0.99
F29 F15 0.99
F30 F16 0.99
F31 F17 0.99
F32 F18 0.99
F33 F19 1.0
F34 F3, F36, F1 0.99, 0.98, 0.99
F36 F3 0.98

Slammer F1 F36, F3 0.93, 0.97
F11 F6 0.99
F28 F14 0.99
F29 F15 0.99
F30 F16 1.0
F31 F17 0.99
F32 F18 0.99
F33 F19 0.99
F34 F36, F3, F1 0.92, 0.97, 0.99

57

Table 5.3: Ransomware attack BGP RIPE datasets: Feature pairs with strong positive
Pearson correlation coefficients (ρ ≥ 0.90).

Dataset Feature Correlated features Correlation value
WannaCrypt F11 F6 0.99

F28 F14 1.0
F29 F15 1.0
F30 F16 1.0
F31 F17 0.99
F32 F18 1.0
F33 F19 0.99
F34 F1 0.98

WestRock F1 F3 0.97
F11 F6 1.0
F28 F14 1.0
F29 F15 1.0
F30 F16 1.0
F31 F17 1.0
F32 F18 1.0
F33 F19 1.0
F34 F3, F1 0.94, 0.96

5.1.1.2 Spearman Correlation

Spearman correlation coefficient is calculated to identify and measure the strength of the
nonlinearly related features. We consider pairs of features with Spearman correlation coef-
ficient ≥ 0.90 as strongly correlated features. One feature from each correlated feature pair
is selected as an important feature in both training and test datasets. Experiments using
training datasets are performed to identify nonlinear relationships between BGP features.
The code used is listed in “appendix_spearmancorrelation.m” Appendix B. The pairs of
features with high Spearman correlation coefficients for worm and ransomware datasets are
listed in Table. 5.4 and 5.5, respectively. A number of correlated features are common in the
considered experimental datasets indicating their importance in analyzing BGP anomalies.
In the case of worm datasest, feature F34 is nonlinearly correlated with features F1 and
F12 indicating a change in the arrival rate of packets results in a change in the number of
IGP packets. In the case of ransomware attack datasets, the feature F34 is also nonlinearly
correlated to F12. This may be influenced due to the rate at which the infected hosts are
announcing paths within an AS.

5.1.2 Feature Selection Using Random Forests

Important features are selected based on Gini impurity using random forests. We generate
random forests model using only one parameter number of estimators and values of other
parameters are kept default [165]. The best number of estimators are obtained by using

58

Table 5.4: Worm BGP RIPE datasets: Spearman correlation coefficient ≥ 0.90.

Feature Correlated features Correlation value
Code Red
F11 F6 1.0
F12 F1 0.95
F28 F14 0.99
F29 F15 1.0
F30 F16 1.0
F31 F17 1.0
F32 F18 1.0
F33 F19 1.0
F34 F1, F12 0.98, 0.93
Nimda
F3 F1 0.93
F11 F6 1.0
F12 F1, F3 0.97, 0.90
F28 F14 1.0
F29 F15 1.0
F30 F16 1.0
F31 F17 1.0
F32 F18 1.0
F33 F19 1.0
F34 F1, F3, F12 0.99, 0.92, 0.96
Slammer
F3 F1 0.92
F11 F6 1.0
F12 F1, F3 0.99, 0.91
F28 F14 1.0
F29 F15 1.0
F30 F16 1.0
F31 F17 1.0
F32 F18 1.0
F33 F19 0.99
F34 F1, F3, F12 0.99, 0.91, 0.98

10-fold time series split cross-validation. The models employed to obtain important features
are trained based on accuracy or F-Score. In our experiments, the obtained best number of
estimators performed using 10-fold time series split cross-validation based on accuracy or
F-Score are identical. The top 16 features and number of estimators based on accuracy or
F-Score are listed in Table. 5.6 and 5.7, respectively. The features are listed in decreasing
order of importance. The selected features and the number of estimators based on accuracy
or F-Score are identical. Unlike ransomware attacks datasets, the important features of the
BGP worm datasets are identical for all worms.

59

Table 5.5: Ransomware attack BGP RIPE datasets: Spearman correlation coefficient ≥ 0.90.

Feature Correlated features Correlation value
WannaCrypt
F11 F6 1.0
F12 F1 0.91
F28 F14 1.0
F29 F15 1.0
F30 F16 1.0
F31 F17 1.0
F32 F18 1.0
F33 F19 1.0
F34 F1, F12 0.94, 0.96
WestRock
F11 F6 1.0
F28 F14 1.0
F29 F15 1.0
F30 F16 1.0
F31 F17 1.0
F32 F18 1.0
F33 F19 1.0
F34 F12 0.96

Table 5.6: BGP datasets: important features and number of estimators using random forest
based on accuracy.

Dataset Feature numbers in order of importance No. of estimators
Code Red 34, 1, 3, 4, 12, 36, 9, 37, 8, 10, 2, 5, 11, 6, 7, 13 10
Nimda 1, 4, 34, 3, 12, 36, 9, 37, 8, 10, 6, 2, 11, 13, 7, 5 110
Slammer 1, 34, 36, 12, 4, 3, 10, 2, 8, 9, 13, 37, 6, 11, 7, 5 210
WannaCrypt 4, 8, 10, 3, 9, 2, 1, 34, 36, 37, 12, 6, 11, 13, 35, 7 90
WestRock 36, 1, 8, 3, 9, 34, 10, 37, 4, 11, 2, 6, 12, 22, 5, 13 180

Table 5.7: BGP datasets: important features and number of estimators using random forest
based on F-Score.

RIPE Dataset Feature numbers in the order of importance No. of estimators
Code Red 34, 1, 3, 4, 12, 36, 9, 37, 8, 10, 2, 5, 11, 6, 7, 13 10
Nimda 1, 4, 34, 3, 12, 36, 9, 37, 8, 10, 6, 2, 11, 13, 7, 5 110
Slammer 1, 34, 36, 12, 4, 3, 10, 2, 8, 9, 13, 37, 6, 11, 7, 5 210
WannaCrypt 4, 8, 10, 3, 9, 2, 1, 34, 36, 37, 12, 6, 11, 13, 35, 7 90
WestRock 36, 1, 8, 3, 9, 34, 10, 37, 4, 11, 2, 6, 12, 22, 5, 13 180

60

5.1.3 Feature Selection Using Extra-Trees

Experiments are performed using worm and ransomware attack BGP datasets to identify
the most important features. The top 16 important features listed in Table 5.8 ranked based
on Gini importance [110].

The importance of top 16 features of ransomware attack BGP datasets are shown in
Fig. 5.3. The 10-fold time series split cross-validation is performed to obtain the best hyper-
parameter using extra-trees models. The number of estimators and maximum tree depth are
500 and 20, respectively. The important features obtained using extra-trees algorithm are
obtained using the BGPGuard tool [166] and its “feature_select_plot_cnl.py” file. While
the most important features are common for the three worm datasets, the important fea-
tures are identical for the two ransomware datasets.

Table 5.8: BGP datasets: important features based on accuracy or F-Score evaluated using
the extra trees.

Dataset Features in order of importance
Code Red 34, 1, 4, 3, 12, 2, 9, 37, 36, 8, 10, 13, 5, 7, 35, 6
Nimda 1, 34, 3, 4, 9, 36, 12, 37, 8, 23, 10, 2, 13, 7, 11, 5
Slammer 36, 1, 9, 34, 10, 8, 3, 4, 2, 20, 11, 12, 6, 13, 5, 7
WannaCrypt 4, 8, 2, 3, 10, 37, 1, 34, 36, 9, 12, 13, 35, 11, 6, 7
WestRock 8, 9, 3, 37, 2, 1, 36, 34, 10, 4, 12, 35, 13, 6, 11, 7

5.2 Goodness of Fit Test

Experiments are performed using the BGP RIPE datasets to identify the best-fitting feature
distributions. We perform goodness of fit K-S tests using pre-selected PDFs and selected
features of Code Red, Nimda, and Slammer worms, and WannaCrypt and WestRock ran-
somware attack datasets. The extra-trees algorithm is used to select the top 10 features
shown in Table 5.8. The best extra-trees parameters are selected by performing 10-fold
time series cross-validation. The number of estimators and maximum tree depth are 500
and 20, respectively. The curve fitting is then performed on individual features using MAT-
LAB. The PDFs of BGP features and Gaussian (normal), exponential, gamma, Weibull,
Rayleigh, Burr, t Location-Scale, log-normal, and log-logistic are shown in Fig. 5.4. Visual
inspection of distributions is used to select the suitable candidates for best fitting distribu-
tions to perform the K-S test.

Exponential, Weibull, Burr, t location-scale, log-normal, and log-logistic PDFs that
closely fit the important BGP features are selected by visual inspection before perform-
ing the K-S test for various significance levels (α). The K-S test results of the evaluated
BGP features for worm and ransomware datasets are shown in Table 5.9 and Table 5.10,
respectively. The K-S test statistic measures h, p, k, and c are calculated. The h value of

61

Figure 5.3: Feature importance of top 16 important features of WannaCrypt and WestRock
datasets calculated using extra-trees algorithm. Note that the top 16 important features for
both datasets are identical for ransomware attacks that occurred a decade apart.

0 indicates that the null hypothesis (H0) is accepted. It is rejected otherwise. The p-value
of the hypothesis test measures the probability of obtaining the observed results when the
null hypothesis is true. Whenever the p-value is ≥ α the null hypothesis is accepted. The
Critical Value (CV) of the hypothesis test, derived from the p-value, is the value after which
the null hypothesis is rejected. A high cv highlights the differences between distributions.

62

Figure 5.4: Features with at least one PDF accepted using the K-S test. BGP data: Code
Red (1st row), Nimda (2nd row), Slammer (3rd row), WannaCrypt (4th row), and WestRock
(5th row). Nine PDFs are considered. Heavy-tailed PDFs are the best fit for features F1,
F3, F4, F9, F10, and F34.

63

The k measure is the maximum difference between the CDFs of the data and the reference
distributions [167–169].

The fitting distributions and features with accepted H0 are listed in Table 5.11. High-
lighted are distributions and features with high p-values. The estimated parameters for best
fitting Burr, log-normal, and log-logistic distributions are listed in Table 5.12. The Burr dis-
tribution is the closest fit for the accepted features of Code Red and WannaCrypt datasets
due to the right-skewed nature of data.

• Code Red dataset: The null hypothesis for Burr distribution is accepted for fea-
tures F34 (number of IGP packets), F1 (number of announcements), F3 (number
of announced NLRI prefixes), and F9 (number of implicit withdrawals) of Code Red
dataset.

• Nimda dataset: The null hypothesis is accepted for Burr, log-normal, and log-logistic
distributions for feature F9 (number of implicit withdrawals) of the Nimda dataset.
The log-normal distribution is the best suitable fit for feature F9 (number of implicit
withdrawals) based on the high p-value. The Burr and log-logistic distributions are
rejected due to lower p-values.

• Ransomware datasets: The null hypothesis for Burr distribution is accepted for fea-
tures F3 (number of announced NLRI prefixes), F10 (number of duplicate with-
drawals), F1 (number of announcements), and F34 (number of IGP packets) of the
WannaCrypt dataset. Features F4, F36, and F9 are rejected based on lower p-values.
Burr distribution is accepted for feature F9 (number of implicit withdrawals) of the
WestRock dataset. The Burr and log-logistic distributions are accepted for WestRock
feature F4 (number of withdrawn NLRI prefixes). The log-logistic distribution is the
best fit for WestRock feature F9 (number of implicit withdrawals) since it has a higher
p-value.

Code Red and WannaCrypt datasets have common features accepted by Burr distri-
bution indicating underlying similarities between the two datasets. Note that worm BGP
datasets do not have common features for a given probability distribution. WannaCrypt is a
cryptoworm [32] that propagates through a network using similar techniques as Code Red.
It encrypts victim’s files upon infection and then self-replicates and propagates through a
network without user activation. The feature F9 (number of implicit withdrawals) is the
number of newly advertised AS-paths for the already announced NLRI prefixes. It follows
the Burr distribution in the case of Code Red and WestRock datasets. Feature F9 indicates
the attack that may have been re-routed by the attackers through desired AS-paths. We
observe that a number of BGP features follow heavy-tailed distributions. The Q-Q plots
were also analyzed for important features of worms and ransomware datasets to validate
the skewness of the BGP features. The Q-Q plots also confirmed that the features for which

64

Burr distribution was accepted using the K-S test are right-skewed. Sample Q-Q plots for
feature F1 (number of announcements) are shown in Fig. 5.5. The majority of data points in
F1 Q-Q plots for Code Red (top row (left)) and WannaCrypt datasets (middle row (right))
confirm that the feature follows Burr distribution. The remaining plots indicate that the
Burr distribution is not a suitable fit for feature F1.

Figure 5.5: Burr distribution Q-Q plots of number of announcements (F1): Code Red, top
row (left); Nimda top row (right); Slammer, middle row (left); WannaCrypt, middle row
(right); and WestRock, bottom (row).

65

Table 5.9: K-S test results for Burr, log-normal, and log-logistic distribution using worm
BGP RIPE datasets.

Feature α = 0.5 α = 0.1 α = 0.05 α = 0.01
F34: Code Red Burr
h 1 0 0 0
p 0.120659 0.120659 0.120659 0.120659
k 0.01860 0.01860 0.01860 0.01860
c NaN 0.019214 0.021325 0.025565
F1: Code Red
h 1 0 0 0
p 0.246485 0.246485 0.246485 0.246485
k 0.016048 0.016048 0.016048 0.016048
c NaN 0.019214 0.021325 0.025565
F3: Code Red
h 1 0 0 0
p 0.292473 0.292473 0.292473 0.292473
k 0.015371 0.015371 0.015371 0.015371
c NaN 0.019214 0.021325 0.025565
F9: Code Red
h 1 0 0 0
p 0.101251 0.101251 0.101251 0.101251
k 0.019173 0.019173 0.019173 0.019173
c NaN 0.019214 0.021325 0.025565
F37: Code Red
h 1 1 1 0
p 0.023385 0.023385 0.023385 0.023385
k 0.023423 0.023423 0.023423 0.023423
c NaN 0.019214 0.021325 0.025565
F9: Nimda Burr
h 1 1 0 0
p 0.056480 0.056480 0.056480 0.056480
k 0.019871 0.019871 0.019871 0.019871
c NaN 0.018207 0.020208 0.024225
F9: Nimda Log-normal
h 1 0 0 0
p 0.142046 0.142046 0.142046 0.142046
k 0.017104 0.017104 0.017104 0.017104
c NaN 0.018207 0.020208 0.024225
F9: Nimda Log-logistic
h 1 1 0 0
p 0.05679 0.05679 0.05679 0.05679
k 0.019855 0.019855 0.019855 0.019855
c NaN 0.018207 0.020208 0.024225
F3: Slammer Burr
h 1 1 1 0
p 0.034104 0.034104 0.034104 0.034104
k 0.023285 0.023285 0.023285 0.023285
c NaN 0.019968 0.022162 0.026569

66

Table 5.10: K-S test results for Burr distribution of ransomware attack BGP RIPE datasets.

Feature α = 0.5 α = 0.1 α = 0.05 α = 0.01
F4: WannaCrypt Burr
h 1 1 0 0
p 0.054291 0.054291 0.054291 0.054291
k 0.016892 0.016892 0.016892 0.016892
c NaN 0.015393 0.020479 0.017084
F10: WannaCrypt
h 1 0 0 0
p 0.219681 0.219681 0.219681 0.219681
k 0.013209 0.013209 0.013209 0.013209
c NaN 0.015393 0.020479 0.017084
F36: WannaCrypt
h 1 1 1 0
p 0.010246 0.010246 0.010246 0.010246
k 0.020432 0.020432 0.020432 0.020432
c NaN 0.015393 0.020479 0.017084
F9: WannaCrypt
h 1 1 1 0
p 0.011156 0.011156 0.011156 0.011156
k 0.020266 0.020266 0.020266 0.020266
c NaN 0.015393 0.020479 0.017084
F9: WestRock Burr
h 1 0 0 0
p 0.224965 0.224965 0.224965 0.224965
k 0.011020 0.011020 0.011020 0.011020
c NaN 0.012911 0.017176 0.014329
F4: WestRock Burr
h 1 0 0 0
p 0.147570 0.147570 0.147570 0.147570
k 0.012041 0.012041 0.012041 0.012041
c NaN 0.012911 0.017176 0.014329
F4: WestRock Log-logistic
h 1 0 0 0
p 0.284391 0.284391 0.284391 0.284391
k 0.010407 0.010407 0.010407 0.010407
c NaN 0.012911 0.017176 0.014329

67

Table 5.11: Features and distributions: accepted null hypothesis.

Dataset Distribution Feature
Code Red Burr F34, F1, F3, F9, F37
Nimda Burr/Log-normal /Log-logistic F9
Slammer Burr F3
WannaCrypt Burr F4, F3, F10, F1, F34,

F36, F9
WestRock Burr F9 , F4

Log-logistic F4

Table 5.12: Parameters of Burr, log-normal, and log-logistic distributions.

Dataset Feature α c k
Burr
Code Red F34 48.78573 4.98972 0.476546

F1 56.93167 5.31064 0.452353
Nimda F9 92.1486 1.80949 0.98291
Slammer F3 57.7592 3.15328 0.283176
WannaCrypt F4 114.162 4.75842 0.457034

F3 1209.79 5.57019 0.341062
WestRock F9 613.496 6.077945 0.72901
Log-normal µ σ
Nimda F9 4.545695 0.976093
Log-logistic µ σ
Nimda F9 4.538061 0.556037
WestRock F9 6.502269 0.186274

68

Chapter 6

Performance of Classification
Models

We perform experiments using Python on Google Colab notebooks. The use of publicly
available platforms and libraries enhances the reproducibility of research results. Machine
learning libraries (Scikit-learn, NumPy, Pandas, Matplotlib) and the Keras framework are
applied to perform data analysis and classification. BGP data used in this thesis are publicly
available [43]. These datasets are generated by extracting BGP update messages available
from RIPE collection sites. The training and test datasets contain 60% and 40% of anoma-
lous data points, respectively. We employ SVM, LSTM, and GBDT machine learning algo-
rithms to perform binary classification of regular and anomalous data points. We also apply
learning rate scheduler and attention mechanism machine learning approaches to LSTM
models to enhance their classification performance. We then examine the effect of dimen-
sion reduction and feature selection approaches on the performance of GBDT models. The
GBDT algorithms XGBoost, LightGBM, and CatBoost are employed for classification due
to their efficient training time. The best performing model hyperparameters are obtained
by performing 10-fold time series split cross-validation using training datasets. The cross-
validation experiments are performed based on accuracy or F-Score. Performance of the
generated models is evaluated based on training time, accuracy, F-Score, precision, recall,
and confusion matrix.

6.1 Performance Enhancement Using Machine Learning Ap-
proaches

Machine learning approaches such as SVM, learning rate scheduling and attention mecha-
nism with LSTM models are employed to enhance the classification performance. We employ
SVM to identify the separation between data belonging to regular and anomaly clusters.
Learning rate scheduling and attention mechanisms are applied to enhance the performance
of the LSTM model to classify anomalies.

69

6.1.1 Support Vector Machine

We evaluate F-Score of SVM models based on BGP datasets as shown in Table 6.1. Models
are generated using various kernel functions and coefficient values. SVM models using linear
kernel offer better F-Score using WestRock dataset. This may indicate that the WestRock
data is linearly separable. The SVM model generated using linear kernel obtained 0 F-
Score using Code Red dataset. It may represent that the data are not linearly separable.
Although the models generated using high regularization coefficient values obtain high F-
Scores. However, these models suffer from overfitting due to hard margin kernels and should
not be considered for classification.

Table 6.1: BGP datasets: F-Scores of SVM models generated using various kernel functions
and regularization coefficients.

Kernel/Regularization Code Red Nimda Slammer WannaCrypt WestRock
RBF/C = 1 38.96 30.46 66.51 59.08 71.35
RBF/C = 100 73.64 39.44 57.90 38.74 66.76
RBF/C = 1000 69.45 38.16 57.28 40.56 62.82
Linear/C = 1 0.0 25.55 53.14 56.74 73.54
Linear/C = 100 0.0 26.26 52.83 56.55 73.54
Linear/C = 1000 0.0 26.08 52.89 56.82 73.54
Poly/C = 1 31.37 20.64 62.22 51.97 71.12
Poly/C = 100 69.85 36.57 60.40 50.68 68.22
Poly/C = 1000 70.77 35.05 56.90 46.14 65.20
Sigmoid/C = 1 25.99 23.77 49.77 52.16 66.87
Sigmoid/C = 100 20.87 23.69 43.86 50.88 65.47
Sigmoid/C = 1000 19.54 23.54 43.72 50.80 65.43

6.1.2 Long Short Term Memory

LSTM model is known for its effective performance using time series data. They learn long-
term dependencies effectively in temporal data. Experiments are performed [63] to evaluate
LSTM and GRU models using BGP datasets. The best F-Score to classify anomalies in
WannaCrypt BGP RIPE data was obtained using an LSTM model while the best accuracy
was achieved using the GRU model with Route Views data [63]. Therefore, we apply learning
rate scheduling and attention mechanism to enhance the performance of LSTM model to
classify anomalies using WannaCrypt BGP RIPE data.

6.1.2.1 Learning Rate Scheduling

We perform experiments to enhance the performance of the best performing LSTM model [63]
generated using ransomware datasets. Cosine cyclic learning rate scheduling [170] is applied
to a simplified architecture of the LSTM model. The modified hyperparameters of the
LSTM model are listed in Table 6.2. The performance of the LSTM model using Wan-
naCrypt dataset increased from 65.48% and 63.22% [63] to 68.06% and 66.27% for accuracy

70

and F-Score, respectively. The results represent that the performance of machine learning
models is enhanced by using cyclic rather than constant learning rates. The use of a warm
start to learn weights using cyclic learning enhances the model performance.

Table 6.2: LSTM models: Best hyperparameters before and after applying cyclic learning
rate scheduler.

Best value
Parameter Before After
Length of sequence 100 100
No. of epochs 30 30
No. of hidden nodes FC1 = 64 FC1 =64

FC2 = 32 FC2 = 2
FC3 = 16 FC3 = 16

Dropout rate 0.4 0.4
Learning rate 0.01 0.01

6.1.2.2 Attention Mechanism

We analyze performance of LSTM models by applying attention mechanism with LSTM
layer using the ransomware attack BGP datasets. An attention class is implemented in
Keras by inheriting the Layer class [171]. Models are generated using: a sequential input
layer (nodes = 37), an LSTM layer (nodes = 37), an attention layer, and an output dense
layer (nodes = 2). Binary cross-entropy and root mean square propagation (RMSprop) are
selected as loss function and optimizer, respectively. The random seeds for NumPy and
TensorFlow libraries are set to 0 and 1. The number of nodes for the input and LSTM
layer matches the number of features in the dataset while the two nodes in the output layer
are used for binary classification. The input is transformed to three-dimensional because
the LSTM layer in Keras accepts a three-dimensional input. The output binary labels (0
or 1) are transformed into two-dimensional to input it to the dense output layer. The
output labels are transformed into two-dimensions because we are employing a binary cross
entropy loss function. The best hyperparameters and the performance results are listed in
Table 6.3 and 6.4, respectively. The model with attention mechanism using ransomware
attack datasets did not improve the F-Score of previously reported results [1].

Table 6.3: Ransomware attack datasets: best performing hyperparameters and F-Score.

Dataset Batch size Epochs Learning rate
WannaCrypt 100 50 0.001
WestRock 100 10 0.1

71

Table 6.4: Ransomware attack datasets: performance results using attention mechanism.

Dataset Training Time Accuracy F-Score Precision Sensitivity
WannaCrypt 23.066 60.62 60.77 60.58 60.96
WestRock 13.053 76.92 76.92 76.92 76.92

6.2 GBDT Models

Experiments are performed to evaluate the effect of data normalization using z-score on the
classification performance of GBDT models. The best performing hyperparameters obtained
based on accuracy or F-Score are listed in Table 6.5 while the performance results are shown
in Table. 6.6. High accuracy or F-Score are obtained for both datasets by models generated
using unnormalized data. The LightGBM model generated using normalized WestRock
dataset is an underfitted model that could not detect any data points belonging to the
regular class and is unsuitable for anomaly detection. The decision tree models use absolute
data values to create tree branches and do not require features to be scaled. Therefore, the
unnormalized data are used to perform experiments using tree-based algorithms.

Table 6.5: Best hyperparameters: number of estimators and learning rate (LR) based on
accuracy using normalized data using z-score and unnormalized data.

Dataset Algorithm Estimators LR Estimators LR
Accuracy F-Score

Normalized data
XGBoost 260 0.10 260 0.10

WannaCrypt LightGBM 150 0.10 150 0.10
CatBoost 300 0.10 300 0.10
XGBoost 10 0.01 10 0.01

WestRock LightGBM 20 0.01 60 0.10
CatBoost 20 0.01 220 0.05

Unnormalized data
XGBoost 270 0.10 270 0.10

WannaCrypt LightGBM 130 0.10 130 0.10
CatBoost 280 0.10 280 0.10
XGBoost 330 0.10 330 0.10

WestRock LightGBM 50 0.10 50 0.10
CatBoost 170 0.05 170 0.05

We now discuss the classification results using GBDT models generated using various
dimension reduction (PCA) and feature selection techniques such as correlation, random
forests, and extra-trees.

72

Table 6.6: Performance of models generated using hyperparameters based on accuracy or
F-Score using normalized (z-score) and unnormalized BGP ransomware attack data.

Dataset Algorithm Training time Accuracy F-Score
(s) (%) (%)

Normalized data
XGBoost 3.0562 55.00 41.49

WannaCrypt LightGBM 0.7293 55.54 43.07
CatBoost 2.2449 54.94 40.70
XGBoost 0.4972 55.41 70.88

WestRock LightGBM 0.5477 53.58 68.78
CatBoost 2.7002 54.67 70.16

Unnormalized data
XGBoost 1.9838 60.48 61.43

WannaCrypt LightGBM 0.3276 59.52 60.81
CatBoost 1.7270 60.02 61.30
XGBoost 3.3058 57.79 71.48

WestRock LightGBM 0.1643 57.35 71.07
CatBoost 2.8835 56.31 70.32

6.2.1 Principal Component Analysis

PCA is separately applied to training and test datasets to transform the data to contain
10 PCA components. The transformed data are used as input for the GBDT models. The
training datasets are employed to perform 10-fold time series split cross-validation to ob-
tain the best hyperparameters of GBDT models. Datasets used in this thesis are unbalanced
and therefore the cross-validation experiments using PCA transformed data are based on
F-Score. The BGPGuard [166] tool is used to perform time series cross-validation. Train-
ing time, accuracy, F-Score, precision, and sensitivity of the GBDT models are listed in
Table 6.7. The best hyperparameters and confusion matrix results are listed in Table 6.8.
The code used to perform experiments is listed in Appendix A. Dimension reduction using
PCA improved the classification performance of GBDT models using the WestRock BGP
dataset. Only a few true positives are classified using PCA transformed data resulting in a
low F-Score for all BGP datasets except for WestRock. The LightGBM and CatBoost mod-
els generated using the Code Red dataset did not learn the properties of the training dataset
and hence obtain 0 F-Score values. The transformed datasets have lower dimension leading
to lower training time. However, they do not capture all relevant information of the origi-
nal datasets and result in poor classification performance. Dimension reduction performed
using autoencoders achieved better performance using the LightGBM model (WestRock
data) [166].

73

Table 6.7: GBDT models: performance based on the F-Score using datasets with 10 PCA
components.

Dataset Algorithm Training time Accuracy F-Score Precision Sensitivity
(s) (%) (%) (%) (%)

XGBoost 0.4635 92.15 16.78 43.10 10.42
Code Red LightGBM 0.0452 92.41 0 0 0

CatBoost 0.0600 92.41 0 0 0
XGBoost 0.0402 82.21 19.23 20.19 18.35

Nimda LightGBM 0.2507 85.11 17.96 24.63 14.14
CatBoost 2.6072 84.47 20.25 24.85 17.09
XGBoost 0.1941 91.01 59.77 53.35 67.94

Slammer LightGBM 0.5597 91.65 43.00 65.27 32.06
CatBoost 0.9329 91.50 52.73 58.16 48.24
XGBoost 1.4300 54.31 41.13 48.68 35.60

WannaCrypt LightGBM 0.5153 54.20 39.97 48.45 34.02
CatBoost 1.5911 53.56 40.91 47.62 35.85
XGBoost 0.1462 56.42 71.81 57.55 95.48

WestRock LightGBM 0.4394 47.57 60.73 53.79 69.73
CatBoost 1.8117 50.17 63.35 55.34 74.08

Table 6.8: GBDT models: best hyperparameters based on the F-Score and confusion matrix
using datasets with 10 PCA components.

Dataset Algorithm Estimators Learning rate TP FP TN FN
XGBoost 10 0.01 25 33 2,887 215

Code Red LightGBM 10 0.01 0 0 2,920 240
CatBoost 10 0.01 0 0 2,920 240
XGBoost 10 0.01 87 344 3,291 387

Nimda LightGBM 110 0.05 67 205 3,430 407
CatBoost 210 0.10 81 245 3,390 393
XGBoost 60 0.10 231 202 2,918 109

Slammer LightGBM 270 0.05 109 58 3,062 231
CatBoost 200 0.10 164 118 3,002 176
XGBoost 300 0.10 833 878 2,002 1,507

WannaCrypt LightGBM 260 0.10 796 847 2,033 1,544
CatBoost 300 0.10 839 923 1,957 1,501
XGBoost 10 0.01 3,819 2,817 63 181

WestRock LightGBM 200 0.10 2,789 2,396 484 1,211
CatBoost 300 0.10 2,963 2,391 489 1,037

6.2.2 Features Selection

Important features are identified using various unsupervised and supervised feature selection
techniques. The effect of the selected features is measured by evaluating performance of
GBDT models generated using worms and ransomware attack datasets.

74

6.2.2.1 Pearson Correlation

The best performing hyperparameters based on F-Score listed in Table 6.9 are obtained
using the 10-fold time series cross-validation. Performance of models generated using the
selected features by eliminating highly correlated features is shown in Table 6.10. High
F-Scores are obtained for the Code Red and WestRock datasets using XGBoost and Light-
GBM models, respectively. The F-Score for the models generated using WestRock dataset
are similar for XGBoost and LightGBM models while the training time is shorter for the
LightGBM model. The short training time is attributed to the histogram-based GOSS tech-
nique used in LightGBM. The sensitivity of GBDT models based on the WestRock dataset
is also high indicating their efficient ability to detect true positives at a high rate. The
GBDT models generated using the ransomware attack BGP datasets have low accuracy as
they result in a large number of false positives.

Table 6.9: GBDT models: hyperparameters based on F-score after eliminating highly cor-
related features.

Dataset Algorithm Estimators Learning rate
XGBoost 10 0.01

Code Red LightGBM 10 0.01
CatBoost 10 0.01
XGBoost 150 0.10

Nimda LightGBM 190 0.10
CatBoost 250 0.05
XGBoost 150 0.10

Slammer LightGBM 190 0.10
CatBoost 250 0.05
XGBoost 240 0.10

WannaCrypt LightGBM 270 0.10
CatBoost 300 0.10
XGBoost 170 0.10

WestRock LightGBM 280 0.05
CatBoost 250 0.10

6.2.2.2 Spearman Correlation

The best performing hyperparameters based on F-Score listed in Table 6.12 are obtained
using the 10-fold time series cross-validation. Performance and confusion matrix results are
listed in Tables 6.13 and 6.14, respectively.

High F-Scores are obtained for the Code Red and WestRock datasets using CatBoost
and XGBoost models, respectively. The LightGBM model using Code Red has a 0 F-Score
because the model did not learn data properties due to unbalanced data. Performance results
obtained using datasets without Spearman and Pearson correlated features are similar.

75

Table 6.10: GBDT model performance based on F-score with eliminated high Pearson cor-
related features.

Dataset Algorithm Training time Accuracy F-Score Precision Senstivity
(s) (%) (%) (%) (%)

XGBoost 0.3638 96.99 80.65 78.88 82.50
Code Red LightGBM 0.1342 92.41 0 0 0

CatBoost 0.2255 95.60 62.53 88.55 48.33
XGBoost 0.7468 81.55 41.87 32.89 57.59

Nimda LightGBM 0.9619 81.26 40.59 32.00 55.49
CatBoost 1.2594 82.87 44.13 35.37 58.65
XGBoost 0.4429 93.96 57.95 91.72 42.35

Slammer LightGBM 0.9248 94.10 59.36 91.98 43.82
CatBoost 1.5159 94.05 58.80 91.88 43.24
XGBoost 3.5598 58.66 60.21 52.95 69.79

WannaCrypt LightGBM 3.4422 59.25 60.46 53.50 69.49
CatBoost 1.2406 59.98 61.11 54.14 70.13
XGBoost 5.6716 57.60 70.76 59.06 88.22

WestRock LightGBM 4.3026 57.81 70.94 59.16 88.60
CatBoost 2.2074 55.89 69.77 57.99 87.55

Table 6.11: Confusion matrix of GBDT models generated with eliminated high Pearson
correlated features from BGP datasets.

Dataset Algorithm TP FP TN FN
XGBoost 198 53 2,867 42

Code Red LightGBM 0 0 2,920 240
CatBoost 116 15 2,905 124
XGBoost 273 557 3,078 201

Nimda LightGBM 263 559 3,076 211
CatBoost 278 508 3,127 196
XGBoost 144 13 3,107 196

Slammer LightGBM 149 13 3,107 191
CatBoost 147 13 3,107 193
XGBoost 1,633 1,451 1,429 707

WannaCrypt LightGBM 1,626 1,413 1,467 714
CatBoost 1,641 1,390 1,490 699
XGBoost 3,529 2,446 434 471

WestRock LightGBM 3,544 2,447 433 456
CatBoost 3,502 2,537 343 498

6.2.2.3 Random Forests

The GBDT algorithms are employed to generate classification models. We use the entire
dataset with 37 features and its subsets of 8 and 16 features. The best performing hy-
perparameters listed in Table 6.15 are obtained by performing 10-fold time series split
cross-validation. The results are obtained based on accuracy or F-Score. The model hy-
perparameters based on accuracy or F-Score are identical for the three worm datasets.
Performance results are listed in Tables 6.16, 6.17, and 6.18. The model generated using

76

Table 6.12: Hyperparameters for models generated using datasets with eliminated high
Spearman correlated features.

Dataset Algorithm Estimators Learning rate
XGBoost 10 0.01

Code Red LightGBM 10 0.01
CatBoost 10 0.01
XGBoost 200 0.10

Nimda LightGBM 170 0.05
CatBoost 140 0.10
XGBoost 180 0.05

Slammer LightGBM 70 0.05
CatBoost 130 0.10
XGBoost 250 0.10

WannaCrypt LightGBM 250 0.05
CatBoost 290 0.10
XGBoost 150 0.05

WestRock LightGBM 90 0.10
CatBoost 300 0.05

Table 6.13: GBDT models: performance using datasets with eliminated Spearman correlated
features.

Dataset Algorithm Training time Accuracy F-Score Precision Senstivity
(s) (%) (%) (%) (%)

XGBoost 0.4193 96.33 76.52 74.41 78.75
Code Red LightGBM 0.1516 92.41 0 0 0

CatBoost 0.2432 96.71 76.58 83.33 70.83
XGBoost 2.5078 81.67 41.13 32.67 55.49

Nimda LightGBM 1.2397 81.07 40.25 31.64 55.27
CatBoost 1.3672 80.99 39.78 31.35 54.43
XGBoost 2.0316 93.87 56.56 93.24 40.59

Slammer LightGBM 0.3239 93.76 55.19 93.66 39.12
CatBoost 0.6340 94.13 58.82 94.77 42.65
XGBoost 2.4791 59.41 60.56 53.64 69.53

WannaCrypt LightGBM 1.1649 59.69 60.80 53.90 69.74
CatBoost 1.8676 59.71 61.08 53.87 70.51
XGBoost 3.0025 58.60 72.04 59.31 91.72

WestRock LightGBM 1.4164 57.14 70.49 58.77 88.05
CatBoost 4.4326 56.37 70.57 58.05 89.98

LightGBM for the Code Red dataset has 0 F-Score because the model did not learn the data
properties during cross-validation due to the unbalanced dataset. The confusion matrix rep-
resents that these models did not detect any anomalies (true positives and false positives).
The highest F-Score 81.30 is obtained for the model generated using the CatBoost model
for Code Red dataset with 37 features. CatBoost models generated using WestRock dataset
exhibit higher performance than WannaCrypt GBDT models.

77

Table 6.14: GBDT models: confusion matrix using datasets with eliminated high Spearman
correlated features.

Dataset Algorithm TP FP TN FN
XGBoost 189 65 2,855 51

Code Red LightGBM 0 0 2,920 240
CatBoost 170 34 2,886 70
XGBoost 263 542 3,093 211

Nimda LightGBM 262 566 3,069 212
CatBoost 258 565 3,070 216
XGBoost 138 10 3,110 202

Slammer LightGBM 133 9 3,111 207
CatBoost 145 8 3,112 195
XGBoost 1,627 1,406 1,474 713

WannaCrypt LightGBM 1,632 1,396 1,484 708
CatBoost 1,650 1,413 1,467 690
XGBoost 3,669 2,517 363 331

WestRock LightGBM 3,522 2,471 409 478
CatBoost 3,599 2,601 279 401

Table 6.15: GBDT models: best hyperparameters based on accuracy or F-Score. Important
features are selected using random forest.

Accuracy F-Score
Dataset Algorithm Estimators LR Estimators LR
Code Red XGBoost 10 0.01 10 0.01

LightGBM 10 0.01 10 0.01
CatBoost 10 0.01 10 0.01

Nimda XGBoost 260 0.01 260 0.01
LightGBM 280 0.01 280 0.01
CatBoost 240 0.10 240 0.10

Slammer XGBoost 140 0.05 140 0.05
LightGBM 170 0.01 170 0.01
CatBoost 60 0.10 60 0.10

WannaCrypt XGBoost 270 0.10 270 0.10
LightGBM 100 0.10 130 0.10
CatBoost 280 0.10 280 0.10

WestRock XGBoost 270 0.05 260 0.10
LightGBM 270 0.10 270 0.10
CatBoost 80 0.10 170 0.05

6.2.2.4 Extra-Trees

Performance of models is evaluated using 37 features and its subsets 16 and 8. Experi-
ments are performed to identify the best parameters using grid-search and 10-fold time
series split cross validation based on accuracy or F-Score. Grid search is an exhaustive ad
hoc approach to evaluate combination of parameters and obtain the best performance re-

78

Table 6.16: GBDT models: best performance based on F-Score. Important features are
selected using random forest.

Dataset Features Training time (s) Accuracy (%) F-Score (%)
XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost

37 0.0514 0.1716 0.1431 96.84 92.41 97.28 78.54 0 81.30
Code Red 16 0.02646 0.0255 0.1100 96.84 92.41 96.87 78.54 0 78.05

8 0.0205 0.0175 0.0495 96.84 92.41 96.99 79.84 0 79.21
37 1.1529 0.8916 1.5392 80.58 81.67 82.14 39.08 40.94 42.11

Nimda 16 0.5964 0.5486 1.5917 80.58 81.50 81.70 39.08 40.72 41.07
8 0.4222 0.5022 0.8698 80.24 80.99 80.65 39.58 39.32 40.09
37 0.4438 0.3631 0.4054 93.76 93.06 94.08 55.37 46.67 58.59

Slammer 16 0.8141 0.2647 0.2046 93.82 93.03 93.29 55.79 46.33 50.00
8 0.2762 0.3982 0.1521 93.67 92.89 93.01 53.89 44.09 46.70
37 2.7926 1.8305 3.7370 60.48 59.52 60.02 61.43 60.81 61.30

WannaCrypt 16 2.6863 0.4210 3.1641 60.13 59.66 59.90 61.05 60.81 61.43
8 1.1894 0.1934 1.1166 60.31 60.23 60.15 61.21 61.34 61.82
37 3.3410 1.0118 2.4799 50.28 50.04 51.31 66.19 65.65 67.35

WestRock 16 1.1452 0.8360 0.7299 50.80 50.13 51.74 66.65 65.60 67.79
8 0.8088 0.4180 1.9548 50.89 50.76 51.83 66.90 66.42 67.88

Table 6.17: GBDT models: precision and recall based on accuracy or F-Score. Important
features are selected using the random forest.

Features Precision (%) Recall (%)
XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost

37 80.97 0 85.00 76.25 0 77.92
Code Red 16 80.97 0 83.41 76.25 0 73.33

8 77.34 0 83.41 82.50 0 75.42
37 30.62 32.58 33.63 54.01 55.06 56.33

Nimda 16 30.62 32.30 32.67 54.01 55.06 55.27
8 30.57 31.12 31.18 56.12 53.38 56.12
37 93.06 95.45 93.55 39.41 30.88 42.65

Slammer 16 93.75 95.41 93.55 39.71 30.59 34.12
8 94.81 97.00 92.98 37.65 28.53 31.18
37 54.60 53.72 54.14 70.21 70.04 70.64

WannaCrypt 16 54.31 53.86 54.00 69.70 69.83 71.24
8 54.46 54.36 54.18 69.87 70.38 71.97
37 54.73 54.69 55.19 83.72 82.12 86.38

WestRock 16 55.00 54.76 55.39 84.58 81.80 87.35
8 55.00 55.02 55.43 85.35 83.78 87.55

sults. Its complexity depends on the selected grid granularity. Even though it is faster than
cross-validation, grid search is an ad hoc approach, its results are not generalized, and its
performance greatly depends on the employed training datasets.

The analysis of experiments illustrate that using F-Score is a suitable performance pa-
rameter due to unbalanced datasets. 10-fold time series cross-validation is a more reliable
approach because it uses subsets of a given dataset to train the model over multiple itera-
tions and create generalized models. Hence, the hyperparameter values of models obtained
by performing time series cross-validation are more reliable and generalized. The best per-
forming hyperparameters obtained based on accuracy or F-Score are listed in Table 6.19.
The values obtained for models based on accuracy or F-Score are identical. The performance
results are listed in Table 6.20.

79

Table 6.18: GBDT Models: Confusion matrix based on accuracy or F-Score. Important
features are selected using the random forest.

Dataset Features XGBoost LightGBM CatBoost
TP FP TN FN TP FP TN FN TP FP TN FN

37 183 43 2,877 57 0 0 2,920 240 187 33 2,887 53
Code Red 16 183 43 2,877 57 0 0 2,920 240 176 35 2,885 64

8 198 58 2,862 42 0 0 2,920 240 181 36 2,884 59
37 256 580 3,055 218 261 540 3,095 213 267 527 3,108 207

Nimda 16 256 580 3,055 218 261 547 3,088 213 262 540 3,095 212
8 266 604 3,031 208 253 560 3,075 221 266 587 3,048 208
37 134 10 3,110 206 105 5 3,115 235 145 10 3,110 195

Slammer 16 135 9 3,111 205 104 5 3,115 236 116 8 3,112 224
8 128 7 3,113 212 97 3 3,117 243 106 8 3,112 234
37 1,643 1,366 1,514 697 1,639 1,412 1,468 701 1,653 1,400 1,480 687

WannaCrypt 16 1,631 1,372 1,508 709 1,634 1,400 1,480 706 1,667 1,420 1,460 673
8 1,635 1,367 1,513 705 1,647 1,383 1,497 693 1,684 1,424 1,456 656
37 3,349 2,770 110 651 3,285 2,722 158 715 3,455 2,805 75 545

WestRock 16 3,383 2,768 112 617 3,272 2,703 177 728 3,494 2,814 66 506
8 3,414 2,793 87 586 3,351 2,739 141 649 3,502 2,816 64 498

Table 6.19: GBDT models: best hyperparameters based on accuracy and F-Score. Important
features are selected using extra-trees.

Accuracy F-Score
Dataset Algorithm Estimators LR Estimators LR
Code Red XGBoost 10 0.01 10 0.01

LightGBM 10 0.01 10 0.01
CatBoost 10 0.01 10 0.01

Nimda XGBoost 260 0.01 260 0.01
LightGBM 280 0.01 280 0.01
CatBoost 240 0.10 240 0.10

Slammer XGBoost 140 0.05 140 0.05
LightGBM 170 0.01 170 0.01
CatBoost 60 0.10 60 0.10

WannaCrypt XGBoost 270 0.10 270 0.10
LightGBM 130 0.10 130 0.10
CatBoost 280 0.10 280 0.10

WestRock XGBoost 330 0.10 330 0.10
LightGBM 50 0.10 50 0.10
CatBoost 170 0.05 170 0.05

80

Table 6.20: GBDT models: best performance results based on F-Score. Important features
are selected using extra-trees.

Dataset Features Training time (s) Accuracy (%) F-Score (%)
XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost

37 0.0470 0.0425 0.2110 96.84 92.41 97.28 78.54 0.00 81.30
Code Red 16 0.0262 0.0253 0.0525 96.84 92.41 97.22 78.54 0.00 81.03

8 0.0231 0.0272 0.0468 96.90 92.41 96.58 80.32 0.00 75.78
37 1.0583 0.4607 2.4636 80.58 81.67 82.14 39.08 40.94 42.11

Nimda 16 0.6187 0.4359 2.3066 80.58 81.46 81.97 39.08 40.56 41.97
8 0.4749 0.3122 0.7893 80.24 80.99 80.65 39.58 39.32 40.09
37 0.4645 0.3848 0.2644 93.76 93.06 94.08 55.37 46.67 58.58

Slammer 16 0.2710 0.2114 0.1824 93.55 92.95 93.15 53.05 45.05 47.91
8 0.1968 0.1599 0.1652 93.41 92.75 93.09 51.07 42.3 47.01
37 1.9838 0.3276 1.7270 60.48 59.52 60.02 61.43 60.81 61.30

WannaCrypt 16 2.3483 0.3074 1.3041 60.13 59.66 59.90 61.05 60.81 61.43
8 0.7880 0.1973 1.0541 61.03 60.54 60.13 61.95 61.47 61.75
37 3.3058 0.1643 2.8835 57.79 57.35 56.31 71.48 71.07 70.32

WestRock 16 1.7448 0.1480 1.1840 57.73 57.53 56.58 71.33 71.26 70.90
8 0.9798 0.0907 1.4420 59.56 58.02 56.38 72.96 71.67 71.07

81

Chapter 7

Conclusion

Detecting ransomware attacks is a challenging task. The Internet is a vast interconnected
network with billions of connected devices. Users heavily rely on the Internet to perform
their daily activities. Network traffic consists of activities performed by many malicious
traffic actors targeting various vulnerable systems. Anomaly detection is a crucial task in
cybersecurity due to the constant increase in network attacks and intrusions. It is important
that intrusion detection systems employ machine learning models that have low training
time to be scalable and deployed in real-time environments. Machine learning intrusion
detection techniques offer effective solutions to identify and detect cyberattacks. They han-
dle a large amount of data effectively due to their computational abilities compared to
traditional intrusion detection systems.

In this thesis, we applied various dimension reduction and feature selection techniques to
identify important features and enhance the performance of the classifier models generated
using BGP RIPE datasets of worms and ransomware attacks. Statistical approaches such
as PCA, Pearson correlation, and Spearman correlation were applied to reduce the data
dimension and eliminate redundancies. The data dimension was reduced using PCA to
transform the data to contain 10 PCA components. Correlated features were eliminated from
the datasets because they do not contain new information relevant to building generalized
models. Supervised machine learning tree based algorithms such as random forest and extra-
trees were applied to identify the important features based on importance criteria. Extra-
trees models offered the best performance for selecting important features. We also estimated
the data distributions of the 10 important features selected using extra-trees by performing
K-S test and measure the influence of the data distributions on the performance of the
machine learning models. The K-S test results indicated that heavy-tailed distributions are
a suitable fit for a number of BGP features. The Burr distribution was accepted for common
features in Code Red and WannaCrypt datasets highlighting their underlying similarities.

We performed binary classification using BGP data collected for various network anoma-
lies: worms and ransomware attacks collected from RIPE repositories. Machine learning
algorithms such as SVM, LSTM, and GBDT were applied to generate classifier models.

82

SVM models generated using linear kernels obtained high F-Scores using WestRock dataset
indicating the data are linearly separable. Dynamic learning rate such as cosine annealing
was applied to enhance the performance of LSTM model. They employ warm restarts to
enhance the learning capabilities of models. Accuracy and F-Score of the best performing
LSTM model was enhanced using the dynamic learning rate scheduler. Therefore, they may
be applied rather than constant learning rates. Attention mechanism was also applied to
enhance the model performance to classify ransomware attack datasets. However, it did not
enhance the classification performance of the best performing LSTM models. The GBDT
models generated using PCA transformed data offered a high F-Score using WestRock
dataset. Experimental results indicated that GBDT models have a short training time that
is desired for real-time IDSs. LSTM models remain the best performing models to classify
ransomware attacks in BGP datasets. Identifying anomalies based on a high F-Score in the
case of the WannaCrypt ransomware attack remains a challenging task.

In the future, transformers and generative adversarial networks may be applied to de-
tect anomalies in networks. Transformers are deep learning models that employ attention
mechanism and are well-known for their effective performance in natural language process-
ing models. Reinforcement learning may also be applied to classify anomalies. Conditional
generative adversarial networks (cGANs) are popular for generating conditional data and
they may also offer effective performance to classify anomalies.

83

Bibliography

[1] Z. Li, “Machine learning for classifying anomalies and intrusions in communication
networks,” Ph.D. dissertation, School of Engineering Science., Simon Fraser Univ.,
Burnaby, BC, Canada, 2022.

[2] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 8th ed.
New Jersey, NY, USA: Pearson, 2021.

[3] R. Vinayakumar, K. P. Soman, P. Poornachandran, and S. Akarsh, “Application of
deep learning architectures for cyber security,” in Cybersecurity and Secure Informa-
tion Systems: Challenges and Solutions in Smart Environments, A. E. Hassanien and
M. Elhoseny, Eds. Cham: Springer International Publishing, 2019, pp. 125–160.

[4] (2023, Apr.) Command and control explained. [Online]. Available: https:
//www.paloaltonetworks.com/cyberpedia/command-and-control-explained

[5] S. Donaldson, S. Siegel, C. K. Williams, and A. Aslam, "Enterprise Cybersecurity:
How to Build a Successful Cyberdefense Program Against Advanced Threats". Apress,
2015.

[6] S. Talukder, “Tools and techniques for malware detection and analysis,” arXiv preprint
arXiv:2002.06819, 2020.

[7] F. T. Ngo, A. Agarwal, R. Govindu, and C. MacDonald, Malicious Software Threats.
Cham: Springer International Publishing, 2020, pp. 793–813.

[8] F. Ullah, M. Edwards, R. Ramdhany, R. Chitchyan, M. A. Babar, and A. Rashid,
“Data exfiltration: A review of external attack vectors and countermeasures,” J. Netw.
Comput. Appl., vol. 101, pp. 18–54, 2018.

[9] E. Conrad, S. Misenar, and J. Feldman, “Domain 7: security operations,” in Eleventh
Hour CISSP, 3rd ed., E. Conrad, S. Misenar, and J. Feldman, Eds. Syngress, 2017,
pp. 145–183.

[10] T. B. Azad, “Locking down your xenapp server,” in Securing Citrix Presentation
Server in the Enterprise, T. B. Azad, Ed. Burlington: Syngress, 2008, pp. 487–555.

[11] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: a survey,” ACM Com-
put. Surv., vol. 41, no. 3, pp. 15:1–15:58, July 2009.

[12] (2023, Apr.) RFC 1771 - A Border Gateway Protocol 4 (BGP-4). [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc1771.

84

https://www.paloaltonetworks.com/cyberpedia/command-and-control-explained
https://www.paloaltonetworks.com/cyberpedia/command-and-control-explained
https://datatracker.ietf.org/doc/html/rfc1771 .

[13] (2023, Apr.) RFC 827 - Exterior Gateway Protocol (EGP). [Online]. Available:
https://www.rfc-editor.org/rfc/rfc827.

[14] (2023, Apr.) The cisco learning network. [Online]. Available: https://www.cloudflare.
com/learning/network-layer/what-is-an-autonomous-system/.

[15] (2023, Apr.) BGP network layer reachability information (nlri). [Online]. Available:
https://bit.ly/2Lwod2c.

[16] Q. Ding, Z. Li, S. Haeri, and Lj. Trajković, “Application of machine learning tech-
niques to detecting anomalies in communication networks: datasets and feature se-
lection algorithms,” in Cyber Threat Intelligence, A. Dehghantanha, M. Conti, and
T. Dargahi, Eds. Berlin: Springer, 2018, pp. 47–70.

[17] (2023, Apr.) What is an autonomous system? | what are
asns? [Online]. Available: https://www.cloudflare.com/learning/network-layer/
what-is-an-autonomous-system/.

[18] (2023, Apr.) YouTube Hijacking: A RIPE NCC RIS case study. [Online].
Available: http://www.ripe.net/internet-coordination/news/industry-developments/
youtube-hijacking-a-ripe-ncc-ris-case-study.

[19] (2023, Apr.) RFC 4632 - Classless inter-domain routing (CIDR): The Internet
address assignment and aggregation plan. [Online]. Available: https://datatracker.
ietf.org/doc/rfc4632/.

[20] B. Al-Musawi, P. Branch, and G. Armitage, “BGP anomaly detection techniques: a
survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 377–396, 2017.

[21] (2023, Apr.) RFC 1930 - Guidelines for creation, selection, and registration of
an Autonomous System (AS). [Online]. Available: https://www.rfc-editor.org/rfc/
pdfrfc/rfc1930.txt.pdf.

[22] B. Zhang, R. Liu, D. Massey, and L. Zhang, “Collecting the Internet AS-level topol-
ogy,” ACM Comput. Commun. Rev., vol. 35, no. 1, pp. 53–62, 2005.

[23] (2023, Apr.) RIPE NCC routing information service. [Online]. Available:
https://www.ripe.net/publications/docs/ripe-200.

[24] (2023, Apr.) University of Oregon Route Views projects. [Online]. Available:
http://www.routeviews.org.

[25] (2023, Apr.) Quagga routing suite. [Online]. Available: https://www.quagga.net/
index.html.

[26] (2023, Apr.) Route Collection Raw Data: MRT Files. [Online]. Available:
https://ris.ripe.net/docs/20_raw_data_mrt.html.

[27] M. Gopal, “Well-posed machine learning problems,” in Applied Machine Learning.
New York, NY: McGraw-Hill Education, 2019.

85

https://www.rfc-editor.org/rfc/rfc827.
https://www.cloudflare.com/learning/network-layer/what-is-an-autonomous-system/ .
https://www.cloudflare.com/learning/network-layer/what-is-an-autonomous-system/ .
https://bit.ly/2Lwod2c .
https://www.cloudflare.com/learning/network-layer/what-is-an-autonomous-system/ .
https://www.cloudflare.com/learning/network-layer/what-is-an-autonomous-system/ .
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study .
http://www.ripe.net/internet-coordination/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study .
https://datatracker.ietf.org/doc/rfc4632/.
https://datatracker.ietf.org/doc/rfc4632/.
https://www.rfc-editor.org/rfc/pdfrfc/rfc1930.txt.pdf.
https://www.rfc-editor.org/rfc/pdfrfc/rfc1930.txt.pdf.
https://www.ripe.net/publications/docs/ripe-200 .
http://www.routeviews.org .
https://www.quagga.net/index.html .
https://www.quagga.net/index.html .
https://ris.ripe.net/docs/20_raw_data_mrt.html .

[28] (2023, Apr.) Machine Learning and Cyber Security: An In-
troduction. [Online]. Available: https://www.vmray.com/cyber-security-blog/
machine-learning-and-cyber-security-an-introduction/.

[29] C. M. Bishop, Pattern Recognition and Machine Learning. Secaucus, NJ, USA:
Springer-Verlag, 2006.

[30] (2023, Apr.) Ransomware attacks and types - how encryption tro-
jans differ. [Online]. Available: https://usa.kaspersky.com/resource-center/threats/
ransomware-attacks-and-types.

[31] (2023, Apr.) What is an Attack Vector? 16 Common Attack Vectors in 2022.
[Online]. Available: https://www.upguard.com/blog/attack-vector.

[32] (2023, Apr.) How ransomware attacks, SophosLabs. [On-
line]. Available: https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/
sophoslabs-ransomware-behavior-report.pdf.

[33] M. Bhuyan, D. Bhattacharyya, and J. Kalita, “Network anomaly detection: methods,
systems and tools,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 303–336, Mar.
2014.

[34] N. Duffield, P. Haffner, B. Krishnamurthy, and H. Ringberg, “Rule-based anomaly
detection on ip flows,” in IEEE INFOCOM, 2009, pp. 424–432.

[35] (2023, Apr.) What is Snort? [Online]. Available: https://www.snort.org

[36] M. Xu and X. Li, “BGP anomaly detection based on automatic feature extraction
by neural network,” in IEEE 5th Information Technol. Mechatronics Eng., 2020, pp.
46–50.

[37] Q. Li, X. Zhang, X. Zhang, and P. Su, “Invalidating idealized bgp security proposals
and countermeasures,” IEEE Trans. Dependable Secure Computing, vol. 12, no. 3, pp.
298–311, 2015.

[38] A. Lutu, M. Bagnulo, C. Pelsser, O. Maennel, and J. Cid-Sueiro, “The BGP visibility
toolkit: detecting anomalous internet routing behavior,” IEEE/ACM Trans. Netw.,
vol. 24, no. 2, pp. 1237–1250, Apr. 2016.

[39] Z. Li, A. L. Gonzalez Rios, and Lj. Trajković, “Machine learning for detecting anoma-
lies and intrusions in communication networks,” IEEE J. Sel. Areas Commun., vol. 39,
no. 7, pp. 2254–2264, July 2021.

[40] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“LightGBM: a highly efficient gradient boosting decision tree,” in Proc. Int. Conf.
Neural Inform. Process. Syst., Long Beach, CA, USA, Dec. 2017, pp. 3146–3154.

[41] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[42] C. L. P. Chen, Z. Liu, and S. Feng, “Universal approximation capability of broad
learning system and its structural variations,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 4, pp. 1191–1204, Apr. 2019.

86

https://www.vmray.com/cyber-security-blog/machine-learning-and-cyber-security-an-introduction/.
https://www.vmray.com/cyber-security-blog/machine-learning-and-cyber-security-an-introduction/.
https://usa.kaspersky.com/resource-center/threats/ransomware-attacks-and-types .
https://usa.kaspersky.com/resource-center/threats/ransomware-attacks-and-types .
https://www.upguard.com/blog/attack-vector .
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-ransomware-behavior-report.pdf .
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-ransomware-behavior-report.pdf .
https://www.snort.org

[43] (2023, Apr.) Border Gateway Protocol Routing Records from Réseaux IP Européens
(RIPE) and BCNET. [Online]. Available: http://ieee-dataport.org/1977.

[44] (2023, Apr.) NSL-KDD Data Set. [Online]. Available: https://www.unb.ca/cic/
datasets/nsl.html.

[45] (2023, Apr.) Canadian Institute for Cybersecurity datasets. [Online]. Available:
https://www.unb.ca/cic/datasets/index.html.

[46] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network traffic anomaly
detection techniques and systems,” in Network Traffic Anomaly Detection and Pre-
vention: Concepts, Techniques, and Tools. Cham: Springer International Publishing,
2017, pp. 115–169.

[47] M. Thottan and J. Chuanyi, “Anomaly detection in IP networks,” IEEE Trans. Signal
Process., vol. 51, no. 8, pp. 2191–2204, 2003.

[48] A. Sheikh, Certified ethical hacker (CEH) preparation guide: lesson-based review of
ethical hacking and penetration testing. Berkeley, CA: Apress L. P, 2021.

[49] G.-J. Mun, Y.-M. Kim, D. Kim, and B.-N. Noh, “Network intrusion detection using
statistical probability distribution,” in Proc. Comput. Sci. Appl., M. L. Gavrilova,
O. Gervasi, V. Kumar, C. J. K. Tan, D. Taniar, A. Laganá, Y. Mun, and H. Choo,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 340–348.

[50] T. M. Chen and J.-M. Robert, “The evolution of viruses and worms,” in Statistical
Methods in Computer Security. CRC press, 2004, pp. 289–310.

[51] (2023, Mar.) A brief history of computer viruses & what the future
holds. [Online]. Available: https://www.kaspersky.com/resource-center/threats/
a-brief-history-of-computer-viruses-and-what-the-future-holds.

[52] (2023, Mar.) 1970s. [Online]. Available: https://encyclopedia.kaspersky.com/
knowledge/years-1970s/.

[53] (2023, Mar.) Morris worm. [Online]. Available: https://www.fbi.gov/history/
famous-cases/morris-worm.

[54] (2023, Apr.) What’s the difference between a virus and a worm? [Online]. Available:
https://www.kaspersky.com/resource-center/threats/computer-viruses-vs-worms

[55] D. J. Marchette, “Computer viruses and worms,” in Computer Intrusion Detection
and Network Monitoring: A Statistical Viewpoint. New York, NY: Springer New
York, 2001, pp. 215–240.

[56] (2023, Apr.) The Code Red worm, SANS Institute Information Security Read-
ing Room. [Online]. Available: https://www.sans.org/reading-room/whitepapers/
malicious/code-red-worm-85.

[57] (2023, Apr.) Responding to the Nimda worm: recommendations for addressing blended
threats, Symantec, Cupertino, CA, USA. [Online]. Available: https://vx-underground.
org/archive/Symantec/nimda-worm-recommendations-blended-threats-01-en.pdf.

87

http://ieee-dataport.org/1977 .
https://www.unb.ca/cic/datasets/nsl.html .
https://www.unb.ca/cic/datasets/nsl.html .
https://www.unb.ca/cic/datasets/index.html .
https://www.kaspersky.com/resource-center/threats/a-brief-history-of-computer-viruses-and-what-the-future-holds .
https://www.kaspersky.com/resource-center/threats/a-brief-history-of-computer-viruses-and-what-the-future-holds .
https://encyclopedia.kaspersky.com/knowledge/years-1970s/.
https://encyclopedia.kaspersky.com/knowledge/years-1970s/.
https://www.fbi.gov/history/famous-cases/morris-worm.
https://www.fbi.gov/history/famous-cases/morris-worm.
https://www.kaspersky.com/resource-center/threats/computer-viruses-vs-worms
https://www.sans.org/reading-room/whitepapers/malicious/code-red-worm-85 .
https://www.sans.org/reading-room/whitepapers/malicious/code-red-worm-85 .
https://vx-underground.org/archive/Symantec/nimda-worm-recommendations-blended-threats-01-en.pdf .
https://vx-underground.org/archive/Symantec/nimda-worm-recommendations-blended-threats-01-en.pdf .

[58] (2023, Apr.) A challenging response to Nimda, SANS Institute
GIAC Certifications. [Online]. Available: https://www.giac.org/paper/gcih/273/
challenging-response-nimda/102847.

[59] (2023, Mar.) Attack of Slammer worm - a practical case study, SANS Institute
GIAC Certifications. [Online]. Available: https://www.giac.org/paper/gcih/414/
attack-slammer-worm-practical-case-study/103632.

[60] (2023, Mar.) Attack of Slammer worm - a practical study, SANS Institute. [Online].
Available: www.giac.org/paper/gcih/414/attack-slammer-worm-practical-case-study.

[61] (2023, Apr.) The Mechanisms and effects of the Code Red worm, SANS Institute.
[Online]. Available: https://www.sans.org/white-papers/87/.

[62] K. Vichova and M. Hromada, “Power outage in the hospitals,” in Proc. 2019 Int.
Conf. Intell. Medicine Image Process., 2019, pp. 15–20.

[63] Z. Li, A. L. Gonzalez Rios, and Lj. Trajković, “Detecting internet worms, ransomware,
and blackouts using recurrent neural networks,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., Toronto, Canada, Oct. 2020, pp. 2165–2172.

[64] K. Gaur, N. Kumar, A. Handa, and S. K. Shukla, “Static ransomware analysis using
machine learning and deep learning models,” in Proc. Int. Conf. Advances Cyber
Secur., M. Anbar, N. Abdullah, and S. Manickam, Eds., Penang, Malaysia, Dec. 2020,
pp. 450–467.

[65] (2023, Mar.) What is ransomware-as-a-service (raas)? [Online]. Available: https://
www.cloudflare.com/en-ca/learning/security/ransomware/ransomware-as-a-service/.

[66] J. Gómez-Hernández, L. Álvarez González, and P. García-Teodoro, “R-locker: thwart-
ing ransomware action through a honeyfile-based approach,” Comput. Secur., vol. 73,
pp. 389–398, 2018.

[67] S. H. Kok, A. Abdullah, N. Jhanjhi, and M. Supramaniam, “Prevention of crypto-
ransomware using a pre-encryption detection algorithm,” Comput., vol. 8, no. 4, p. 79,
Nov. 2019.

[68] U. Adamu and I. Awan, “Ransomware prediction using supervised learning algo-
rithms,” in Proc. 2019 7th Int. Conf. Future Internet Things Cloud, 2019, pp. 57–63.

[69] C. Beaman, A. Barkworth, T. D. Akande, S. Hakak, and M. K. Khan, “Ransomware:
recent advances, analysis, challenges and future research directions,” Comput. Secur.,
vol. 111, p. 102490, Dec. 2021.

[70] I. Nadir and T. Bakhshi, “Contemporary cybercrime: a taxonomy of ransomware
threats & mitigation techniques,” in Proc. 2018 Int. Conf. Comput., Math. Eng. Tech-
nologies, 2018, pp. 1–7.

[71] F. Cicala and E. Bertino, “Analysis of encryption key generation in modern crypto
ransomware,” IEEE Trans. Dependable Secure Comput., vol. 19, no. 2, pp. 1239–1253,
Mar. 2022.

88

https://www.giac.org/paper/gcih/273/challenging-response-nimda/102847 .
https://www.giac.org/paper/gcih/273/challenging-response-nimda/102847 .
https://www.giac.org/paper/gcih/414/attack-slammer-worm-practical-case-study/103632 .
https://www.giac.org/paper/gcih/414/attack-slammer-worm-practical-case-study/103632 .
www.giac.org/paper/gcih/414/attack-slammer-worm-practical- case-study .
https://www.sans.org/white-papers/87/ .
https://www.cloudflare.com/en-ca/learning/security/ransomware/ransomware-as-a-service/ .
https://www.cloudflare.com/en-ca/learning/security/ransomware/ransomware-as-a-service/ .

[72] P. Bajpai, A. K. Sood, and R. Enbody, “A key-management-based taxonomy for
ransomware,” in Proc. 2018 APWG Symp. Electron. Crime Res., 2018, pp. 1–12.

[73] Monika, P. Zavarsky, and D. Lindskog, “Experimental analysis of ransomware on
windows and android platforms: evolution and characterization,” Procedia Comput.
Sci., vol. 94, pp. 465–472, 2016.

[74] J. Tailor and A. Patel, “A comprehensive survey: ransomware attacks prevention,
monitoring and damage control,” Int. J. Scientific Innov., vol. 4, 06 2017.

[75] (2023, Apr.) CVE-2018-8453 Detail. [Online]. Available: https://nvd.nist.gov/vuln/
detail/CVE-2018-8453.

[76] I. Bello, H. Chiroma, U. A. Abdullahi, A. Y. Gital, F. Jauro, A. Khan, J. O. Okesola,
and S. M. Abdulhamid, “Detecting ransomware attacks using intelligent algorithms:
recent development and next direction from deep learning and big data perspectives,”
J. Ambient Intell. Humanized Comput., vol. 12, no. 9, pp. 8699–8717, Sep 2021.

[77] (2023, Apr.) Stemming the exploitation of ict threats and vul-
nerabilities, United Nations Institute for Disarmament Research
(UNIDIR). [Online]. Available: https://unidir.org/files/publications/pdfs/
stemming-the-exploitation-of-ict-threats-and-vulnerabilities-en-805.pdf.

[78] R. Agrawal, J. W. Stokes, K. Selvaraj, and M. Marinescu, “Attention in recurrent
neural networks for ransomware detection,” in Proc. 2019 IEEE Int. Conf. Acoustics,
Speech Signal Process., 2019, pp. 3222–3226.

[79] (2023, Apr.) EternalBlue: a prominent threat actor of 2017–2018, Virus
Bulletin. [Online]. Available: https://www.virusbulletin.com/uploads/pdf/magazine/
2018/201806-EternalBlue.pdf.

[80] (2023, Mar.) What is EternalBlue and why is the MS17-010 Exploit still relevant?
[Online]. Available: https://bit.ly/3td13iz.

[81] (2023, Apr.) About the SMBv1 retirement. [Online]. Available: https://kb.iu.edu/d/
aumn.

[82] (2023, Mar.) Reverse Engineering of WannaCry Worm
and Anti Exploit Snort Rules, SANS Institute. [On-
line]. Available: https://www.sans.org/reading-room/whitepapers/malicious/
reverse-engineering-wannacry-worm-anti-exploit-snort-rules-38445.

[83] (2023, Apr.) Technical whitepaper tracking the WannaCry ransomware,
Nominet. [Online]. Available: https://satisnet.co.uk/wp-content/uploads/2019/04/
WannaCry-Whitepaper.pdf.

[84] (2023, Mar.) Westrock. [Online]. Available: https://ir.westrock.com.

[85] (2023, Apr.) Packaging Giant WestRock Says Ransomware Attack Im-
pacted OT Systems. [Online]. Available: https://www.securityweek.com/
packaging-giant-westrock-says-ransomware-attack-impacted-ot-systems.

89

https://nvd.nist.gov/vuln/detail/CVE-2018-8453.
https://nvd.nist.gov/vuln/detail/CVE-2018-8453.
https://unidir.org/files/publications/pdfs/stemming-the-exploitation-of-ict-threats-and-vulnerabilities-en-805.pdf .
https://unidir.org/files/publications/pdfs/stemming-the-exploitation-of-ict-threats-and-vulnerabilities-en-805.pdf .
https://www.virusbulletin.com/uploads/pdf/magazine/2018/201806-EternalBlue.pdf .
https://www.virusbulletin.com/uploads/pdf/magazine/2018/201806-EternalBlue.pdf .
https://bit.ly/3td13iz .
https://kb.iu.edu/d/aumn .
https://kb.iu.edu/d/aumn .
https://www.sans.org/reading-room/whitepapers/malicious/reverse-engineering-wannacry-worm-anti-exploit-snort-rules-38445 .
https://www.sans.org/reading-room/whitepapers/malicious/reverse-engineering-wannacry-worm-anti-exploit-snort-rules-38445 .
https://satisnet.co.uk/wp-content/uploads/2019/04/WannaCry-Whitepaper.pdf .
https://satisnet.co.uk/wp-content/uploads/2019/04/WannaCry-Whitepaper.pdf .
https://ir.westrock.com.
https://www.securityweek.com/packaging-giant-westrock-says-ransomware-attack-impacted- ot-systems.
https://www.securityweek.com/packaging-giant-westrock-says-ransomware-attack-impacted- ot-systems.

[86] (2023, Apr.) WestRock Provides Update on Ransomware Incident. [On-
line]. Available: https://ir.westrock.com/press-releases/press-release-details/2021/
WestRock-Provides-Update-on-Ransomware-Incident-8dfde2fca/default.aspx.

[87] (2023, Apr.) Zebra. [Online]. Available: http://www.zebra.org.

[88] (2023, Apr.) Zebra-dump-parser. [Online]. Available: https://github.com/rfc1036/
zebra-dump-parser.

[89] (2023, Apr.) BGP C sharp tool. [Online]. Available: https://github.com/
communication-networks-laboratory/BGP_c_sharp_tool.

[90] Y. Li, H. J. Xing, Q. Hua, X. Z. Wang, P. Batta, S. Haeri, and Lj. Trajković, “Classi-
fication of BGP anomalies using decision trees and fuzzy rough sets,” in Proc. IEEE
Trans. Syst. Man Cybern., San Diego, CA, USA, Oct. 2014, pp. 1331–1336.

[91] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset selection
problem,” in Proc. Int. Conf. Mach. Learn., New Brunswick, NJ, USA, July 1994, pp.
121–129.

[92] M. N. A. Kumar and H. S. Sheshadri, “On the classification of imbalanced datasets,”
Int. J. Comput. Appl., vol. 44, no. 8, pp. 1–7, Apr. 2012.

[93] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA:
The MIT Press, 2016.

[94] M. Espadoto, R. M. Martins, A. Kerren, N. S. T. Hirata, and A. C. Telea, “Toward
a quantitative survey of dimension reduction techniques,” IEEE Trans. Visualization
Comput. Graph., vol. 27, no. 3, pp. 2153–2173, 2021.

[95] P. Cunningham, “Dimension reduction,” in Machine Learning Techniques for Multi-
media: Case Studies on Organization and Retrieval, M. Cord and P. Cunningham,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 91–112.

[96] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge, MA, USA:
The MIT Press, 2012.

[97] A. Zheng, Feature engineering for machine learning : principles and techniques for
data scientists / Alice Zheng and Amanda Casari., 1st ed. O’Reilly, 2018.

[98] (2023, Apr.) Principal components (pca) and exploratory factor analysis (efa) with
spss. [Online]. Available: https://stats.oarc.ucla.edu/spss/seminars/efa-spss/.

[99] H. Steinhaus, “Sur la division des corps matériels en parties,” Bulletin Polish Academy
Sciences, vol. 4, no. 12, pp. 801–804, October 1956.

[100] A. A. Patel, Hands-on unsupervised learning using Python : how to build applied
machine learning solutions from unlabeled data, 1st ed. O’Reilly, 2019.

[101] C. Ding and X. He, “K-means clustering via principal component analysis,” in Proc.
21st Int. Conf. Mach. Learn., 2004, p. 29.

90

https://ir.westrock.com/press-releases/press-release-details/2021/WestRock-Provides-Update-on-Ransomware-Incident-8dfde2fca/default.aspx.
https://ir.westrock.com/press-releases/press-release-details/2021/WestRock-Provides-Update-on-Ransomware-Incident-8dfde2fca/default.aspx.
http://www.zebra.org .
https://github.com/rfc1036/zebra-dump-parser .
https://github.com/rfc1036/zebra-dump-parser .
https://github.com/communication-networks-laboratory/BGP_c_sharp_tool .
https://github.com/communication-networks-laboratory/BGP_c_sharp_tool .
https://stats.oarc.ucla.edu/spss/seminars/efa-spss/.

[102] M. P. Allen, “The problem of multicollinearity,” in Understanding Regression Analysis.
Boston, MA: Springer US, 1997, pp. 176–180.

[103] K. I. Sundus, B. H. Hammo, M. B. Al-Zoubi, and A. Al-Omari, “Solving
the multicollinearity problem to improve the stability of machine learning
algorithms applied to a fully annotated breast cancer dataset,” Informatics
in Medicine Unlocked, vol. 33, p. 101088, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2352914822002246

[104] G. P. Dubey and D. R. K. Bhujade, “Optimal feature selection for machine learning
based intrusion detection system by exploiting attribute dependence,” Mater. Today,
vol. 47, pp. 6325–6331, 2021.

[105] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106,
Mar. 1986.

[106] X.-Z. Wang, L. C. Dong, and J. H. Yan, “Maximum ambiguity based sample selection
in fuzzy decision tree induction,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 8, pp.
1491–1505, Aug. 2012.

[107] (2023, Apr.) A simple explanation of information gain and entropy. [Online].
Available: https://victorzhou.com/blog/information-gain/.

[108] L. Breiman, “Random forests,” Mach. Lear., vol. 45, no. 1, pp. 5–32, Jan. 2001.

[109] P. Geurts, D. Ernst, and L.Wehenkel, “Extremely randomized trees,” Mach. Learn.,
vol. 63, no. 1, pp. 3–42, Apr. 2006.

[110] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding variable impor-
tances in forests of randomized trees,” in Proc. Int. Conf. Neural Inform. Process.
Syst., Lake Tahoe, NV, USA, Dec. 2013, pp. 431–439.

[111] B. E. Baaquie, “Probability distribution functions,” in Mathematical Methods and
Quantum Mathematics for Economics and Finance. Singapore: Springer Singapore,
2020, pp. 217–243.

[112] M. R. Spiegel and L. J. Stephens, Schaum’s outline of statistics. New York, NY:
McGraw-Hill Education., 2018.

[113] (2023, Mar.) Continuous distributions. [Online]. Available: https://www.mathworks.
com/help/stats/continuous-distributions.html.

[114] (2023, Mar.) Gamma distribution - intuition, derivation,
and examples. [Online]. Available: https://towardsdatascience.com/
gamma-distribution-intuition-derivation-and-examples-55f407423840.

[115] M. King, Statistics for Process Control Engineers: a practical approach. New York:
John Wiley & Sons, Incorporated, 2017.

[116] N. T. Thomopoulos, “Exponential,” in Statistical Distributions: Applications and Pa-
rameter Estimates. Cham: Springer International Publishing, 2017, pp. 21–29.

91

https://www.sciencedirect.com/science/article/pii/S2352914822002246
https://www.sciencedirect.com/science/article/pii/S2352914822002246
https://victorzhou.com/blog/information-gain/.
https://www.mathworks.com/help/stats/continuous-distributions.html.
https://www.mathworks.com/help/stats/continuous-distributions.html.
https://towardsdatascience.com/gamma-distribution-intuition-derivation-and-examples-55f407423840.
https://towardsdatascience.com/gamma-distribution-intuition-derivation-and-examples-55f407423840.

[117] A. C. Harvey, “Location/scale models for non-negative variables,” in Dynamic Models
for Volatility and Heavy Tails: With Applications to Financial and Economic Time
Series, ser. Econometric Society Monographs. Cambridge University Press, 2013,
pp. 149–186.

[118] “Heavy-tailed distribution,” in Encyclopedia of Operations Research and Management
Science, S. I. Gass and M. C. Fu, Eds. Boston, MA: Springer US, 2013, pp. 693–694.

[119] M. Ibragimov, R. Ibragimov, and J. Walden, “Introduction,” in Heavy-Tailed Distri-
butions and Robustness in Economics and Finance. Cham: Springer International
Publishing, 2015, pp. 1–9.

[120] L. Rayleigh", “Xii. on the resultant of a large number of vibrations of the same pitch
and of arbitrary phase,” The London, Edinburgh, Dublin Philosophical Magazine J.
Sci., vol. 10, no. 60, pp. 73–78, 1880.

[121] F. Merovci and I. Elbatal, “Weibull Rayleigh distribution: theory and applications,”
Appl. Math. Inf. Sci, vol. 9, no. 5, pp. 1–11, 2015.

[122] S. J. Fletcher, “Univariate distribution theory,” in Data Assimilation for the Geo-
sciences. Elsevier, 2017, pp. 29–124.

[123] I. W. Burr, “Cumulative frequency functions,” Ann. Math. Statist., vol. 13, no. 2, pp.
215–232, 1942.

[124] A. Urbán, A. Groniewsky, M. Malý, V. Józsa, and J. Jedelský, “Application of big
data analysis technique on high-velocity airblast atomization: searching for optimum
probability density function,” Fuel, vol. 273, p. 117792, 2020.

[125] F. Galton, Memories of my life. New York: E.P. Dutton, 1909.

[126] N. T. Thomopoulos, “Lognormal,” in Probability Distributions : With Truncated, Log
and Bivariate Extensions. Cham: Springer International Publishing, 2018, pp. 135–
148.

[127] R. A. Bisland and E. Scheuermann, “A goodness of fit algorithm for empirical data,”
in Proc. Annu. Southeast Regional Conf., Apr 1978, pp. 30–33.

[128] D. L. Byrkett, “Classroom goodness of fit testing using microsoft windows,” in Proc.
23rd Conf. Winter Simul., Phoenix, AZ, USA, Dec. 1991, pp. 882–886.

[129] Y. Dodge, The Concise Encyclopedia of Statistics. New York, NY: Springer Science
& Business Media, 2008.

[130] “Kolmogorov–smirnov test,” in The Concise Encyclopedia of Statistics. New York,
NY: Springer New York, 2008, pp. 283–287.

[131] F. J. Massey, “The Kolmogorov-Smirnov test for goodness of fit,” J. American Sta-
tistical Assoc., vol. 46, no. 253, pp. 68–78, 1951.

[132] (2023, Apr.) Nonparametric statistics and model selection (2015). [Online]. Available:
http://www.mit.edu/~6.s085/notes/lecture5.pdf.

92

http://www.mit.edu/~6.s085/notes/lecture5.pdf .

[133] B. Neal, S. Mittal, A. Baratin, V. Tantia, M. Scicluna, S. Lacoste-Julien, and
I. Mitliagkas, “A modern take on the bias-variance tradeoff in neural networks,” arXiv
preprint arXiv:1810.08591, 2018.

[134] E. Briscoe and J. Feldman, “Conceptual complexity and the bias/variance tradeoff,”
Cognition, vol. 118, no. 1, pp. 2–16, 2011.

[135] M. M. Hossain and M. S. Miah, “Evaluation of different SVM kernels for predict-
ing customer churn,” in Proc. 18th Int. Conf. Comput. Inform. Technol., Dhaka,
Bangladesh, Dec. 2015, pp. 1–4.

[136] D. A. Winkler and T. C. Le, “Performance of deep and shallow neural networks, the
universal approximation theorem, activity cliffs, and qsar,” Molecular Informatics,
vol. 36, no. 1–2, p. 1600118, 2017.

[137] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning,” Mach. Learn., vol. 8, no. 3, pp. 229–256, May 1992.

[138] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with deep recurrent
neural networks,” in Proc. Int. Conf. Acoust., Speech, Signal Process., Vancouver, BC,
Dec. 2013, pp. 6645–6649.

[139] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[140] L. Deng and D. Yu, “Deep learning: methods and applications,” Foundations and
Trends in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014.

[141] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradi-
ent descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157–166, 1994.

[142] M. C. Mozer, “Induction of multiscale temporal structure,” in Proc. Advances Neural
Information Processing Systems, J. Moody, S. Hanson, and R. Lippmann, Eds., vol. 4.
Morgan-Kaufmann, 1992, pp. 275–282.

[143] J. Schmidhuber, “Learning complex, extended sequences using the principle of history
compression,” Neural Computation, vol. 4, no. 2, pp. 234–242, Mar. 1992.

[144] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput.,
vol. 9, no. 8, pp. 1735–1780, Oct. 1997.

[145] A. Graves, “Long short-term memory,” in Supervised Sequence Labelling with Recur-
rent Neural Networks. Berlin, Heidelberg: Springer, 2012, pp. 37–45.

[146] (2022, Apr.) PyTorch. [Online]. Available: https://pytorch.org.

[147] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent with warm restarts
using statistical probability distribution,” in Proc. 5th Int. Conf. Learn. Representa-
tions. Toulon, France: OpenReview.net, Apr. 2017.

[148] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble learning,”
Frontiers Comp. Sci., vol. 14, pp. 241–258, Apr. 2020.

93

https://pytorch.org .

[149] (2023, Apr.) Bagging. [Online]. Available: https://www.ibm.com/cloud/learn/
bagging.

[150] (2023, Apr.) Bagging in Machine Learning: Step to Perform And Its Advantages. [On-
line]. Available: https://www.simplilearn.com/tutorials/machine-learning-tutorial/
bagging-in-machine-learning.

[151] D. P. Mohandoss, Y. Shi, and K. Suo, “Outlier prediction using random forest classi-
fier,” in Proc. 2021 IEEE 11th Annual Computing Communication Workshop Conf.,
NV, USA, 2021, pp. 27–33.

[152] (2023, Apr.) Ensemble methods: bagging, boosting and
stacking. [Online]. Available: https://towardsdatascience.com/
ensemble-methods-bagging-boosting-and-stacking-c9214a10a205.

[153] (2023, Apr.) What is Boosting? [Online]. Available: https://aws.amazon.com/
what-is/boosting/.

[154] J. Friedman, “Greedy function approximation: a gradient boosting machine,” Ann.
Statist., vol. 29, no. 5, pp. 1189–1232, Apr. 2001.

[155] T. Chen and C. Guestrin, “XGBoost: a scalable tree boosting system,” in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, San Francisco, CA, USA,
Aug. 2016, pp. 785–794.

[156] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “CatBoost:
unbiased boosting with categorical features,” in Proc. Int. Conf. Neural Inform. Pro-
cess. Syst., Montreal, Quebec, Canada, Dec. 2018, pp. 6639–6649.

[157] J. Korstanje, Gradient boosting with XGBoost and LightGBM. Berkeley, CA: Apress,
2021, pp. 193–205.

[158] D. Micci-Barreca, “A preprocessing scheme for high-cardinality categorical attributes
in classifcation and prediction problems,” ACM SIGKDD Explorations Newsletter,
vol. 3, no. 1, pp. 27–32, 2001.

[159] (2023, Apr.) Attention mechanism in deep learning, explained. [Online]. Available:
https://bit.ly/3GWI7ug

[160] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. U. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Proc. Advances Neural Inf. Process.
Syst., I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.

[161] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” in Proc. Int. Conf. Learn. Representations, San Diego, CA,
May 2015.

[162] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention–based
models for speech recognition,” Advances Neural Inf. Process. Syst., vol. 28, 2015.

94

https://www.ibm.com/cloud/learn/bagging.
https://www.ibm.com/cloud/learn/bagging.
https://www.simplilearn.com/tutorials/machine-learning-tutorial/bagging-in-machine-learning.
https://www.simplilearn.com/tutorials/machine-learning-tutorial/bagging-in-machine-learning.
https://towardsdatascience.com/ ensemble-methods-bagging-boosting-and-stacking-c9214a10a205.
https://towardsdatascience.com/ ensemble-methods-bagging-boosting-and-stacking-c9214a10a205.
https://aws.amazon.com/what-is/boosting/.
https://aws.amazon.com/what-is/boosting/.
https://bit.ly/3GWI7ug

[163] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Ben-
gio, “Show, attend and tell: neural image caption generation with visual attention,”
in Proc. 32nd Int. Conf. Mach. Learn., vol. 37, Lille, France, July 2015.

[164] (2023, Apr.) A comprehensive guide to attention mechanism in deep learning
for everyone. [Online]. Available: https://www.analyticsvidhya.com/blog/2019/11/
comprehensive-guide-attention-mechanism-deep-learning/.

[165] (2023, Apr.) Random forest classifier. [Online]. Available: https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

[166] Z. Li, A. L. Gonzalez Rios, and Lj. Trajković, “Machine learning for detecting the
westrock ransomware attack using BGP routing records,” IEEE Comm. Magazine,
pp. 1–7, 2022, early access.

[167] (2023, Apr.) Statistical tests — when to use which ? [Online]. Available:
https://towardsdatascience.com/statistical-tests-when-to-use-which-704557554740.

[168] (2023, Apr.) K-S Test. [Online]. Available: https://www.mathworks.com/help/stats/
kstest.html.

[169] (2023, Apr.) Understanding hypothesis tests: significance levels (alpha) and p-values
in statistics. [Online]. Available: https://bit.ly/3AP6UkH.

[170] (2023, Apr.) A simple LSTM-based time-series classifier. [Online]. Available:
kaggle.com/code/purplejester/a-simple-lstm-based-time-series-classifier/notebook

[171] (2023, Apr.) Adding a custom attention layer to a recurrent neu-
ral network in keras. [Online]. Available: https://machinelearningmastery.com/
adding-a-custom-attention-layer-to-recurrent-neural-network-in-keras/.

95

https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/ .
https://www.analyticsvidhya.com/blog/2019/11/comprehensive-guide-attention-mechanism-deep-learning/ .
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://towardsdatascience.com/statistical-tests-when-to-use-which-704557554740 .
https://www.mathworks.com/help/stats/kstest.html .
https://www.mathworks.com/help/stats/kstest.html .
https://bit.ly/3AP6UkH .
kaggle.com/code/purplejester/a-simple-lstm-based-time-series-classifier/notebook
https://machinelearningmastery.com/adding-a-custom-attention-layer-to-recurrent-neural-network-in-keras/ .
https://machinelearningmastery.com/adding-a-custom-attention-layer-to-recurrent-neural-network-in-keras/ .

Appendix A

Principal Component Analysis

Listed is Python code developed for data transformation using PCA and performance eval-
uation of machine learning GBDT algorithms.

Listing A.1: Data transformation using PCA algorithm and performance evaluation of
GBDT classifiers.

1 /label {}
2 #Step 1:
3

4 #load libraries
5

6 import numpy as np
7 from keras import optimizers
8 import matplotlib . pyplot as plt
9 from keras import backend as K

10 from keras.utils import np_utils
11 import tensorflow as tf
12

13 from tensorflow .keras import regularizers
14 from sklearn . model_selection import KFold
15 from scipy.stats import zscore
16 import pdb
17 from sklearn . preprocessing import StandardScaler
18 import pandas as pd
19 import math
20 from sklearn . model_selection import train_test_split
21 from sklearn . preprocessing import MinMaxScaler
22 from sklearn . metrics import mean_squared_error
23 np. random .seed (1)
24

25 file= ’Code_Red_I .csv ’ # change file name as desired
26

27 df_data =pd. read_csv (file , header =None)
28 df_data_org = df_data
29

30 df_data =np. asfarray (df_data)
31 cols_num = df_data .shape [1]
32

33 df_labels = df_data [:, -1]. reshape (-1,1) #it is a column vector
34 df_labels = np.where(df_labels == -1, 0, df_labels)

96

35 print(" ** ")
36 print(df_labels)
37 labels = df_labels [:, -1]
38 print(" *** ")
39

40 df_data = df_data [:, : cols_num -1] #drop the labels from the main dataframe
41 print(’size of the dataframe is:- ’, df_data .shape)
42

43 idx_days =[]
44 anomaly_days =[]
45 temp =24*60
46 dates =[10]
47 dict_data ={}
48

49 # Generates loop for claculating indexes of data points and important days
50 for i in range (9):
51 val = temp*i
52 if i ==0:
53 idx_days . append (val)
54 else:
55 idx_days . append (val -1)
56 dates. append (dates[i -1]+1)
57

58 # creates key value pair between data and the respective dates
59 for i in range (9):
60 date=dates[i]
61 idx_days
62 if i ==0:
63 dict_data [str(date)] = df_data [0 : idx_days [i+1]]
64 elif i>0 and i<8 :
65 print(i, i+1)
66 dict_data [str(date)] = df_data [idx_days [i]+1 : idx_days [i+1]]
67

68 print(" ======================== dict_data :- ================================
")

69 #print(’dict -data: ’, dict_data)
70 print(" ======================== dict_data :- ================================

")
71 print(’val of idxs:- ’,idx_days)
72 print(’val of dates:- ’,dates)
73

74 print(" ======================== df_data :- ================================= "
)

75 print(df_data .shape [1])
76 print(df_data [:, -1])
77 print(df_labels .shape)
78

79 #lets calculate the total num of anomalous points :-
80 total_points = -2880+8640+1
81 split_percnt = np.ceil (5760*0.60)
82

83 split_idx = split_percnt
84 partition_idx = split_idx +2879
85 print(" partition idx: ");
86 print(partition_idx)
87

88

89 # slammer : 3740

97

90 # Nimda: 4500
91 # Code Red: 4040
92 # WannaCrypt : 6300
93 # WestRock : 8960
94

95

96 partition_idx = 4040
97 x_train = df_data [: int(partition_idx) ,: cols_num -1]
98 y_train = df_labels [: int(partition_idx) ,: cols_num -1]
99

100

101 y_train_org = y_train
102

103 print(’x train val is:- ’, x_train [-1 ,0])
104 x_test = df_data [int(partition_idx):, : cols_num -1]
105 y_test = df_labels [int(partition_idx):, : cols_num -1]
106 print(’x test val is:- ’, x_test [0 ,0])
107

108 x_train_o = x_train
109 x_test_o = x_test
110

111 # # standardizing the data
112 scaler_train_S = StandardScaler ()
113 x_train = scaler_train_S . fit_transform (x_train)
114 print(’df -train val1: ’, x_train [0 ,0])
115

116 scaler_test_S = StandardScaler ()
117 x_test = scaler_test_S . fit_transform (x_test)
118 print(’df -train val1: ’, x_test [0 ,0])
119

120 print(x_train .shape)
121 print(x_test .shape)
122

123 print(y_train .shape)
124 print(y_train [-1])
125 print(y_test .shape)
126 print(" === ")
127

128 print(’df -train val1: ’, df_data [0 ,0])
129 x_train_std = x_train
130 x_test_std = x_test
131

132 # reshaping
133 # x_train = np. reshape (x_train , (x_train .shape [0], 1, x_train .shape [1]))
134 # x_test = np. reshape (x_test , (x_test .shape [0], 1, x_test .shape [1]))
135

136 y_train_o = y_train
137 y_test_o = y_test
138

139

140 print(" === ")
141

142 print(" y_train_o : ", y_train_o)
143

144 print(" === ")
145

146

98

147 print("the y_train and test orignal vectors : ", y_train_o .shape , " " ,
y_test_o .shape)

148 y_train = np_utils . to_categorical (y_train , 2)
149 y_test = np_utils . to_categorical (y_test , 2)
150

151 print(y_train)
152

153 print(y_train .shape)
154

155 print(’modified shape: ’, y_train .shape)
156 print(" === ")
157

158 learning_rate = 0.001
159 opt = tf. optimizers .Adam(learning_rate)
160

161 #Step 2:
162

163 from sklearn . datasets import load_digits
164 from sklearn . decomposition import PCA
165 from sklearn . cluster import KMeans
166 import numpy as np
167 import matplotlib . pyplot as plt
168 import xgboost
169 import time
170 from sklearn . metrics import f1_score
171

172 from sklearn . datasets import make_blobs
173 from sklearn . cluster import KMeans
174 from lightgbm import LGBMClassifier
175 from sklearn . metrics import accuracy_score , confusion_matrix , f1_score ,

precision_score , recall_score , roc_curve , roc_auc_score
176 from sklearn . metrics import silhouette_samples , silhouette_score
177

178 sscore =[]
179 inertia_list =[]
180 bce = tf.keras. losses . BinaryCrossentropy (from_logits =True)
181

182 for i in range (10 ,11):
183

184 pca = PCA(i)
185 pca_fit = pca.fit(x_train)
186 print(’The index value is: ’, str(i))
187 print(’check shape of pca fit: ’, pca_fit)
188 pca_transform = pca. transform (x_train)
189 print(’check shape of pca transform : ’, pca_transform .shape)
190

191 df = pca. fit_transform (x_train)
192 df_test = pca. fit_transform (x_test)
193 print(’Index: ’, i, ’ check shape PCA fit and transform : ’, df.shape , "

", df_test .shape)
194 print(df.shape)
195

196

197 time_start = time.time ()
198 # model = xgboost . XGBClassifier (criterion =bce , random_state =0,

learning_rate =0.1 , n_estimators =10) # objective =’ binary : logistic ’,
criterion = ’mse ’; bce = tf.keras. losses . BinaryCrossentropy (from_logits =
True)

99

199 model = LGBMClassifier (learning_rate = 0.1, random_state = 0,
n_estimators = 270)

200

201 clf = model.fit(df , y_train_o)
202 time_end = time.time ()
203

204 # Predict the response for test dataset
205 y_pred = clf. predict (df_test)
206 print(y_pred)
207 print(’org: ’, y_pred)
208

209 print(" Accuracy y_pred : ", y_pred .shape , " ", df_test .shape)
210

211 f= f1_score (y_test_o , y_pred)
212 accuracy = accuracy_score (y_test_o , y_pred)
213 print(’Accuracy ’, accuracy)
214 print(’F-Score: ’, f1_score (y_test_o , y_pred))
215

216 cm = confusion_matrix (y_test_o , y_pred).ravel ()
217 print(’confusion matrix : ’,cm)
218

219 f= f1_score (y_test_o , y_pred)
220 print(’fscore : ’, f)
221 print(’precision : ’,precision_score (y_test_o , y_pred).ravel ())
222 print(’Training time: ’, time_end - time_start)
223 print(’recall : ’, recall_score (y_test_o , y_pred).ravel ())
224

225 print(’roc: ’, roc_curve (y_test_o , y_pred))
226

227 print(’auc: ’,roc_auc_score (y_test_o , y_pred).ravel ())

100

Appendix B

Correlation Coefficient

Listing B.1: Spearman correlation coefficient calculation.
1 close all;
2 clear all;
3 % # slammer : 3740
4 % # Nimda: 4500
5 % # Code Red: 4040
6 % # WannaCrypt : 6300
7 % # WestRock : 8960
8

9 partition = 8960
10 Data = csvread (’ransomware_rrc14_2021_westRock .csv ’); %

ransomware_rrc14_2021_westRock
11

12 [RHO ,PVAL] = corr(Data (1: partition ,5:41) ,’Type ’,’Spearman ’);
13 RHO(RHO == NaN)=0;
14

15 A=RHO;
16 A(A <=0.7) =0;
17 h2 = heatmap (A, ’XLabel ’, ’Feature number ’, ’YLabel ’, ’Feature number ’)

Listing B.2: Spearman correlation coefficient calculation.
1 from numpy. random import rand
2 from numpy. random import seed
3 from scipy.stats import spearmanr
4 import seaborn as sns
5 import matplotlib
6 # seed random number generator
7 seed (1)
8

9 # calculate spearman ’s correlation
10 coef , p = spearmanr (df_data_org)
11

12 df = pd. DataFrame (DF_train)
13 arr_label =[]
14 for i in range (37):
15 arr = ’F’+str(i+1)
16 arr_label . append (arr)
17

101

18 df. columns = arr_label
19

20 corr = df.corr(method = ’spearman ’)
21 matplotlib . rcParams [’figure .dpi ’] = 120
22 matplotlib . rcParams [’figure . figsize ’] = (20 ,18)
23 ax= sns. heatmap (corr , annot = True , linewidths =.3)
24

25 for t in ax.texts:
26 if float(t. get_text ()) >=0.9:
27 t. set_text (t. get_text ()) #if the value is greater than 0.4 then I

set the text
28 else:
29 t. set_text ("")
30

31 plt.show ()

Listing B.3: Correlation coefficient visualization.
1 !pip install biokit
2

3 import matplotlib
4 matplotlib . rcParams [’figure .dpi ’] = 120
5 matplotlib . rcParams [’figure . figsize ’] = (12 ,10)
6

7 df = pd. DataFrame (DF_train)
8 arr_label =[]
9 for i in range (37):

10 arr = ’F’+str(i+1)
11 arr_label . append (arr)
12

13 df. columns = arr_label
14

15 from biokit .viz import corrplot
16 c= corrplot . Corrplot (df)
17 c.plot(method =’text ’, fontsize =6, colorbar =False)#, tl.pos ="n")

102

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Background
	Anomaly Detection
	Border Gateway Protocol
	BGP Messages
	BGP Anomalies

	BGP Data Collections
	Réseaux IP Européens
	Route Views

	Machine Learning for Anomaly Detection
	Research Publications
	Overview of Related Work
	Roadmap

	Description of BGP Datasets
	Viruses and Worms
	Power System Blackouts
	Ransomware Attacks
	WannaCrypt
	WestRock

	Extraction of BGP Features

	Dimension Reduction and Feature Selection
	Unsupervised Machine Learning Approaches
	Dimension Reduction Using Principal Component Analysis
	Data Clustering Using k–Means
	Cluster Refinement Using PCA and k-Means Algorithms

	Feature Selection
	Person Correlation
	Spearman Correlation
	Supervised Machine Learning
	Random Forest
	Extra-Trees

	Feature Analysis
	Probability Distributions of BGP Features
	Goodness of Fit Test

	Machine Learning Approaches for Anomaly Detection
	Support Vector Machine
	Deep Learning Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit

	Learning Rate Scheduling
	Ensemble Learning
	Bagging, Boosting, and Stacking
	Gradient Boosting Decision Trees
	XGBoost
	LightGBM
	CatBoost

	Attention Mechanism
	Performance Metrics
	Cross-Validation

	Performance of Algorithms Used for Dimension Reduction and Feature Selection
	Dimension Reduction Using Principal Component Analysis
	Feature Selection Using Correlation
	Pearson Correlation
	Spearman Correlation

	Feature Selection Using Random Forests
	Feature Selection Using Extra-Trees

	Goodness of Fit Test

	Performance of Classification Models
	Performance Enhancement Using Machine Learning Approaches
	Support Vector Machine
	Long Short Term Memory
	Learning Rate Scheduling
	Attention Mechanism

	GBDT Models
	Principal Component Analysis
	Features Selection
	Pearson Correlation
	Spearman Correlation
	Random Forests
	Extra-Trees

	Conclusion
	Bibliography
	Appendix Principal Component Analysis
	Appendix Correlation Coefficient

