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ABSTRACT 

In this thesis, we present the analysis on power-laws and spectral 

properties of the Internet topology at AS level based on Border Gateway Protocol 

(BGP) routing datasets collected from two repositories (Route Views and RIPE) 

over the period of five years.  

Analysis of collected datasets revealed that the two datasets have similar 

historical trends in the development of the Internet. Furthermore, the power-law 

exponents have not substantially changed over time while spectral analysis 

revealed notable changes in the clustering of AS nodes and their connectivity. 

This finding indicates that power-laws do not capture all properties of the Internet 

graph and are only a measure used to characterize the Internet topology.  

The spectral analysis of both the adjacency and the normalized Laplacian 

matrices of the associated graphs revealed new historical trends in the clustering 

of AS nodes and their connectivity. Clusters of connected nodes were observed 

while examining the elements values of the eigenvectors corresponding to the 

second smallest and the largest eigenvalues. 

Keywords:  Traffic collection; Internet topology; Autonomous System (AS); 
Broader Gateway Protocol (BGP); Power-law; Spectral analysis.   
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1. INTRODUCTION 

1.1 Overview 

The Internet network has grown from a few hundred nodes of Autonomous 

System (AS) to many thousands of AS nodes with millions of users without 

centralized control. Despite the increase in size and complexity, the performance 

of the Internet network is remarkable. The Internet network structure, called the 

Internet topology, has a great impact on the performance of network protocols 

and applications. Thus, understanding the properties of the Internet topology is 

important for the development of new protocols, algorithms, and new network 

infrastructure. These properties are also useful to realistically model the Internet 

topology for evaluation of various protocols and algorithms and for testing 

purposes.   

Various properties of the Internet topology such as power-laws and 

clustering nature of ASes have been identified. These properties of the Internet 

topology have been analyzed by observing the graphs capturing the Internet 

structure at AS level [18], [23], [29], [33], [48], [52]. Thus, analysis of the Internet 

topology graphs relies on mining data and capturing information about 

Autonomous Systems [1]. 

The routing table of Border Gateway Protocol (BGP) routers contains 

reachability information of ASes from which the Internet topology at AS level can 

be inferred. BGP routers use BGP routing protocol, which is an inter-autonomous 
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system routing protocol that exchanges routing reachability information between 

peers. Every BGP router connected to ASes receives reachability information 

from its neighbours and this information consists of the list of ASes between the 

source AS and the destination AS. Such AS information from BGP routing tables 

is used to infer the logical connection between ASes and to infer the Internet 

topology at AS level.  

Route Views and Réseaux IP Européens (RIPE) projects collect the BGP 

routing table and provide the research community an access to their database for 

analysis. Route Views began the collection of BGP routing datasets from 

participating ASes located in North America in November 1997. Meanwhile, RIPE 

started the collection process from participating ASes located mostly in Europe in 

October 1999. Other tools such as traceroute provide the route including 

intermediate routers information over the network between two systems while the 

Looking Glass project provides servers that give public a remote access to view 

routing information of the user network. However, these datasets do not provide 

historical views of the datasets as available from Route Views and RIPE 

datasets. The research community [18], [23], [29], [33], [48], [52] has extensively 

used Route Views and RIPE datasets to observe the Internet topological 

characteristics. We, thus, adopt the datasets from Route Views and RIPE 

projects for the analysis of power-laws and spectral properties of the Internet 

topology. 

The analysis of power-laws and spectral properties of the Internet 

topology has been based on the connectivity matrix of a graph called the 
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adjacency matrix. This matrix has element value 1 in the position ),( ji  if there 

is an edge between node i  and j . Otherwise, the element value is zero. The 

eigenvalues, called spectrum, and eigenvectors of such matrix are related to 

many graph properties such as connected components and the diameter of the 

network. Thus, the spectral analysis is associated with the analysis of the 

eigenvalues and the eigenvectors of the matrices.  

Power-law is a polynomial expressed in the form of 
axy , where y  

and x  are the measures of interest and exponent a  is a constant. The existence 

of various power-laws such as node degree vs. node rank, frequency of node 

degree vs. node degree, number of nodes within a number of hops vs. number of 

hops, and eigenvalue of the adjacency matrix vs. its index were observed in 1999 

[29]. These power-laws were observed while analyzing the adjacency matrix of 

AS level Internet graph derived from Route Views datasets. The subsequent 

revisions regarding the existence of power-laws were also performed [48]. 

However, the datasets from Route Views reveal heavy tailed node degree 

distribution that is close to Weibull distribution (a continuous probability 

distribution). The power-laws are present only in the tail of the distribution. Thus, 

additional datasets are needed to capture the Internet topology in order to 

analyze its properties [23].  

Another method to study the Internet topology is to employ the spectral 

analysis, which provides information about structural properties of graphs such 

as clustering and connectivity of graph nodes. The eigenvalues and the 



 

 4 

associated eigenvectors of a graph have been used to find the clusters and 

connectivity of AS nodes in the Internet topology [22], [34]. The eigenvectors 

corresponding to small eigenvalues tend to capture the local characteristics such 

as connectivity of nodes. Similarly, the eigenvectors corresponding to the large 

eigenvalues capture the global characteristics of the graph such as clusters of 

connected nodes based on geographic regions [34]. The clusters of ASes based 

on the largest eigenvalue are consistent over time and are considered to be a 

robust characteristic to represent the Internet topology [34].  

Based on the power-laws property of the Internet topology, a number of 

topology generator tools such as the Boston University Representative Internet 

Topology Generator (BRITE) [44] were developed. However, a combination of 

spectral properties and power–laws properties may be needed while developing 

the Internet topology generators [52]. 

In this thesis, we present historical trends in the development of the 

Internet topology by analyzing BGP routing datasets collected from two 

repositories (Route Views and RIPE) over a period of five years. We analyze the 

evolution of following power-laws: 1) node degree vs. rank; 2) CCDF of node 

degree vs. node degree; and 3) eigenvalue vs. index. We also observe the 

spectral properties based on both the adjacency matrix and the normalized 

Laplacian matrix in order to find the clustering and connectivity characteristics of 

AS nodes. Finally, we analyze the connectivity and clustering properties of the 

Internet topology by examining element values of the eigenvectors corresponding 

to the second smallest and the largest eigenvalues. 
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1.2 Motivation 

Since the discovery of power-laws in 1999 [29], the Internet topology has 

increased in size and complexity. The number of Autonomous Systems has 

increased approximately ten times over the last ten years [3], as shown in Figure 

1.1. The constant growth of the Internet has made it difficult to develop its 

representative model. However, certain characteristics of the Internet topology 

remain unchanged in spite of its exponential growth. We analyze the Internet 

topology in search of such invariants at AS level, analyze the existence of  

power-laws, and perform spectral analysis based on the adjacency and the 

normalized Laplacian matrices.  

 

Figure 1.1 The cumulative number of assigned AS numbers over time [3]. 

In a simple example of a small world network with 20 nodes [55], we 

observed that the elements of the eigenvector corresponding to the largest 

eigenvalue of the adjacency matrix indicate clusters of connected nodes. Values 
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of these elements divide nodes into clusters depending on the degree of the 

nodes. No such clustering was observed based on the elements of the 

eigenvector corresponding to the second smallest eigenvalue. Section 5.3 

presents detailed description of these observations.  

In search of such clustering properties of ASes in the Internet topology 

over the time, we perform spectral analysis based on both the adjacency matrix 

and the normalized Laplacian matrix. We observe patterns of connected AS 

nodes in the Internet topology based on the adjacency matrix. We also examine 

the elements of the eigenvectors corresponding to the second smallest and the 

largest eigenvalues of both matrices.  

1.3 Findings 

The analysis of Route Views and RIPE datasets shows similar trends in 

the development of the Internet topology. Despite the growth of the Internet and 

increasing number of users, the exponent values of various power-laws such as 

node degree vs. rank, CCDF of node degree vs. node degree, and the 

eigenvalue vs. index have not substantially changed over the period of five years. 

We also observe a new property that the eigenvalues based on the normalized 

Laplacian matrix also exhibit eigenvalue vs. index power-law property similar to 

eigenvalue power-law based on the adjacency matrix. They have, as expected, 

different values for power-law exponents. 

By plotting the elements of the adjacency matrix, we observe various 

patterns of connected AS nodes over the years. While power-laws properties of 
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the Internet topology graphs have not substantially changed over the years, the 

spectral analysis of the adjacency and the normalized Laplacian matrices of the 

associated graphs reveals notable changes and new historical trends in the 

clustering of AS nodes and their connectivity.  

1.4 Organization of thesis 

The organization of the thesis is as follows. The Internet structure and 

routing, BGP routing protocols, Autonomous System, and description of Route 

Views and RIPE datasets are presented in Chapter 2. Chapter 3 presents the 

definition of various power-laws and a short introduction to spectral analysis. 

Related work on the analysis of the Internet topology is also included. Chapter 4 

contains the analysis of power-laws using Route Views and RIPE datasets. 

Chapter 5 describes spectral analysis of the Internet topology based on Route 

Views and RIPE datasets. We conclude with Chapter 6. MATLAB sample code is 

presented in the Appendix. 
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2. INTERNET ROUTING AND DESCRIPTION OF BGP 
DATASETS 

In this Chapter, we introduce the Internet structure, its routing procedures, 

notion of Autonomous System, BGP routing protocol, and give snippets of a 

routing table.  We describe Route Views and RIPE datasets and also provide 

sample of collected data and an example of the Internet topology graph at AS 

level. 

2.1 Internet structure 

The Internet architecture is based on the Transmission Control 

Protocol/Internet Protocol (TCP/IP) suite. TCP/IP provides a reliable transmission 

of data between two end hosts in the Internet. The two interconnected nodes can 

communicate with TCP/IP protocol regardless of their geographical location and 

this very feature enables the Internet architecture to grow to a global scale.  

An individual node accesses the Internet through a local Internet service 

provider (ISP). The local ISPs are connected to a regional network and the 

regional networks in turn are connected to a national network thereby culminating 

into the global network. 

Every host on the Internet has a unique numerical address, called an 

Internet Protocol (IP) address that is used to route packets across the Internet to 

and from that host. When a host communicates with another host in the Internet, 
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each packet from the source host contains the source and destination host IP 

addresses and is sent to the nearest router. The IP addresses of the source and 

destination are stored in the header of every packet that flows across the 

Internet.  

An Internet router typically connects several different networks. For 

example, university network consists of several interconnected routers where 

only few routers are connected to the wide area network (WAN). Each packet 

goes up the hierarchy of the Internet network to reach its destination network 

where local routers deliver packet to the destination address. The router uses a 

routing algorithm to route packet from the source to the destination host.  

The router employs the Interior Gateway Protocols (IGP) to route Internet 

packets within a local area network such as a university network. The two main 

types of IGP protocols are Routing Information protocol (RIP) [10] and Open 

Shortest Path First (OSPF) protocol [11]. RIP uses the distant vector algorithm, 

also called the Bellman-Ford algorithm to calculate the routing paths. OSPF 

protocol uses the Shortest Path First (SPF) algorithm, also called the Dijkstra's 

algorithm. OSPF routers keep the topology map of the network and send updates 

of the routing information to other routers in the network. The convergence time 

of the SPF algorithm is faster than the distant vector algorithm. In addition to the 

RIP and OSPF protocols, there are various proprietary network protocols such as 

Interior Gateway Routing Protocol (IGRP) and Enhanced IGRP developed by 

Cisco Systems. Enhanced IGRP uses the distance vector algorithm and distance 
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information as IGRP. However, the convergence properties and the operating 

efficiency of Enhanced IGRP is better than IGRP.  

The Exterior Gateway Protocol (EGP) such as BGP-4 is used for routing 

packets between two different routing domains. BGP-4 is an inter-autonomous 

system routing protocol used to exchange routing reachability information 

between ASes. Every BGP-4 router that connects ASes receives reachability 

information from its neighbours. It then chooses routes with the shortest path, 

updates its routing table, and announces the path to other neighbouring routers 

according to the routing policy. The network reachability information consists of 

the list of every AS between the source and the destination ASes. Thus, AS 

information from BGP routing tables is used to infer logical connection between 

ASes and to infer the Internet topology at AS level.  

2.2 Autonomous Systems (ASes) 

The Internet is composed of a collection of routing domains called 

Autonomous Systems. The AS is a network or a group of networks with a 

common routing policy. For example, an AS consists of a university network, a 

business enterprise, or a corporation network. The network within an AS uses a 

common IGP to route packets. However, two ASes use BGP to share routing 

information. BGP information at each AS router is kept consistent by receiving 

BGP update messages from BGP routers of other ASes. Each AS is identified by 

a unique number known as Autonomous System Number (ASN) assigned by the 

Internet Assigned Number Authority (IANA).  
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IANA allocates the Internet Protocol addresses from the pool of 

unallocated addresses to the Regional Internet Registries (RIR) according to the 

global policy. An AS consists of a range of IP addresses and the Internet Service 

Providers (ISPs) assign these IP addresses to its users. ISPs obtain IP 

addresses from a Local Internet Registry (LIR), National Internet Registry (NIR), 

or from their appropriate RIR: 

 African Regional Internet Registry (AfriNIC), Africa region 

 Asia Pacific Network Information Centre (APNIC), Asia Pacific region  

 American Registry for Internet Numbers (ARIN), North America region 

 Latin American and Caribbean Internet Address Registry (LACNIC), 

Latin America and Caribbean Islands region  

 Réseaux IP Européens Network Coordination Centre (RIPE NCC), 

Europe, Middle East, and Central Asia region. 

The Internet topology can be analyzed at two different granularities:  

router level and the Autonomous System level, also called the Inter-domain level.  

At Autonomous System level, each AS domain is represented as a node. Links 

between two nodes represent the logical connection between two ASes. Thus, 

the AS graph represents the connections between ASes. Each AS is represented 

by an ASN. The AS numbers range from 0 to 65,535. The existing ASes are 

assigned by the regional IANA registries. IANA designates the remaining AS 

numbers for private use. Certain AS numbers are reserved and do not appear in 

the Internet graph at AS level.  
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The assigned AS numbers are listed in Table 2.1. IANA assigned only 

33,984 AS numbers in 2003 and 49,150 AS numbers in 2008. In 2003, most 

unassigned AS numbers were between 34,000 to 64,000. In 2008, the range of 

unassigned AS numbers was between 49,000 to 64,000. 

Table 2.1  AS numbers assigned by IANA. 

Number/Date 2003-07-31 2008-07-31 

 
Assigned AS  numbers 

0-30979 = 30980 0-30979 = 30980 

31810-33791=1981 30980-48127 =17147 

64512-65534 = 1022 64512-65534 = 1022 

65535 = 1 65535 = 1 

Total number of assigned ASes 33984 49150 

  

2.3 Border gateway protocol (BGP) 

BGP is a robust and scalable routing protocol widely used in TCP/IP 

networks to exchange routing reachability information with other BGP systems. 

BGP maintains routing tables, transmits routing updates, and provides routing 

decisions based on routing metrics such as link bandwidth, network delay, 

number of hops, path cost, and load. BGP uses the Classless Inter-Domain 

Routing (CIDR) in order to reduce the size of the Internet routing table. CIDR 

allows routers to group routes together in order to minimize the number of routing 

information carried by the core routers. 

BGP uses TCP as its transport protocol. That eliminates explicit 

implementation of retransmission, acknowledgment, and sequencing 



 

 13 

mechanisms. Two systems exchange messages to open and to confirm the 

connection through the TCP connection.  BGP routers exchange routing 

information using four types of messages [9]: 

 open  

 updates 

 notification 

 keep-alive. 

Open 

After a TCP connection is established, each BGP peer sends an open 

message to open an initial connection. This is the first message sent between 

peers after the TCP connection is established. BGP sends keep-alive message 

between peers to confirm the open message. The open message has additional 

header that contains protocol version, sender ASN, hold time, BGP identifier, 

authentication code, and authentication data. 

Updates  

The update message is used to transfer and update routing information 

between BGP peers. As the routing table changes, incremental updates are sent 

to peers using update message. The update information allows routers to 

construct a consistent view of the network topology that describes the 

relationships between various ASes. The update message has additional header 

that contains total path attributes length, path attributes, and network layer 

reachability information. 
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Notification  

The notification message is sent to any connected peer in response to 

errors or special conditions. If a connection between the connected routers 

encounters an error, notification message is sent to announce the error and to 

close the active connection between the routers. The header of notification 

message contains error code, error sub-code, and data.  

Keep-alive 

The keep-alive message is used by BGP router to determine whether the 

peers are reachable or not. BGP router sends the keep-alive messages 

periodically between the peers in order to ensure the active connection between 

them. Thus, these messages help avoid active sessions from expiring. The keep-

alive messages contain only BGP message header format: marker, length, and 

type of the message. 

2.3.1 Cisco router data  

Cisco systems implemented customized version of BGP that runs on the 

proprietary operating system used by its routers [8].  The routing table 

information from Cisco routers can be collected in different formats using various 

tools and commands such as show ip bgp command that displays entries in the 

BGP routing table of Cisco routers. Table 2.2 shows snippets of datasets from a 

BGP routing table [2]. The first row shows symbols of status codes that appear in 

the first two character positions of each line of a route and indicates the status of 

the route. The second row shows symbols of origin codes that appear in the last 
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character of each line of a route and indicate BGP origin attribute. The remaining 

rows shown in Table 2.2 contain the following information: 

Table 2.2 Sample data of a BGP routing table. 

Status codes: s suppressed, d damped, h history, * valid, > best, i internal 

Origin codes: i IGP, e EGP, ? incomplete 

Network Next hop Metric LocPrf Weight Path 

4.25.52.128/26  203.62.252.21  0 78 
1221 16779 1 

189 ? 

* 203.62.252.21   2 
1221 16779 1 

189 ? 

* 198.32.162.18 51804 0 8 
4513 1755 1 

189 ? 

* > 4.0.0.2 18740  0 9 1 189 ? 

 

The network column contains BGP prefix for a route. This column includes 

prefix length or mask unless the network has a pre-CIDR length of 0, 8, 16, or 24 

bits corresponding to a default route (0 bits) or a class A, B, or C.  The blank field 

indicates another route for the same prefix that appeared last.  

The next hop column contains the address to which traffic for the prefix 

will be forwarded. It shows BGP next hop attribute. The address 0.0.0.0 indicates 

that the next hop is directly connected.  

The metric column contains a non-transitive metric value or cost. The 

lowest metric value is preferred while selecting a route. It has an upper bound of 

12
32

 .  
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The LocPrf column contains a local administrative preference attribute of 

BGP. A higher value is preferred while selecting a route. 

The weight column contains the local value that is not exchanged between 

BGP peers. It shows an administrative preference particular to Cisco routers. The 

highest value is preferred while selecting a route.  

The path column contains BGP AS path attribute. It shows the 

Autonomous Systems through which a route has been exchanged before it was 

received by the router. If the field is empty, the route was generated by the local 

Autonomous System. When considered in the BGP route selection process, path 

having a few numbers of ASNs is preferred.  

The BGP routers share routing information with each other during 

withdrawal or announcement of a route. The syntax of routing information for 

withdrawn route is |BGP protocol| unix time in second| Withdraw or Announce| 

Peer IP| Peer AS| Prefix|. Example of routing table data for such withdrawn route 

is |BGP4MP | 1052452930| W| 198.58.5.254| 3727| 194.127.245.0/24|. 

 The syntax of routing information for route announcement is |BGP 

protocol| unix time in seconds| Withdraw or Announce| Peer IP| Peer AS| Prefix| 

AS_PATH| Origin| Next_Hop| Local_Pref| MED| Community| Atomic AGG| 

AGGREGATOR|. Example of routing table data for such route announcement is 

|TABLE_DUMP| 1050122432| B| 213.140.32.184| 12956| 0.0.0.0/0| 12956| IGP| 

213.140.32.184| 0| 0| | NAG| |. 
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2.3.2 Zebra server data  

The Zebra software manages the TCP/IP based routing protocols such as 

BGP4 [8]. The server that uses the Zebra routing software is called Zebra server. 

This server has built-in mechanism to collect BGP routing table datasets by using 

the dump bgp routes-mrt command. It dumps complete BGP routing data stream 

of each peer and various state information in Multi-threaded Routing Toolkits 

(MRT) format. This format is used to export routing protocol messages, state 

changes, and routing information base contents. The route_btoa tool is used to 

read MRT data and to extract it in ASCII format. There are two forms of data 

representation: human-readable and machine-readable. The human-readable 

form displays a paragraph for each MRT record. The machine-readable form 

presents the same data separated by "|" and occupies a single line.  We use 

machine-readable format to extract routing information.  

The syntax of routing information to withdraw routes is |BGP protocol| unix 

time in seconds| Withdraw or Announce| Peer IP| Peer AS| Prefix|. Example of 

routing table data for such withdrawn route is |BGP4MP| 1052452930| W| 

198.58.5.254| 3727| 194.127.245.0/|. 

The syntax of routing information to announce routes is |BGP protocol| 

unix time in seconds| Withdraw or Announce| Peer IP| Peer AS| Prefix| 

AS_PATH| Origin| Next_Hop| Local_Pref| MED| Community| Atomic AGG| 

AGGREGATOR|. Example of routing table data for such announced route is 

|BGP4MP| 1052452919| A| 198.58.5.254| 3727| 195.28.224.0/19| 3727 2914 
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6730 8640| IGP| 198.58.5.254| 0| 0| 2914:420 2914:2000 2914:3000 3727:380| 

AG| 195.141.213.58|. 

2.4 Description of Route Views and RIPE datasets 

Route Views project collects BGP routing tables from multiple 

geographically distributed BGP Cisco routers and Zebra servers every two hours. 

Two Cisco routers and two Zebra servers are located at University of Oregon, 

USA. The remaining five Zebra servers are located at Equinix-USA, ISC-USA, 

KIXP-Kenya, LINX-Great Britain, and DIXIE-Japan [2]. Most participating ASes in 

this project are located in North America. 

The Routing Information Service (RIS) is a Réseaux IP Européens 

Network Coordination Centre (RIPE NCC) [12] project that collects and stores 

the Internet routing data using Remote Route Collectors (RRCs) at various 

Internet Exchanges. An RRC is a daemon running to collect default-free BGP 

routing information. These RRCs are peered with local operators to collect 

routing datasets. Several RRCs have been deployed in Europe, North America, 

and Asia. However, most of the participating ASes are located in Europe. The 

datasets are collected from seventeen different locations: RIPE NCC-

Amsterdam, LINX-London, SFINX-Paris, AMS-IX-Amsterdam, CIXP-Geneva, 

VIX-Vienna, Otemachi-Japan, Stockholm-Sweden, San Jose-USA, Zurich-

Switzerland, Milan-Italy, New York-USA, Frankfurt-Germany, Moscow-Russia, 

Palo Alto-USA, Sao Paulo-Brazil, and Miami-USA. The RRCs in each location 

collect entire routing tables. The collected routing data are then transferred every 
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eight hours through an incremental file transfer utility called rsync to a central 

storage area at the RIPE center in Amsterdam. 

The routing datasets collected from Route Views and RIPE projects 

contain BGP routing information from the participating ASes located in North 

America and in Europe. In contrast to the centralized way of collecting routing 

data in Route Views projects, RIPE applies a distributed approach to the data 

collection. The regional growth of ASes is larger and more dynamic in Europe 

than in North America [28]. Route Views and RIPE projects collect datasets from 

Border Gateway Protocols (BGP) routing tables and have been extensively used 

by the research community [18], [23], [29], [33], [48], [52]. Route Views began the 

routing data collection process in November 1997 while RIPE is active since 

October 1999. Other sources of routing data such as traceroute and Looking 

Glass servers [6] do not provide such historical information. Traceroute provides 

the route including intermediate routers information over the network between 

two systems. Looking Glass project [6], on the other hand, provides servers that 

give public remote access to view routing information of the user network. These 

servers are run by ISPs. Thus, we analyze various graph properties of the 

Internet topology based on the datasets collected from Route Views and RIPE 

projects.  

In this thesis, we evaluate and compare the Internet graph properties from 

Route Views and RIPE datasets over the period of five years: 2003-2008. We 

analyze the datasets collected at 00:00 am on July 31, 2003 and at 00:000 am 

on July 31, 2008. Datasets from two different locations from Route Views and 
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datasets from ten different locations from RIPE are selected for 2003. Datasets 

from six different locations from Route Views and datasets from ten different 

locations from RIPE are selected for 2008. The number of ASes observed in the 

analyzed datasets from Route Views and RIPE projects are shown in  Table 2.3. 

 Table 2.3 Number of ASes observed in Route Views and RIPE datasets. 

Date 2003-07-31 00:00 2008-07-31 00:00 

Route Views 15,826 29,166 

RIPE 15,777 29,197 

 

2.4.1 Sample datasets 

Samples of datasets from Route Views and RIPE projects are: 

Sample data from Route Views project:  

 TABLE_DUMP| 1050122432| B| 204.42.253.253| 267| 3.0.0.0/8| 267 

2914 174 701| IGP| 204.42.253.253| 0| 0| 267:2914 2914:420 

2914:2000 2914:3000| NAG| | 

 TABLE_DUMP| 1050122432| B| 213.140.32.184| 12956| 0.0.0.0/0| 

12956| IGP| 213.140.32.184| 0| 0| | NAG| |. 

Sample data from RIPE project: 

 TABLE_DUMP| 1041811200| B| 212.20.151.234| 13129| 3.0.0.0/8| 

13129 6461 7018 80| IGP| 212.20.151.234| 0| 0| 6461:5997 

13129:3010| NAG| | 
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 TABLE_DUMP| 1041811200| B| 193.148.15.85| 3257| 3.0.0.0/8| 3257 

1239 7018 80| IGP| 193.148.15.85| 0| 99| 3257:3000 3257:3030 

3257:5044| NAG| |. 

2.4.2 BGP datasets and Internet topology 

The routing table datasets of a BGP router are used to infer the Internet 

topology graph at AS level. For example, the AS path 267-2914-174-701 of the 

first sample data of Route Views project in Section 2.4.1 can be located in the 

sample Internet graph shown in Figure 2.1.  

 

Figure 2.1. Example of the Internet graph derived from BGP routing table datasets.  
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3. POWER-LAWS AND SPECTRUM OF THE INTERNET 
GRAPHS 

Power-laws and spectral properties of the Internet topology have been 

analyzed based on the adjacency matrix and the normalized Laplacian matrix of 

graphs that capture the Internet topology at AS level [34][17], [48], [52]. In this 

Chapter, we define the Internet topology at AS level in terms of matrices. We 

describe various power-laws associated with the Internet topology graph and 

summarize related work.  We also define eigenvalues and eigenvectors of a 

matrix and explain their significance in spectral analysis of the Internet topology. 

Furthermore, we present work related to the analysis of the Internet graph using 

spectral analysis. 

3.1 Internet topology and graph theory  

An Internet AS graph ),( EVG  is an undirected, unweighted graph without 

self-loops and multiple edges from one node to another with V set of vertex and  

E  set of edge. The graph ),( EVG  represents a set of ASes connected via 

logical links. The number of edges incident to a node in an undirected graph is 

called the degree of a node. Two nodes i  and j  are called adjacent if they are 

connected by a link. The Internet network at AS level can be represented by the 

adjacency matrix )(GA  as: 






.0

1
),(

otherwise

adjacentarejandiif
jiA  

http://mathworld.wolfram.com/UndirectedGraph.html
http://mathworld.wolfram.com/GraphLoop.html
http://mathworld.wolfram.com/MultipleEdge.html
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A diagonal matrix )(GD  associated with )(GA , with row-sums of )(GA  as 

the diagonal elements of )(GD , indicates the degree of each node. The 

Laplacian matrix of a graph ),( EVG  is defined as: 

).()()( GAGDGL   

The eigenvalues of )(GL are closely related to certain graph invariants. For 

example, the spectrum of )(GL  is the collection of all eigenvalues and contains 0 

for every connected graph component. The normalized Laplacian matrix )(GNL  

is defined as: 



















,0

1

01

),(

otherwise

adjacentarejandiif
dd

dandjiif

jiNL
ji

i

 

where 
i

d  and j
d  are the degrees of nodes i  and j , respectively. The 

eigenvalues of the normalized Laplacian matrix lie in the range between 0 and 2. 

This property enables the comparison of the distribution of the eigenvalues of two 

distinct graphs if there is a large difference in their size. Various power-laws may 

be associated with the graph properties [29], [48].  

3.2 Power-laws and the Internet topology 

Various power-laws properties are derived using linear regression line. In 

this Section, we define power-laws and linear regression based on the least 

http://mathworld.wolfram.com/Graph.html
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square approximation method and summarize work related to power-laws 

properties of the Internet topology.  

3.2.1 Power-laws 

Power-laws have been extensively used to describe and model the 

Internet at AS level. Power-laws are expressed in the form of 
a

xy  , where 

y  and x  are the measures of interest and exponent a  is a constant.  The 

variables y  and x  has linear relationship when plotted in log-log scale: 

 

.

loglog

log10loglog

10

xaby

xaby

xy

xy

ab

ab









 

The presence of power-laws in node degree vs. node rank, frequency of 

node degree vs. node degree, complementary cumulative distribution function 

(CCDF) of node degree vs. node degree, number of nodes within a number of 

hops vs. number of hops, and eigenvalue of the adjacency matrix vs. its index 

were observed in [29] and [48]. 

The node degree power-law is observed while examining the degree of a 

node. The number of edges incident to a node is called a node degree. When the 

nodes are sorted in decreasing order of node degree and plotted vs. the rank 

according to its index in the sequence, the power-law is observed as 
R
vrvd  , 
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where vd  is the degree of a node v , vr  is the rank of node v , and R  is the 

exponent of the power-law. 

The frequency vs. degree power-law implies 
Od

d
f  , where df  is 

the frequency of degree d  and the constant O  is the power-law exponent. The 

frequency df  
of a degree d  is the number of nodes with degree d . 

The CCDF of node degree vs. node degree power-law implies  

DddD  , where dD  is the CCDF of a node degree d  and D  is the CCDF 

power-law exponent. The CCDF is defined as )()( xXPxFc  , where 

)( xXP   is the probability that the random variable X  has a value greater 

than x . Thus, CCDF of a node degree d  indicates the percentage of nodes that 

have degree greater than d  and shows the distribution of the degree of a node. 

Similarly, the eigenvalue vs. its index power-law implies 


 i
i
 , where 

i  is the eigenvalue of the matrix associated with the increasing sequence of 

numbers i , the constant   is the power-law exponent associated with the 

eigenvalue of the matrix.  

3.2.2 Linear regression  

Linear regression approach is used to model the power-law relationship 

between two variables. The exponent of a power-law is calculated by determining 
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the slope of the estimated linear regression line. The technique is based on the 

least square approximation.  

For each set of data points, we derive a straight line axby   through 

the available set of points x and y such that sum of squares of distances from set 

of data points to the straight line axby   is minimum, where  

 

 






22

2

)( xxn

yxxxy
b

    and 

 

.
)( 22

 

 






xxn

yxxyn
a  

The correlation coefficient, also called the cross-correlation coefficient, 

provides the quality measure of a least square fitting to the original data. For 

linear least squares fitting, the coefficient a  in axby   is given by 

 .
)( 22

 
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The coefficient 
'

a  in yabx ''   is given by   

.
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The correlation coefficient denoted by 
'

aar   is expressed as  
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http://mathworld.wolfram.com/LeastSquaresFitting.html
http://mathworld.wolfram.com/LeastSquaresFitting.html
http://mathworld.wolfram.com/Coefficient.html
http://mathworld.wolfram.com/Coefficient.html
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 The correlation coefficient is calculated between linear regression line and 

plotted data. The correlation coefficients for linear fits to data having different 

data distributions are shown in Figure 3.1. The correlation coefficient value of 1.0 

indicates that the data points are exactly on a line. Thus, a high correlation 

coefficient indicates the existence of power-law. 

 

Figure 3.1 Correlation coefficients for linear fits to data having different data 
distributions. 

3.2.3 Power-laws and the Internet topology 

Analyzing the Internet topology using randomly generated graphs, where 

routers are represented by vertices and transmission lines by edges, has been 

widely replaced by exploring properties of the Internet topology at AS-level [33]. 

Datasets collected from BGP routing tables of Route Views project [2] indicate 
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that the Internet topology is characterized by the presence of various power-laws. 

Four different power-laws were observed when considering a node degree vs. 

node rank, frequency of node degree vs. node degree, a number of nodes within 

a number of hops vs. number of hops, and eigenvalue of the adjacency matrix 

vs. its index [29], [48]. The existence of these power-laws in the Internet topology 

indicates highly skewed distributions of various topology properties measured by 

power-law exponents [29], [48]. Some of these conclusions were subsequently 

revised by considering a more complete AS-level representation of the Internet 

topology [18], [23].  

Q. Chen et al., [23] reported that BGP datasets collected by Route Views 

project from limited vantage points represent a partial view of the Internet 

topology. Thus, the degree distribution power-laws observed in [29] may not exist 

in the Internet topology. These power-laws are only consistent with graphs of 

ASes from Route Views datasets [2] and are inconsistent when analyzing 

extended graphs that have a more complete view of AS connections. The 

comparison of the connectivity of ASes derived from BGP routing tables of forty-

one individual ASes and the information from the Looking Glass project [6] to the 

connectivity of ASes derived from Route View BGP datasets showed that the AS 

paths derived from BGP routing table do not completely capture the Internet 

topology. Furthermore, datasets from Route Views project reveal heavy tailed 

node degree distribution that is close to Weibull distribution. Thus, only the tail 

exhibits power-laws [23]. Weibull distribution is a continuous probability 

distribution with the probability density function:  
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where 0k  is the shape parameter and 0  is the scale parameter.  

P. Mahadevan et al., [42] compared the power-law exponents calculated 

using three different datasets, traceroute data from the Skitter project of 

Cooperative Association for Internet Data Analysis (CAIDA) [4], Route Views 

datasets [2], and RIPE WHOIS database [12]. The Skitter project uses a tool 

called skitter to collect the BGP routing table. RIPE WHOIS database provides 

routing datasets of RIPE Internet routing registries (IRR). The IRR provide 

routing information in order to validate BGP messages and to map the AS 

number at origin to a list of networks. This routing information is stored in WHOIS 

database of individual registries. The routing data from RIPE WHOIS database is 

obtained using whois command (whois -h whois.ripe.net AS <ASN>). The 

comparison of the power-law exponents revealed that Route Views and Skitter 

project datasets obey power-laws characteristics. However, RIPE datasets do 

not follow power-laws due to excessive number of nodes with minimum node 

degree [42].  

In order to find the relationship between ASes, D. Magoni et al., [40] 

analyzed various metrics such as connectivity and degree distribution of ASes in 

the Internet topology graph emanated from BGP routing datasets collected by 

Route Views project. The result showed that in addition to power-laws reported in 

[29], the Internet topology exhibits four different power–laws associated with the 

shortest path between the ASes [40]. The shortest path between any two nodes 
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is the minimum number of nodes that must be traversed from one node to 

another. The comparison of the power-law exponents for the paths having 

various length between a pair of ASes confirmed their existence in the shortest 

path between a pair of ASes. However, the observed variations in power-law 

exponents suggest that the power-law exponents might not be consistent over 

time [40]. 

Rationale of power-laws 

In order to analyze the cause of power-laws in the Internet topology, A. 

Medina et al., [43] considered four different factors: 1) preferential connectivity of 

a new node to existing nodes, 2) incremental growth of the network, 3) 

distribution of nodes in space, and 4) locality of edge connection. Preferential 

connectivity indicates that a new node is more likely to be connected to existing 

nodes that are highly connected than to nodes that are less connected. 

Incremental growth implies that networks are formed by continual addition of new 

nodes. Hence, the size of the network gradually increases. Distribution of nodes 

in space indicates that nodes are distributed in space according to skewed 

(heavy-tailed) distribution. Locality of edge connection implies the tendency of a 

new node to connect to the existing nodes that are closer in distance. A. Medina 

et al., [43] generated topologies having nodes between 500 and 15,000 with and 

without incremental growth and preferential connectivity using BRITE [44], 

analyzed these synthetically generated topologies, and observed the presence of 

power-laws. The result showed that some of the generated topologies do not 

obey node degree vs. rank and frequency of node degree vs. node degree 
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power-laws. However, eigenvalue power-law existed in all topologies but with 

different value of the power-law exponent. The simulated topologies using 

preferential connectivity and incremental growth have similar power-laws as the 

real Internet topologies. Thus, the Internet topology having power-laws exhibits 

the properties of preferential connectivity and incremental growth and the power-

law exponents are the metrics used to verify the simulated Internet topology [43]. 

Power-laws and topology generators 

The Internet topology is considered to have a scale free network structure. 

In order to find the best metrics that generates a large scale graph structure, H. 

Tangmunarunkit et al., [51] generated the Internet topology graph using various 

topology metrics such as neighbourhood size (expansion), the size of a cut-set 

for a balanced bi-partition graph (resilience), and the minimum communication 

cost spanning tree (distortion). They reported that the network generator based 

on the degree distribution more accurately captured the large scale structure of 

the measured topology. Furthermore, the degree-based generator produces a 

form of hierarchical topology that closely resembles the hierarchical nature of the 

Internet topology [51]. Considering the Internet topology as a hierarchical 

structure, T. Bu et al., [15] introduced an algorithm based on the decomposition 

technique to understand how well the power-law graphs capture the 

interconnection structure such as hierarchical structure of the Internet graph. The 

Internet AS graph and the graphs produced by topology generators based on 

power-laws distribution show similar hierarchical structure [15]. 
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P. Mahadevan et al., [42] analyzed the synthetic topology generated using 

Power-Laws Random Graphs (PLRG) [13] and compared it with traceroute data 

from the Skitter project of Cooperative Association for Internet Data Analysis 

(CAIDA) [4], Route Views datasets [2], and RIPE WHOIS database [12]. The 

PLRG generator uses power-law exponents as an input to create a topology. For 

a given number of nodes and power-law exponent, PLRG assigns degrees to 

nodes based on the power-law distribution. It then randomly matches degrees 

among all nodes generating a topology. The analysis indicated that PLRG model 

failed to recreate RIPE WHOIS graph since its node distribution does not follow 

power-laws. However, the comparison of the graphs emanated from Skitter and 

Route Views datasets to those emanated from PLRG topology generator 

revealed that the generated topologies do not accurately capture the important 

properties such as joint degree distribution and clustering properties of Skitter 

and Route Views graphs [42]. 

Various characteristics of the Internet topology indicate complex behaviour 

of the Internet. Based on the observed properties of the Internet, different 

topology generators such as Waxman, PLRG, Barabási-Albert (BA) model, and 

the Internet Topology Generator (Inet) were developed. In Waxman topology 

model, the nodes of the network are uniformly distributed in the plane and edges 

are added according to probabilities that depend on the distances between 

nodes. BA model implements the power-laws properties based on the 

preferential attachment of nodes in order to generate the Internet topology. The 

Inet model calculates the frequency-degree and rank-degree distributions. It then 
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assigns degrees to each node according to these distributions forming a 

topology. The comparison of the topology generators reveals that no single 

topology generator can capture all the characteristics observed in the present 

state of the Internet [15]. 

3.3 Spectral analysis of the Internet topology 

In this Section, we define eigenvalues and eigenvectors of a matrix and 

their role in spectral analysis of the Internet topology. We also present work 

related to the analysis of clustering and connectivity properties of AS nodes in 

the Internet topology based on spectral analysis. 

3.3.1 Eigenvalues and eigenvectors 

An AS graph constructed from the BGP routing tables is undirected and 

does not contain self-loops. Thus, the adjacency matrix of such graph is 

symmetric and has a complete set of real eigenvalues and an orthogonal 

eigenvector basis. The definition of eigenvalue follows: 

Let x  be an n-dimensional real vector such that x  is a function of the 

vertices of graph G , then x  is called the eigenvector of A  with eigenvalue   if 

and only if it satisfies the eigenvalue equation xAx  . The eigenvalue   of 

A  corresponding to the eigenvector x  is a scalar quantity. 

Every nn  real symmetric matrix A has spectrum on n orthogonal 

eigenvectors neeee ,,,, 321   with real eigenvalues n  ,,321  . 

The set of eigenvalues of the adjacency matrix is known as the spectrum of a 

http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Eigenvalue
http://en.wikipedia.org/wiki/Eigenvector
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graph. The analysis of spectrum can be performed for any matrix with real 

spectrum. The eigenvalues of a matrix are closely related to certain graph 

invariants. Furthermore, the eigenvalues of a network graph are associated with 

topological characteristics of the network such as number of edges, spanning 

trees, connected components, diameter of the network, presence of cohesive 

clusters, long paths and bottlenecks, and randomness of the network. 

The second smallest eigenvalue 

The second smallest eigenvalue of the Laplacian matrix of a graph G  is 

called the algebraic connectivity of the graph [32]. This eigenvalue is greater than 

0 iff G  is a connected graph. This indicates that the number of times 0 appears 

as an eigenvalue of the Laplacian matrix is equal to the number of connected 

components in a graph. The algebraic connectivity also provides information 

about an average distance of graph nodes.  

The algebraic connectivity is related with the usual vertex and edge 

connectivity of a graph [31], [32]. If a graph G  gets disconnected by removing 

minimum k  vertices together with the adjacent edges, then the graph is said to 

have k  vertex connectivity.  Similarly, if a graph G  gets disconnected by 

removing minimum k  edges, then the graph is said to have k  edge connectivity. 

The relationships between the algebraic connectivity and the vertex and edge 

connectivity are described in [31], [32]. For example, )()()( GeGvGa  , 

where )(Ga
 
is the algebraic connectivity, )(Gv

 
is the vertex connectivity and 

)(Ge
 
is the edge connectivity of a non-complete graph G . 

http://en.wikipedia.org/wiki/Connected_graph
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The magnitude of the second smallest eigenvalue indicates the 

robustness of a network. Its value depends on the number of vertices and the 

diameter of a graph. The diameter of a graph is the shortest path between two 

widest vertices and it gives the maximum number of vertices that need to be 

passed in order to reach from one vertex to another vertex of a graph. For a 

connected graph with n  vertices and D  diameter, the algebraic connectivity lies 

between 1 and nD/1 . For a large graph, the algebraic connectivity is small and 

is closer to nD/1 . Thus, the algebraic connectivity depends on the number of 

vertices and in the way vertices are connected. In general, the algebraic 

connectivity decreases with the number of vertices, and increases with the 

average degree in case of random graphs. 

The large eigenvalues 

The spectrum of the adjacency matrix has been extensively used to find 

the cluster of ASes having similar characteristics such as connectivity pattern 

[34]. The eigenvectors corresponding to the large eigenvalues contain 

information relevant to clustering. The large eigenvalues and the corresponding 

eigenvectors of the adjacency matrix provide information suggestive to the 

intracluster traffic patterns of the Internet topology [34]. 

3.3.2 Clusters and connectivity in the Internet topology 

The spectrum of the Internet topology graph is considered as the metric 

for clustering and connectivity analysis. In addition to power-laws properties, 

properties such as connectivity and clustering properties of the Internet graph 

http://en.wikipedia.org/wiki/Diameter
http://en.wikipedia.org/wiki/Degree_%28graph_theory%29
http://en.wikipedia.org/wiki/Random_graph
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were also studied [34], [52]. The eigenvectors corresponding to the small 

eigenvalues tend to capture the local characteristics that can be determined from 

the data. Similarly, the eigenvectors corresponding to the large eigenvalues tend 

to capture the global characteristics of the graph and its semantics such as 

clusters of connected nodes.  

C. Gkantsidis et al., [34] used a spectral filtering method in order to find 

the clusters of connected nodes in the Internet topology based on the elements 

values of the eigenvector corresponding to the large eigenvalues of the 

adjacency matrix. They analyzed graphs derived from various BGP routing table 

datasets and graphs generated from four different topology generator models: 

Inet-2.1, Waxman with preferential connectivity, improved Generalized Linear 

Preference (GLP) heuristics, and PLRG topology generators [34]. The GLP 

model generates the Internet topology using power-laws such that the probability 

that node increases its degree is a function of the degree. The results show that 

synthetically generated topology graphs lack view of the entire Internet topology 

because the topology generators address only AS or router-level topologies. The 

analysis of BGP datasets reveals that the clustering varies in the core and at the 

edges of the network. It also varies at different geographic locations. However, 

the clustering based on the largest eigenvalue is consistent over time and can be 

used as a robust characteristic to represent the Internet topology. Thus, good 

clustering methods are needed in order to identify the clustering properties of the 

Internet topology [34]. 
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The eigenvalue spectrum of real world graphs provides information about 

their structural properties. I. Farkas et al., [30] studied the properties of real world 

graphs such as the Internet in terms of spectral density by analyzing the 

spectrum of graphs. They developed an algorithm to analyze the nature of 

spectral density of real world graphs represented as random graph, small world, 

and scale free models. Plots of the complete spectrum of the graphs show that 

the spectrum of scale free graph has a triangle-like spectral density in the centre 

with power-law decay in the tail, while the spectrum of small world graphs shows 

a complex pattern of spectral density with several random sharp peaks [30]. 

D. Vukadinovic et al., [52] used the AS topology emanated from BGP 

routing table collected by NLANR project and from synthetic topology generated 

using Inet-2.1 topology generator in order to analyze the spectrum of the 

normalized Laplacian matrix. The normalized Laplacian spectrums of synthetic 

graphs show variation and significant difference, whereas the spectrums of AS 

graphs from BGP routing table show invariance over time despite exponential 

growth of the Internet. Thus, the normalized Laplacian spectrum of a graph 

provides concise fingerprint of the real Internet topology [52]. Furthermore, 

analysis of sub-graphs derived from synthetic graphs shows the presence of new 

power-laws within the connected components at the core of the network 

topology. Thus, this combination of structural properties and power–laws is 

needed when developing topology generators [52]. 
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4. POWER-LAWS AND THE INTERNET TOPOLOGY 

In this Chapter, we observe four different power-laws: node degree vs. 

rank, CCDF of node degree vs. node degree, eigenvalue of the adjacency matrix 

vs. index, and eigenvalue of the normalized Laplacian matrix vs. index over the 

period of five years using Route Views and RIPE 2003 and 2008 datasets. We 

use linear regression based on the least square approximation method to model 

the relationship between y-axis and x-axis parameters. Furthermore, we 

calculate the confidence intervals of power-law exponents on randomly selected 

data from Route Views and RIPE 2003 and 2008 datasets. 

4.1 Node degree 

In this Section, we observe the node degree vs. rank power-law. The 

graph nodes v  are sorted in descending order based on their degrees vd  and 

are indexed with a sequence of numbers indicating their ranks vr . The ),( vdvr  

pairs are plotted on a log-log scale. Node degrees in decreasing order vs. rank 

are shown in Figure 4.1 and Figure 4.2. The points represent measured data and 

the solid line represents the least square approximation. The plots imply 

R
vrvd  , where v  is the node number and R  is the node degree power-law 

exponent. The node degree power-law exponent is the slope of the degrees of 

nodes plotted vs. the rank of the nodes on a log-log scale.  
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Figure 4.1 Route Views 2003 and 2008 datasets: The node degree power-law exponent R  
for Route Views 2003 (top) is –0.7325 with correlation coefficient –0.9661. The 

node degree power-law exponent R  for Route Views 2008 (bottom) is –0.7712 

with correlation coefficient –0.9721. 
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Figure 4.2 RIPE 2003 and 2008 datasets: The node degree power-law exponent R  for 
RIPE 2003 (top) is –0.7636 with correlation coefficient –0.9687. The node 

degree power-law exponent R  for RIPE 2008 (bottom) is –0.8439 with 
correlation coefficient –0.9744. 
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The node degree power-law exponents R are –0.7325 and –0.7712 for 

Route Views 2003 and 2008, respectively. Similarly, the node degree power-law 

exponents R are –0.7636 and –0.8439 for RIPE 2003 and 2008, respectively. 

The correlation coefficients are above 96 percent for both 2003 datasets and 

above 97 percent for both 2008 datasets. The difference of the power-law 

exponent values is small for 2003 and 2008 datasets.  

The first twenty ASes with the highest node degree from all four datasets 

are identified in order to observe node degrees and the position of highly 

connected nodes over the years. Table 4.1 lists the first twenty ASes having 

larger node degree. The node degrees are comparatively larger in 2008 

datasets. The node degrees of Route Views and RIPE 2008 datasets are 

comparable. Similarly, the node degrees of Route Views and RIPE 2008 

datasets are comparable. The first 10 ASes with the largest node degrees in 

Route Views 2003 datasets are similar to those appeared in RIPE 2003 datasets. 

The first 10 ASes are similar in Route Views and RIPE 2008 datasets. 

Furthermore, we observe that 80 percent of the ASes in 2003 datasets appear in 

the first 20 position in 2008 datasets. 
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Table 4.1 The first 20 ASes with the highest node degree for each dataset. 

Route Views 2003 RIPE 2003 Route Views 2008 RIPE 2008 

ASN degree ASN degree ASN degree ASN degree 

701 2422 701 2420 701 2645 701 2625 

1239 1800 1239 1802 7018 2132 7018 2138 

7018 1661 7018 1660 174 1983 174 1979 

209 862 209 862 3356 1932 3356 1937 

3356 815 3356 801 1239 1670 1239 1653 

3561 689 3561 674 209 1386 209 1353 

3549 628 3549 640 3549 1129 3549 1148 

2914 567 2914 599 4323 1094 4323 990 

702 553 8220 579 6939 823 13030 887 

6461 513 702 574 19151 779 6939 883 

4513 469 6461 502 6461 740 6461 852 

1 356 4589 487 2828 676 19151 785 

4323 355 3303 428 7132 668 9002 771 

16631 318 13237 410 2914 629 4589 698 

8220 309 6730 398 9002 607 2914 688 

7132 295 1 350 1299 542 8928 659 

3257 294 4323 346 702 532 2828 642 

6347 279 16631 309 8220 520 8220 621 

3786 270 3257 303 7575 515 7132 615 

4766 267 7132 282 6667 506 3257 553 

 

4.2 Complementary Cumulative Distribution Function (CCDF) of 
node degree 

In this Section, we analyze the distribution of node degrees. We use 

CCDF 
dD  of a node degree d . It indicates the percentage of nodes that have 

degree greater than degree d  and provides the distribution of the degree of 
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nodes. The CCDF of node degree vs. node degree plotted on a log-log scale are 

shown in Figure 4.3 and Figure 4.4. It implies 
DddD  , where D  is the CCDF 

power-law exponent. The CCDF power-law exponents are –1.2519 and –1.3696 

for 2003 and 2008 Route Views datasets, respectively and –1.2830 and –1.5010 

for 2003 and 2008 RIPE datasets, respectively. The correlation coefficient is 

above 98 percent for each 2003 dataset and above 96 percent for each 2008 

dataset. The difference of the power-law exponent values for Route Views and 

RIPE 2003 and 2008 datasets is small. 

In a perfect power-law distribution, the node degree power-law exponent 

is related to CCDF power-law exponent as DR /1 , where R  is the node 

degree power-law exponent [29], [48]. We use the value of R  from Section 4.1 to 

calculate the CCDF power-law exponent for each dataset. Table 4.2 lists the 

values of CCDF power-law exponents. The relationship DR /1  holds 

theoretically in a perfect power-laws distribution. However, we have inferred the 

CCDF power-law exponents from the empirical datasets. This may have caused 

the discrepancies in the exponent values as shown in Table 4.2. 

Table 4.2 CCDF power-law exponents. 

Values Route Views 2003 Route Views 2008 RIPE 2003 RIPE 2008 

D –1.2519 –1.3696 –1.2830 –1.5010 

1/R –1.3650 –1.2967 –1.3096 –1.1850 
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Figure 4.3 Route Views 2003 and 2008 datasets: The CCDF power-law exponent D  for 
Route Views 2003 (top) is –1.2519 with correlation coefficient –0.9810. The 

CCDF power-law exponent D  for Route Views 2008 (bottom) is –1.3696 with 
correlation coefficient –0.9626. 
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Figure 4.4 RIPE 2003 and 2008 datasets: The CCDF power-law exponent D  for RIPE 2003 
(top) is –1.2830 with correlation coefficient –0.9812. The CCDF power-law 

exponent D  for RIPE 2008 (bottom) is –1.5010 with correlation coefficient        
–0.9676. 
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4.3 Eigenvalues of the adjacency matrix 

The eigenvalues of a graph indicate its topological properties such as 

diameter, number of edges, and number of connected components in a graph. 

The eigenvalue power-law based on the adjacency matrix implies 
 iai  , 

where ai is an eigenvalue, i  is an index, and   is an eigenvalue power-law 

exponent of the adjacency matrix. 

The eigenvalues ai of the adjacency matrix are sorted in decreasing 

order and plotted vs. the associated increasing sequence of numbers i
 

representing the order of the eigenvalue. The power-law dependence between 

the graph eigenvalue and the eigenvalue index is shown in Figure 4.5 and Figure 

4.6 for Route Views 2003 and 2008 and RIPE 2003 and 2008 datasets, 

respectively. Plotted on a log-log scale are eigenvalues of a graph matrix in 

decreasing order. Only the first 150 largest eigenvalues are considered.  

The eigenvalue power-law exponents are –0.5173 and –0.4860 for Route 

Views 2003 and 2008 datasets, respectively and –0.5232 and –0.4927 for RIPE 

2003 and 2008 datasets, respectively. The exponent values for Route Views and 

RIPE 2003 datasets are comparable. Similarly, Route Views and RIPE 2008 

datasets have comparable exponent values. The values of the exponent have 

small difference for Route Views and RIPE 2003 and 2008 datasets. The 

correlation coefficients are above 96 percent for all four datasets. 
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Figure 4.5 Route Views 2003 and 2008 datasets: The eigenvalue power-law exponent   
based on the adjacency matrix for Route Views 2003 (top) is –0.5713 with 

correlation coefficient –0.9990. The eigenvalue power-law exponent   based 

on the adjacency matrix for Route Views 2008 (bottom) is –0.4860 with 
correlation coefficient –0.9982. 



 

 48 

 

 

Figure 4.6 RIPE 2003 and 2008 datasets: The eigenvalue power-law exponent   based 

on the adjacency matrix for RIPE 2003 (top) is –0.5232 with correlation 

coefficient –0.9989. The eigenvalue power-law exponent   based on the 

adjacency matrix for RIPE 2008 (bottom) is –0.4927 with correlation coefficient 
–0.9970. 



 

 49 

The first 5,000 largest eigenvalues are calculated and plotted vs. the order 

for all four datasets as shown in Figure 4.7. The MATLAB code was run on Quad 

core CPU with 2.39 GHz of processing speed and 3.93 GB of RAM and took four 

days to calculate the first 5,000 largest eigenvalues for each 2003 dataset and 

six days for each 2008 dataset. The plot that consists of only the first 600 

eigenvalues shown in Figure 4.7 indicates that Route Views and RIPE 2008 

datasets have larger eigenvalues in comparison to the eigenvalues of Route 

Views and RIPE 2003 datasets. The eigenvalues of RIPE 2008 datasets have 

larger value than Route Views 2008 datasets. Furthermore, the eigenvalues of 

RIPE 2003 datasets have larger value than Route Views 2003 datasets. The first 

twenty largest eigenvalues of the datasets are listed in Table 4.3.  

 

Figure 4.7 Route Views and RIPE 2003 and 2008 datasets: The first 5,000 largest 
eigenvalues plotted in descending order. Route Views and RIPE 2008 datasets 
have higher eigenvalues than Route Views and RIPE 2003 datasets.  
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Table 4.3 The first 20 largest eigenvalues of Route Views and RIPE 2003 and 2008 

datasets. 

order Route Views 2003 Route Views 2008 RIPE 2003 RIPE 2008 

1 64.30 85.43 66.65 122.28 

2 47.75 58.56 54.19 63.94 

3 38.15 42.77 38.24 46.14 

4 36.23 40.85 36.14 41.98 

5 29.88 39.69 31.21 41.08 

6 28.50 37.85 27.38 38.93 

7 25.47 36.21 26.41 37.94 

8 25.06 34.66 25.06 36.47 

9 24.13 31.58 23.86 35.08 

10 22.51 29.34 23.32 34.47 

11 21.61 27.40 22.02 30.97 

12 20.69 25.69 21.77 30.54 

13 18.58 25.00 20.75 29.68 

14 17.94 24.82 19.55 27.03 

15 17.78 23.89 18.67 25.74 

16 17.31 23.69 18.42 25.35 

17 16.99 22.81 17.85 24.83 

18 16.75 22.46 17.44 24.30 

19 16.22 22.04 17.24 24.06 

20 16.01 21.36 16.63 24.00 

 

The power-law exponent and correlation coefficient of the eigenvalue 

power-law using the first 5,000 largest eigenvalues for Route Views 2008 

datasets are –24.73 and –0.7232, respectively.  The comparable values of 

power-law exponent and correlation coefficient are also observed for the 

remaining three datasets. This indicates that the eigenvalue power-law exists 

only in the tail of the distribution. 
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4.4 Eigenvalues of the normalized Laplacian matrix 

The presence of eigenvalue power-law reported in [29] is based on the 

eigenvalues of the adjacency matrix. We also analyze the eigenvalue power-law 

based on the eigenvalues of the normalized Laplacian matrix. The newly 

observed power-law dependence between the eigenvalue of the normalized 

Laplacian matrix and the eigenvalue index is shown in Figure 4.8 and Figure 4.9 

for Route Views 2003 and 2008 datasets and RIPE 2003 and 2008 datasets, 

respectively. 

The eigenvalue power-law based on the normalized Laplacian matrix vs. 

its index implies 
LiLi  , where Li is the eigenvalue, i  is the index, and 

L  is the eigenvalue power-law exponent of the normalized Laplacian matrix. We 

use similar procedure as in Section 4.3 to calculate the eigenvalue power-law 

exponent of the normalized Laplacian matrix. The eigenvalue power-law 

exponents are –0.0198 and –0.0177 for Route Views 2003 and 2008 datasets, 

respectively and –0.0206 and –0.0190 for RIPE 2003 and 2008 datasets, 

respectively. The difference of the power-law exponent values for Route Views 

and RIPE 2003 and 2008 datasets is small. The correlation coefficients are 

above 95 percent for all four datasets.  

In order to observe the first 5,000 largest eigenvalues of the normalized 

Laplacian matrix, we ran the MATLAB code in Quad core CPU with 2.39 GHz 

processing speed and 3.93 GB of RAM for ten days without a success. 
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Figure 4.8 Route Views 2003 and 2008 datasets: The eigenvalue power-law exponent L  
based on the normalized Laplacian matrix for Route Views 2003 (top) is            
–0.0198 with correlation coefficient –0.9564. The eigenvalue power-law 

exponent L  based on the normalized Laplacian matrix for Route Views 2008 
(bottom) is –0.0177 with correlation coefficient –0.9782. 
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Figure 4.9 RIPE 2003 and 2008 datasets: The eigenvalue power-law exponent L  based 
on the normalized Laplacian matrix for RIPE 2003 (top) is –0.0206 with 

correlation coefficient –0.9636. The eigenvalue power-law exponent L  based 
on the normalized Laplacian matrix for RIPE 2008 (bottom) is –0.0190 with 
correlation coefficient –0.9758. 
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4.5 Confidence intervals 

The four different datasets collected on July 31st 2003 and 2008 from 

Route Views and RIPE projects indicate the presence of power-laws. In order to 

further verify the result and to estimate the mean value of the power-law 

exponents, we collect twenty-four random sample datasets and calculate the 

power-law exponents for each sample. The sample datasets and the calculated 

power-law exponents for Route Views and RIPE 2003 and 2008 datasets are 

shown in Table 8.1 – Table 8.3 in Appendix. 

The number of samples of each dataset is smaller than 30, with unknown 

standard deviation. Hence, we use the t-distribution to compute the confidence 

intervals of power-law exponents at 95 percent confidence level: 

)/()/( 2/2/ nstXnstX xx  
,
                                         

where X   is the sample mean, 2/xt  is the t-distribution, s  is the sample standard 

deviation, n  is the number of samples, and   is the population mean. We 

estimate the confidence intervals using six random samples selected from each 

2003 and 2008 Route Views and RIPE datasets. The estimated confidence 

intervals of the power-law exponents are listed in Table 4.4. 

The plot of the confidence intervals of the node degree power-law 

exponents and CCDF power-law exponents of four datasets is shown in Figure 

4.10. The width of the confidence intervals is similar for Route Views 2008, RIPE 

2003, and RIPE 2008 datasets. The confidence interval for Route Views 2003 

datasets is comparatively wider. The node degree and CCDF of node degree 
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power-law exponents have comparable values for both RIPE and Route Views 

2003 and 2008 datasets. The analysis of node degree and CCDF of node degree 

power-law exponents in Sections 4.1 and 4.2, respectively also reveals 

insignificant increase of node degree and CCDF of node degree power-law 

exponents for 2008 datasets. The correlation coefficients of the node degree 

power–law exponent are above 96 percent for all random datasets. Meanwhile, 

the correlation coefficients of the CCDF power-law exponent are above 90 

percent for all random datasets.  

Table 4.4 Confidence intervals of power-law exponents at 95 percent confidence level. 

Exponent Range  
Route Views 

2003 
RIPE 
2003 

Route Views 
2008 

RIPE 
2008 

R 
higher –0.7328 –0.7467 –0.7776 –0.8443 

lower –0.6909 –0.7307 –0.7712 –0.8281 

D 
higher –1.2692 –1.2714 –1.4086 –1.5115 

lower –1.1794 –1.2307 –1.3622 –1.4411 

ε  
higher –0.5118 –0.5105 –0.4886 –0.4985 

lower –0.5046 –0.5033 –0.4840 –0.4914 

L 
higher –0.0193 –0.0206 –0.0184 –0.0204 

lower –0.0187 –0.0188 –0.0173 –0.0188 
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Figure 4.10 Confidence intervals: Node degree power-law exponent (top) and CCDF 
power-law exponent (bottom). 
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The plots of the confidence intervals of the eigenvalue power-law 

exponent based on the adjacency and the normalized Laplacian matrices for 

Route Views and RIPE 2003 and 2008 datasets are shown in Figure 4.11. The 

confidence intervals of power-law exponents for all four datasets have 

comparable width. The values of the eigenvalue power-law exponent based on 

the adjacency matrix have small difference between Route Views and RIPE 2003 

and 2008 datasets. Figure 4.11 (top) reveals that the eigenvalue power-law 

exponents based on the adjacency matrix have not significantly changed over 

the last five years. Figure 4.11 (bottom) reveals that the eigenvalue power-law 

exponents based on the normalized Laplacian matrix are also comparable over 

the last five years.  

The correlation coefficients of eigenvalue power-law exponents based on 

the adjacency matrix and the normalized Laplacian matrix for all datasets are 

above 99 percent and 95 percent, respectively.  

In all four power-laws, confidence intervals of power-law exponents have 

small width and are comparable. The values of the correlation coefficients are 

also larger for all power-laws. This indicates the presence of four power-laws in 

the Internet topology over the period of five years. The small shift in the values of 

power-law exponents indicates that power-law exponents have not significantly 

changed over the last five years. 
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Figure 4.11 Confidence intervals: Eigenvalue power-law exponent based on the adjacency 
matrix (top) and based on the normalized Laplacian matrix (bottom). 
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5. SPECTRAL ANALYSIS AND THE INTERNET 
TOPOLOGY 

In this Chapter, we analyze the spectrum of the adjacency matrix and the 

normalized Laplacian matrix of the Internet graph at AS level derived from Route 

Views and RIPE 2003 and 2008 datasets. We plot the patterns of connected AS 

nodes over the years based on the adjacency matrix. We compare the 

connectivity status based on the second smallest and the largest eigenvalues in 

order to observe the clusters of connected nodes. Finally, we analyze the 

elements values of the eigenvectors based on the second smallest and the 

largest eigenvalues. 

5.1 Clusters of ASes based on the adjacency matrix 

The element value of the adjacency matrix xyA  is 1 if nodes x  and y  are 

connected and 0 if nodes x and y are not connected. The patterns of connected 

AS nodes in Route Views and RIPE datasets for 2003 and 2008 are shown in 

Figure 5.1 and Figure 5.2, respectively. A dot in the position (x, y) in the plot of 

the adjacency matrix represents the connection patterns between AS nodes. No 

connectivity is shown between the unassigned AS nodes. The clusters are wider 

in case of Route Views 2008 and RIPE 2008 since the number of ASes in 2008 

datasets is larger than in 2003 datasets.   
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Figure 5.1 Route Views 2003 and 2008 datasets: Patterns of the adjacency matrix for 
Route Views 2003 (top) and 2008 (bottom) datasets. A dot in position (x, y) 
represents the connection between two AS nodes. 
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Figure 5.2 RIPE 2003 and 2008 datasets: Patterns of the adjacency matrix for RIPE 2003 
(top) and 2008 (bottom) datasets. A dot in position (x, y) represents the 
connection between two AS nodes. 
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The plots depict interesting clusters associated not only with the ASes 

having higher node degree but also with the ASes with medium and lower node 

degrees. The existence of higher connectivity inside a particular cluster and 

relatively lower connectivity between clusters is also visible as shown in Figure 

5.3. Similar patterns of clusters are observed when comparing Route Views and 

RIPE 2003 and 2008 datasets. 

 

 

Figure 5.3 Route Views 2008: Zoomed view of the patterns of ASes based on the 
adjacency matrix. 
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5.2 Connectivity status based on the elements of the 
eigenvectors 

In this Section, we analyze the elements of the eigenvectors 

corresponding to the second smallest and the largest eigenvalues of the 

adjacency matrix and the normalized Laplacian matrix in order to observe the 

clusters of ASes having similar connectivity. The second smallest eigenvalue, 

called algebraic connectivity [31], [32] of a normalized Laplacian matrix is related 

to the connectivity characteristic of the graph. The elements of the eigenvector 

corresponding to the large eigenvalue also contain information relevant to 

clustering [34].  

In order to determine clusters of connected AS nodes in the Internet 

graphs, we consider the elements of the eigenvectors corresponding to the 

second smallest and the largest eigenvalues of the adjacency and the 

normalized Laplacian matrices. Each element of the eigenvector is associated 

with the AS node having same index in the Internet graph. All AS nodes are 

sorted in ascending order based on the corresponding elements values of the 

eigenvector. The sorted AS vector is then indexed and the connectivity status is 

equal to 1 if an AS is connected to another AS or zero if an AS is isolated or is 

not present in the datasets. We have used only assigned ASes. This sorting 

separates the connected nodes from the disconnected nodes and generates the 

clusters of connected AS nodes. 

In order to create a connected graph from a matrix, let us consider a graph 

with six nodes [N1, N2, N3, N4, N5, N6]. Let us assume that the elements of the 
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eigenvector corresponding to an eigenvalue of a matrix of the graph are [0.35, –

0.35, –0.35, 0.41, 0.50, 0.61]. Let us assume that the node N4 is not connected 

and all other nodes are connected. The elements of the eigenvector are assigned 

to the nodes: [N1(0.35), N2(–0.35), N3(–0.35), N4(0.41), N5(0.50), N6(0.61)] and 

arranged in the ascending order [–0.35, –0.35, 0.35, 0.41, 0.50, 0.61]. The nodes 

are then sorted based on the index of the corresponding element of the 

eigenvector. The resulting order of nodes is [N2, N3, N1, N4, N5, N6]. The value 

of the connectivity status is 1 if a node is connected or 0 if a node is isolated. 

Thus, the value of connectivity status is 0 for node N4 and 1 for the remaining 

nodes. The assigned connectivity status values vs. the order of the nodes are 

plotted as shown in Figure 5.4. This sorting makes the ASes having similar 

element values stay closer generating the clusters of connected nodes. 

 
 

Figure 5.4 Example of connectivity status based on the eigenvector of a matrix. 
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5.2.1 Analysis based on the adjacency matrix 

In this Section, we observe the connectivity status based on the elements 

of the eigenvectors corresponding to the second smallest and the largest 

eigenvalues of the adjacency matrix. We follow similar procedure as in Section 

5.2 to plot the clusters of connected AS nodes. 

 The connectivity status based on the second smallest eigenvalue of the 

adjacency matrix is shown in Figure 5.5 and Figure 5.6 for Route Views 2003 

and 2008 and RIPE 2003 and 2008 datasets, respectively. The clusters of AS 

nodes are similar for Route Views 2003 and RIPE 2003 datasets. Route Views 

2008 datasets also reveal similar clusters of nodes to RIPE 2008 datasets. 

However, Figure 5.5 and Figure 5.6 indicate visible changes in the connectivity 

status of AS nodes while comparing the connectivity status of Route Views and 

RIPE 2003 datasets with Route Views and RIPE 2008 datasets. 

We also calculate the elements of the eigenvector corresponding to the 

largest eigenvalue of the adjacency matrix for each dataset. The connectivity 

status of each dataset is shown in Figure 5.7 and Figure 5.8. Similar to the 

connectivity status based on the second smallest eigenvalue, the connectivity 

status based on the largest eigenvalues for Route Views 2003 and RIPE 2003 

datasets is similar. Route Views 2008 datasets also have similar connectivity 

status to RIPE 2008 datasets. The comparison of the connectivity status of 2003 

datasets and 2008 datasets shows visible changes over the period of five years.  
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Figure 5.5 Route Views 2003 and 2008 datasets: Spectral views of the AS connectivity 
based on the second smallest eigenvalue of the adjacency matrix for Route 
Views 2003 (top) and 2008 (bottom) datasets. 
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Figure 5.6 RIPE 2003 and 2008 datasets: Spectral views of the AS connectivity based on 
the second smallest eigenvalue of the adjacency matrix for RIPE 2003 (top) 
and 2008 (bottom) datasets. 
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Figure 5.7 Route Views 2003 and 2008 datasets: Spectral views of the AS connectivity 
based on the largest eigenvalue of the adjacency matrix for Route Views 2003 
(top) and 2008 (bottom) datasets. 



 

 69 

 

 

Figure 5.8 RIPE 2003 and 2008 datasets: Spectral views of the AS connectivity based on 
the largest eigenvalue of the adjacency matrix for RIPE 2003 (top) and 2008 
(bottom) datasets. 
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5.2.2 Analysis based on the normalized Laplacian matrix 

In this Section, we observe the connectivity status based on the elements 

of the eigenvectors corresponding to the second smallest and the largest 

eigenvalues of the normalized Laplacian matrix. We follow similar procedure as 

in Section 5.2 to plot the clusters of connected AS nodes. 

The connectivity status of AS nodes based on the second smallest 

eigenvalue is shown in Figure 5.9 and Figure 5.10 for Route Views 2003 and 

2008 and RIPE 2003 and 2008 datasets, respectively. We observe that the 

connectivity status of Route Views 2003 datasets is similar to RIPE 2003 

datasets. Furthermore, Route Views 2008 datasets reveal similar connectivity 

patterns as RIPE 2008 datasets.  

The connectivity status of AS nodes based on the largest eigenvalue is 

shown in Figure 5.11 and Figure 5.12. Route Views 2003 datasets shows similar 

connectivity trends to RIPE 2003 datasets. The connectivity status of Route 

Views 2008 datasets is also similar to RIPE 2008 datasets. The comparison of 

the connectivity status of 2003 datasets to 2008 datasets shows visible changes 

over the last five years.  

We note that the connectivity status based on the second smallest 

eigenvalue of the adjacency matrix is similar to the connectivity graph based on 

the largest eigenvalue of the normalized Laplacian matrix, and vice versa. This 

interesting property has its basis in the spectral properties of the two matrices 

since ADL  , where L  is the Laplacian matrix, D  is the degree matrix 

having  node degree in the diagonal, and A  is the adjacency matrix. 
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Figure 5.9 Route Views 2003 and 2008 datasets: Spectral views of the AS connectivity 
based on the second smallest eigenvalue of the normalized Laplacian matrix 
for Route Views 2003 (top) and 2008 (bottom) datasets. 
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Figure 5.10 RIPE 2003 and 2008 datasets: Spectral views of the AS connectivity based on 
the second smallest eigenvalue of the normalized Laplacian matrix for RIPE 
2003 (top) and 2008 (bottom) datasets. 
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Figure 5.11 Route Views 2003 and 2008 datasets: Spectral views of the AS connectivity 
based on the largest eigenvalue of the normalized Laplacian matrix for Route 
Views 2003 (top) and 2008 (bottom) datasets. 
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Figure 5.12 RIPE 2003 and 2008 datasets: Spectral views of the AS connectivity based on 
the largest eigenvalue of the normalized Laplacian matrix for RIPE 2003 (top) 
and 2008 (bottom) datasets. 
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5.3  Clusters of ASes based on the elements of eigenvectors 

When we examine the elements of the eigenvectors corresponding to the 

second smallest and the largest eigenvalues of the adjacency matrix of a small 

world network with 20 nodes [55], we observe that the nodes having similar 

degrees are grouped together based on the element values of the eigenvector 

corresponding to the largest eigenvalue. We first calculate the elements of the 

eigenvectors corresponding to the second smallest and the largest eigenvalues. 

We then sort the elements in descending order and plot them vs. order as shown 

in Figure 5.13. We also calculate the index of node based on the index of the 

corresponding element of the eigenvector. We then plot the node degree of a 

node vs. the index of the node as shown in Figure 5.14.  

 

Figure 5.13 Small world graph: Elements of the eigenvector corresponding to the largest 
eigenvalue of the adjacency matrix sorted in decreasing order. 

The values of the elements of the eigenvector corresponding to the largest 

eigenvalue of the adjacency matrix group nodes having similar node degrees. 
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The group of nodes having small node degree appear first, followed by the nodes 

having larger node degrees, as shown in Figure 5.14. No such grouping is 

observed based on the elements values of the eigenvector corresponding to the 

second smallest eigenvalue. 

 

Figure 5.14 Small world graph: Groups of connected nodes based on the elements values 
of the eigenvector corresponding to the largest eigenvalue of the adjacency 
matrix. 

In search of such clusters of connected AS nodes in the Internet graphs, 

we examine the elements of the eigenvectors corresponding to the second 

smallest and the largest eigenvalues of both the adjacency and the normalized 

Laplacian matrices.  

5.3.1 Analysis based on the adjacency matrix 

In this Section, we observe the cluster of ASes based on the elements of 

the eigenvectors corresponding to the second smallest and the largest 

eigenvalues of the adjacency matrix. The elements of the eigenvectors are 
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sorted in descending order based on the weight of each element and plotted vs. 

the order. AS nodes are also sorted based on the corresponding elements values 

of the eigenvector to determine the index of the AS node. The node degree of AS 

node vs. the index of the AS are then plotted to observe the clusters of nodes.  

 The elements of eigenvector corresponding to the second smallest 

eigenvalue of the adjacency matrix are plotted vs. the order as shown in Figure 

5.15. Only nodes on the lowest and the highest ends of the rank spectrum are 

shown. Majority of the nodes ranked in between belong to a cluster that 

corresponds to similar element value of the eigenvector. Figure 5.15 indicates 

that very few nodes have large element values of the eigenvector corresponding 

to the second smallest eigenvalue and comparatively large numbers of nodes 

have small element values. Route Views datasets reveals that the number of 

nodes having larger element values of the eigenvector is higher in 2008 in 

comparison to Route Views and RIPE 2003 datasets. However, the elements 

values of the eigenvector for RIPE 2008 are comparatively smaller to that for 

Route Views 2008 datasets. The lowest end indicates that all four datasets have 

similar element values. 

The node degree of each AS node plotted vs. the index of the AS based 

on the adjacency matrix is shown in Figure 5.16 and Figure 5.17 for Route Views 

2003 and 2008 and RIPE 2003 and 2008 datasets, respectively. The element 

values of the eigenvector corresponding to the second smallest eigenvalue of the 

adjacency matrix divide nodes into two separate clusters of connected nodes.  
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Figure 5.15 Route Views and RIPE 2003 and 2008 datasets: Elements of eigenvectors 
corresponding to the second smallest eigenvalue of the adjacency matrix. 
Shown are the nodes at the smallest (top) and the largest (bottom) ends of the 
rank spectrum.  



 

 79 

 

 
 

Figure 5.16 Route Views 2003 and 2008 datasets: Clusters of connected nodes based on 
the elements values of the eigenvector corresponding to the second smallest 
eigenvalue of the adjacency matrix for Route Views 2003 (top) and 2008 
(bottom) datasets. 
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Figure 5.17 RIPE 2003 and 2008 datasets: Clusters of connected nodes based on the 
elements values of the eigenvector corresponding to the second smallest 
eigenvalue of the adjacency matrix for RIPE 2003 (top) and 2008 (bottom) 
datasets. 
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The elements of the eigenvector corresponding to the largest eigenvalue 

of the adjacency matrix are arranged in decreasing order and are plotted vs. the 

order as shown in Figure 5.18 (top).  The plots reveal that for large number of 

nodes the elements of the eigenvector have very small values in the range of 

1910 . Only few nodes at the highest end of the rank spectrum have 

comparatively large negative elements values. The values of the elements at the 

highest ends of the rank spectrum are visible in Figure 5.18 (bottom).  

In order to observe the clusters of AS nodes based on the element values, 

the index of AS nodes are identified that corresponds to the index of the element 

values of the eigenvector arranged in descending order. The node degree of AS 

node vs. the index of the AS based on the adjacency matrix are plotted as shown 

in Figure 5.19 and Figure 5.20 for Route Views 2003 and 2008 and RIPE 2003 

and 2008 datasets, respectively.  The elements values of the eigenvector 

corresponding to the largest eigenvalue also separate nodes into a cluster of 

connected nodes. The clusters are observed at the highest end of the rank 

spectrum for each dataset. The length of the cluster is comparable for Route 

Views and RIPE 2003 datasets. Route Views and RIPE 2008 datasets also have 

similar length of clusters. However, the length of the cluster is smaller for 2003 

datasets. This is due to the smaller number of assigned ASes in 2003 than in 

2008. 
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Figure 5.18 Route Views and RIPE 2003 and 2008 datasets: Elements of the eigenvector 
corresponding to the largest eigenvalue of the adjacency matrix. Shown are 
the nodes at all (top) and the highest (bottom) ends of the rank spectrum. 
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Figure 5.19 Route Views 2003 and 2008 datasets: Clusters of connected nodes based on 
the elements values of the eigenvector corresponding to the largest 
eigenvalue of the adjacency matrix for Route Views 2003 (top) and 2008 
(bottom) datasets. 
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Figure 5.20 RIPE 2003 and 2008 datasets: Clusters of connected nodes based on the 
elements values of the eigenvector corresponding to the largest eigenvalue of 
the adjacency matrix for RIPE 2008 (top) and 2008 (bottom) datasets. 
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5.3.2 Analysis based on the normalized Laplacian matrix 

We also examine the elements of the eigenvectors corresponding to the 

second smallest and the largest eigenvalues of the normalized Laplacian matrix.  

We adopt similar sorting method as in Section 5.3.1.  

The elements of the eigenvector corresponding to the second smallest 

eigenvalue of the normalized Laplacian matrix are arranged in descending order 

and plotted vs. the index as shown in Figure 5.21. The plot reveals the clustering 

behaviour of the elements values similar to the elements values corresponding to 

the adjacency matrix. Majority of the nodes ranked in between have similar 

element values. Furthermore, few nodes have large element values. 

The node degree of AS node plotted vs. the index of the AS based on the 

element value of the eigenvector corresponding to second smallest eigenvalue of 

the normalized Laplacian for Route Views 2003 and 2008 and RIPE 2003 and 

2008 datasets are shown in Figure 5.22 and Figure 5.23, respectively.  The 

cluster of connected nodes is present towards the highest end of the rank 

spectrum. The small elements values of the eigenvector corresponding to the 

second smallest eigenvalue of the normalized Laplacian matrix correspond to the 

connected nodes forming a cluster. The nodes having similar node degrees are 

grouped together within the cluster. Furthermore, the nodes having small node 

degrees appear in the highest end of the rank spectrum followed by the nodes 

having higher node degrees as shown in Figure 5.24. 
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Figure 5.21 Route Views and RIPE 2003 and 2008 datasets: Elements of the eigenvector 
corresponding to the second smallest eigenvalue of the normalized Laplacian 
matrix. Shown are the nodes at the lowest (top) and the highest (bottom) ends 
of the rank spectrum. 



 

 87 

 
 

Figure 5.22 Route Views 2003 and 2008 datasets: Clusters of connected nodes based on 
the elements values of the eigenvector corresponding to the second smallest 
eigenvalue of the normalized Laplacian matrix for Route Views 2003 (top) and 
2008 (bottom) datasets. 
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Figure 5.23 RIPE 2003 and 2008 datasets: Clusters of connected nodes based on the 
elements values of the eigenvector corresponding to the second smallest 
eigenvalue of the normalized Laplacian matrix for RIPE 2003 (top) and 2008 
(bottom) datasets.  
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Figure 5.24 RIPE 2008: Zoomed view of node degree vs. rank. 

The sorted elements of the eigenvector corresponding to the largest 

eigenvalue of the normalized Laplacian matrix are plotted vs. the order as shown 

in Figure 5.25. Most of the elements in the middle of the rank spectrum have very 

small value (
1910

) for all four datasets. The elements of the eigenvector for few 

nodes at the lowest end of the rank spectrum have positive values while few 

nodes at the highest end of the rank spectrum have negative value. The pattern 

is similar for Route Views and RIPE 2003 datasets and for Route Views and 

RIPE 2008 datasets. 

The node degrees distribution based on the decreasing order of the 

elements values of the corresponding AS nodes is shown in Figure 5.26 and 

Figure 5.27. Two clusters of connected nodes are visible at the lowest and the 

highest ends of the rank spectrum for all four datasets. 
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Figure 5.25 Route Views and RIPE 2003 and 2008 datasets: Elements of the eigenvector 
corresponding to the largest eigenvalue of the normalized Laplacian matrix. 
Shown are the nodes at the lowest (top) and the highest (bottom) ends of the 
rank spectrum.  
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Figure 5.26 Route Views 2003 and 2008 datasets: Clusters of connected nodes based on 
the elements values of the eigenvector corresponding to the largest 
eigenvalue of the normalized Laplacian matrix for Route Views 2003 (top) and 
2008 (bottom) datasets.  
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Figure 5.27 RIPE 2003 and 2008 datasets: Clusters of connected nodes based on the 
elements values of the eigenvector corresponding to the largest eigenvalue of 
the normalized Laplacian matrix for RIPE 2003 (top) and 2008 (bottom) 
datasets. 
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An interesting property is observed when comparing the clusters of AS 

nodes based on the second smallest and the largest eigenvalues of the 

adjacency and the normalized Laplacian matrices. The cluster of nodes based on 

the elements values of the eigenvector corresponding to the second smallest 

eigenvalue of the adjacency matrix is similar to the cluster based on the largest 

eigenvalue of the normalized Laplacian matrix and vice versa. This property has 

its basis in the spectral properties of the two matrices since ADL  , where 

L  is the Laplacian matrix, D  is the degree matrix, which is the diagonal matrix 

formed from the node degrees, and A  is the adjacency matrix. However, how 

this relationship affects theoretically in the spectral properties of the adjacency 

and the Laplacian matrices could be an interesting research. It would also be 

interesting to investigate the spectral properties of matrices such as Laplacian 

and signless Laplacian matrix, which is defined as .ADQ   
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6. CONCLUSIONS 

We have analyzed the Internet topology datasets collected from Route 

Views and RIPE projects and have confirmed the presence of power-laws in 

graphs capturing the AS-level Internet topology in both datasets over the past 

five years. We have evaluated four power-laws: node degrees vs. rank, CCDF of 

node degree vs. node degree, eigenvalue of the adjacency matrix vs. index, and 

eigenvalue of the normalized Laplacian matrix vs. index. We found that 

eigenvalues based on the normalized Laplacian matrix also exhibit power-law 

similar to eigenvalue power-law based on the adjacency matrix. They have, as 

expected, different values for power-law exponents. The results showed that the 

power-law exponents associated with the Internet topology have not significantly 

changed over the years indicating that the power-laws do not capture every 

property of graph and are only a measure used to characterize the Internet 

topology.  

Spectral analysis based on the more intuitive adjacency matrix and the 

normalized Laplacian matrix derived from the Route Views and RIPE datasets 

was used to examine the clustering of ASes and their connectivity in the Internet 

graphs. By plotting the elements of the adjacency matrix, we observed similarity 

in the pattern of clusters of connected AS nodes in the Internet topology over the 

years. The clusters indicate higher connectivity inside a particular cluster and 

relatively lower connectivity between clusters. While power-laws properties of the 
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Internet topology graphs have not substantially changed over the years, spectral 

analysis revealed notable changes in the connectivity and clustering of AS 

nodes. The connectivity status based on the adjacency and the normalized 

Laplacian matrices indicated visible changes in the clustering of connected AS 

nodes over the past five years. 

We also identified clusters of AS nodes based on the eigenvectors 

corresponding to the second smallest and the largest eigenvalues of the 

adjacency and the normalized Laplacian matrices. Presented spectral analysis of 

both the matrices of the associated graphs also revealed new historical trends in 

the clustering of AS nodes. We observed that clustering based on the second 

smallest eigenvalue of the adjacency matrix is similar to clustering based on the 

largest eigenvalue of the normalized Laplacian matrix, and vice versa. The 

cluster based on the second smallest eigenvalue of the normalized Laplacian 

matrix consists of the groups of nodes having similar node degree. Furthermore, 

group of nodes having larger node degree follows group of nodes having smaller 

node degree within a cluster. It would be interesting to investigate whether the 

observed clusters have any significant effect in the modeling of the Internet 

topology and the performance of the network protocols and new algorithms. 
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8.1 Confidence intervals 

The calculated power-law exponents and the correlation coefficients for 

four power-laws from the sample datasets collected from Route Views and RIPE 

2003 and 2008 datasets are shown in Table 8.1 - Table 8.4. The following 

symbols are used for the power-law exponents and correlation coefficients: 

 R – exponent of node degree vs. rank power-law 

 D – exponent of CCDF of node degree vs. node degree power-law  

 ε  – exponent of eigenvalue of the adjacency matrix vs. index  power-

law 

 L – exponent of eigenvalue of the normalized Laplacian matrix vs. 

index power-law 

 r – correlation coefficient. 

Table 8.1 Power-law exponents for Route Views 2003 datasets. Datasets were randomly 

selected.  

Dataset 

number 
R D ε  L 

value r value r value r value r 

1 –0.7342 –0.9671 –1.2673 –0.9188 –0.5088 –0.9991 –0.0191 –0.9670 

2 –0.7062 –0.9645 –1.2088 –0.9077 –0.5101 –0.9990 –0.0188 –0.9537 

3 –0.6910 –0.9614 –1.1809 –0.9163 –0.5060 –0.9988 –0.0189 –0.9712 

4 –0.7368 –0.9668 –1.2844 –0.9130 –0.5134 –0.9992 –0.0186 –0.9541 

5 –0.7113 –0.9642 –1.2191 –0.9149 –0.5034 –0.9990 –0.0191 –0.9524 

6 –0.6917 –0.9612 –1.1853 –0.9046 –0.5074 –0.9989 –0.0194 –0.9582 
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Table 8.2 Power-law exponents for Route Views 2008 datasets. Datasets were randomly 

selected. 

Dataset 

number 

R D ε  L 

value r value r value r value r 

1 –0.7712 –0.9721 –1.3696 –0.9626 –0.4850 –0.9982 –0.0177 –0.9782 

2 –0.7779 –0.9732 –1.3572 –0.9094 –0.4874 –0.9952 –0.0187 –0.9870 

3 –0.7715 –0.9721 –1.3848 –0.9182 –0.4843 –0.9980 –0.0174 –0.9749 

4 –0.7781 –0.9727 –1.4158 –0.9223 –0.4887 –0.9985 –0.0179 –0.9807 

5 –0.7730 –0.9724 –1.3790 –0.9158 –0.4833 –0.9983 –0.0182 –0.9705 

6 –0.7749 –0.9722 –1.4062 –0.9212 –0.4882 –0.9985 –0.0173 –0.9662 

Table 8.3 Power-law exponents for RIPE 2003 datasets. Datasets were randomly 

selected. 

Dataset 

number 

R D ε  L 

value r value r value r value r 

1 –0.7340 –0.9662 –1.2341 –0.9154 –0.5026 –0.9994 –0.0208 –0.9633 

2 –0.7384 –0.9665 –1.2497 –0.9171 –0.5073 –0.9994 –0.0189 –0.9565 

3 –0.7319 –0.9654 –1.2304 –0.9155 –0.5035 –0.9994 –0.0199 –0.9615 

4 –0.7319 –0.9654 –1.2448 –0.9146 –0.5113 –0.9992 –0.0206 –0.9625 

5 –0.7495 –0.9680 –1.2810 –0.9188 –0.5100 –0.9991 –0.0187 –0.9640 

6 –0.7465 –0.9674 –1.2661 –0.9122 –0.5069 –0.9994 –0.0195 –0.9526 

Table 8.4 Power-law exponents for RIPE 2008 datasets. Datasets were randomly 

selected. 

Dataset 

number 

R D ε  L 

value r value r value r value r 

1 –0.8323 –0.9742 –1.4743 –0.9248 –0.4958 –0.9968 –0.0202 –0.9756 

2 –0.8352 –0.9741 –1.4341 –0.9152 –0.4943 –0.9968 –0.0194 –0.9689 

3 –0.8240 –0.9745 –1.4616 –0.9271 –0.4899 –0.9973 –0.0183 –0.9621 

4 –0.8451 –0.9759 –1.4565 –0.9210 –0.5003 –0.9977 –0.0205 –0.9800 

5 –0.8434 –0.9748 1.5233 –0.9301 –0.4937 –0.9969 –0.0195 –0.9769 

6 –0.8371 –0.9741 –1.5081 –0.9293 –0.4959 –0.9971 –0.0196 –0.9722 
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8.2 MATLAB code 

This Section contains the sample MATLAB code used to analyze the 

datasets collected from Route Views and RIPE projects.  

The binary files with BGP routing information are downloaded from the 

databases of Route Views and RIPE projects [2], [12]. The binary files are then 

converted into the text file using “bgpdump” Linux command. We use MATLAB 

tool to extract the AS numbers from the text file and to create the adjacency 

matrix. Further analysis was also performed using MATLAB tool. The sample 

code follows. 

8.2.1 The adjacency matrix 

% Sample script to change the binary file into text file.% 

./bgpdump -m /local-scratch/lsa38/RIPE/2003/rc00/bview.20030715.0000.gz 

> /local-scratch/lsa38/RIPE/2003/july15/rc00.txt 

./bgpdump -m /local-scratch/lsa38/RIPE/2003/rc00/bview.20030716.0000.gz 

> /local-scratch/lsa38/RIPE/2003/july16/rc00.txt 

./bgpdump -m /local-scratch/lsa38/RIPE/2003/rc00/bview.20030717.0000.gz 

> /local-scratch/lsa38/RIPE/2003/july17/rc00.txt 

./bgpdump -m /local-scratch/lsa38/RIPE/2003/rc00/bview.20030718.0000.gz 

> /local-scratch/lsa38/RIPE/2003/july18/rc00.txt 

 

 

% Sample code to create the adjacency matrix from the text file 

containing BGP routing information. % 

 

close all; 

clear all; 

Adjacency_matrix=sparse(65535,65535); 

for i=1:39 

fileName=['../RouteViews2008/july31/rc',num2str(i),'.txt']; 

fileId=fopen(fileName); 

    while 1  

eachLine = fgetl(fileId);  

if isempty(eachLine); else 

 count=0; 

 for ii=1:length(eachLine) 

  if (eachLine(ii)=='|') 

   count=count+1; 

   if (count==6) 

    startPoint=ii; 

                 end 
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                     if (count==7) 

                         stopPoint=ii; 

    end 

   end 

  end 

  singleLine=[]; 

             for ii=startPoint+1:stopPoint-1 

   singleLine=[singleLine,  eachLine(ii)]; 

  end 

             if isempty(singleLine); 

       singleLine=str2num(singleLine); 

                  for ii=1:length(singleLine)-1 

                      Arow=singleLine(ii); 

                      Acolumn=singleLine(ii+1); 

                      Adjacency_matrix(Arow,Acolumn)=1; 

                      Adjacency_matrix(Acolumn,Arow)=1; 

                  end 

            end  

         end  

        if (feof(fid)) 

            break; 

        end 

     end fclose(fid); 

end;  

fclose('all'); 

save ../RV2008Results/july31/AdjacencyMatrix.mat ADJM; 

clear all; 

load AdjacencyMatrix.mat; 

for i=1:length(Adjacency_matrix) 

 node_degree(i)=sum(Adjacency_matrix(i,:)); 

end 

save ('NodeDegree', 'node_degree'); 

 

8.2.2 The normalized Laplacian matrix 

% Sample code to create the normalized Laplacian matrix. % 

clear  

load AdjacencyMatrix.mat; 

load NodeDegree.mat; 

n= length(Adjacency_matrix) 

Norm_laplacian_matrix= sparse(1:n,1:n,0);   

for i=1:n 

 for j=1:n 

  if i==j & node_degree(i)~=0 

   Norm_laplacian_matrix(i,j)=1; 

   elseif (Adjacency_matrix(i,j)~=0) 

    Norm_laplacian_matrix(i,j)=    

     1/(sqrt(node_degree(i)*node_degree(j))); 

   end 

  end 

 end 

save('NormLaplacianMatrix','Norm_laplacian_matrix') 
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8.2.3 Power-law: node degree vs. rank 

 

%  Sample code to calculate the node degrees from the adjacency matrix 

and to plot them in log-log scale as shown in Figure 4.1 and Figure 

4.2. % 

 

load AdjacencyMatrix.mat 

for i = 1:length(Adjacency_matrix) 

 node_degree(i) = sum(Adjacency_matrix(:,i)); 

end 

node_degree=full(node_degree); 

node_degree=sort(node_degree,'descend'); 

loglog(node_degree,'.'); 

s = nonzeros(node_degree); 

n=length(s); 

xxx=(1:n); 

x=log10(xxx); 

y=node_degree(1:n); 

y=log10(y); 

m=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.^2)-(sum(x))^2) 

b=(sum(y)-m*sum(x))/n 

r=(n* sum(x.*y)-sum(x)*sum(y))/ sqrt((n*sum(x.^2)-

sum(x)^2)*(n*sum(y.^2)-sum(y)^2)) 

hold on figure1 

loglog(xxx,10^b.*xxx.^m); 

ylabel('Node degree','fontsize',16,'fontname','times') 

xlabel('Rank','fontsize',16,'fontname','times') 

 

8.2.4 Power-law: CCDF of node degree vs. node degree 

% Sample code to calculate the CCDFs of node degrees and to plot them 

in log-log scale as shown in Figure 4.3 and Figure 4.4. % 

 

load NodeDegree.mat 

maxDegree=max(node_degree); 

n=length(node_degree); 

x=zeros(1,maxDegree); 

for i=1:maxDegree 

    m=0; 

    for j=1:n 

        if node_degree(j)==i 

            m=m+1; 

        end 

    end 

x(i)=m; 

end 

 

ccdf=zeros(1,maxDegree); 

ccdf(1)=x(1)/sum(x); 

for i=2:length(x) 

 ccdf(i)=x(i)/sum(x)+ccdf(i-1); 

end 

one= ones(1,max1); 

ccdf=one-ccdf; 
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for i = 1:length(ccdf) 

 ccdf(i) = sum(ccdf(:,i)); 

end 

 

ccdf=full(ccdf); 

ccdf=sort(ccdf,'descend'); 

loglog(ccdf,'.'); 

s = nonzeros(ccdf); 

n=length(s)-1; 

xxx=(1:n); 

x=log10(xxx); 

y=ccdf(1:n); 

y=log10(y); 

m=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.^2)-(sum(x))^2) 

b=(sum(y)-m*sum(x))/n 

r=(n* sum(x.*y)-sum(x)*sum(y))/sqrt((n*sum(x.^2)-sum(x)^2)*(n*sum(y.^2) 

 -sum(y)^2)) 

hold on figure1 

loglog(xxx,10^b.*xxx.^m); 

ylabel('CCDF of node degree','fontsize',16,'fontname','times') 

xlabel('Node degree','fontsize',16,'fontname','times') 

 

8.2.5 Power-law: eigenvalue of the adjacency matrix vs. index 

% Sample code to calculate the first 150 largest eigenvalues of the 

adjacency matrix and to plot them vs. index in log-log scale as shown 

in Figure 4.5 and Figure 4.6. % 

 

clear; 

load AdjacencyMatrix.mat; 

eigen_values= eigs(Adjacency_matrix, 300); 

save ('EigenvaluesAdjMatrix.mat','eigen_values'); 

eigen_values= sort(eigen_values,'descend'); 

for i=1:1:150 

 toplot(i)=eigen_values(i); 

end 

loglog(toplot,'.'); 

b=toplot; 

n=150; 

xxx=(1:n); 

x=log10(xxx); 

y=b(1:n); 

y=log10(y); 

m=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.^2)-(sum(x))^2) 

b=(sum(y)-m*sum(x))/n 

r=(n* sum(x.*y)-sum(x)*sum(y))/ sqrt((n*sum(x.^2)-

sum(x)^2)*(n*sum(y.^2)-sum(y)^2)) 

hold on figure1 

loglog(xxx,10^b.*xxx.^m); 

ylabel('Eigenvalue of adjacency matrix',fontsize',16,‘fontname', 

'times'); 

xlabel('Index','fontsize',16,'fontname','times') 
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8.2.6 Power-law: eigenvalues of the normalized Laplacian matrix vs. index 

% Sample code to calculate the first 150 largest eigenvalues of the 

normalized Laplacian matrix and to plot them vs. index in log-log scale 

as shown in Figure 4.8 and Figure 4.9. % 

 

clear; 

load NormlaplacianMatrix.mat; 

eigen_values= eigs(Norm_laplacian_matrix, 150); 

save ('EigenvaluesLapMatrix','eigen_values'); 

eigen_values= sort(eigen_values,'descend'); 

for i=1:1:150 

 toplot(i)=eigen_values(i); 

end 

loglog(toplot,'.'); 

b=toplot; 

n=150; 

xxx=(1:n); 

x=log10(xxx); 

y=b(1:n); 

y=log10(y); 

m=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.^2)-(sum(x))^2) 

b=(sum(y)-m*sum(x))/n 

r=(n* sum(x.*y)-sum(x)*sum(y))/ sqrt((n*sum(x.^2)-

sum(x)^2)*(n*sum(y.^2)-sum(y)^2)) 

hold on figure1 

loglog(xxx,10^b.*xxx.^m); 

ylabel('Eigenvalue of normalized Laplacian matrix', 

 'fontsize',16,'fontname','times'); 

xlabel('Index','fontsize',16,'fontname','times'); 

 

8.2.7 Pattern of connected AS nodes 

% Sample code to plot the patterns of connected ASes as shown in Figure 

5.1 and Figure 5.2. % 
 

clear 

load AdjacencyMatrix.mat 

spy(Adjacency_matrix) 

ylabel('Autonomous system (AS) 

number','fontsize',16,'fontname','times') 

xlabel('Autonomous System Number 

(ASN)','fontsize',16,'fontname','times') 

h= legend('RIPE 2003-07-31 00:00'); 

set(h, 'fontsize',16,'fontname','times'); 

 

8.2.8 Connectivity status: the second smallest eigenvalue 

% Sample code to calculate the elements of the eigenvector 

corresponding to the second smallest eigenvalue of the normalized 

Laplacian matrix and to plot the connectivity status as shown in Figure 

5.9 and Figure 5.10. Similar code is used to calculate the elements of 
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the eigenvector corresponding to the second smallest eigenvalue of the 

adjacency matrix as shown in Figure 5.5 and Figure 5.6. % 

 

clear 

load NodeDegree.mat 

degree=node_degree; 

load AdjacencyMatrix.mat 

rr = Adjacency_matrix; 

n=49149; 

ss=sparse(n,n,0); 

count=zeros(1,n); 

k=0; 

for i=1:48127 

    k=k+1; 

    count(k)=degree(i); 

    ss(k,1:48127)=rr(i,1:48127); 

    ss(k,48128:49151)=rr(i,64512:65535); 

end 

for i=64512:65535 

    k=k+1; 

    count(k)=degree(i); 

    ss(k,1:48127)=rr(i,1:48127); 

    ss(k,48128:49151)=rr(i,64512:65535); 

end 

Manipulated_adjacency_matrix =sparse(n,n,0); 

Manipulated_adjacency_matrix = ss 

save('ManipulatedAdjacencyMatrix', Manipulated_adjacency_matrix') 

save('ManipulatedNodeDegree', 'count') 

clear 

load NodeDegree.mat 

degree= node_degree; 

load Norm_laplacian_matrix.mat 

rr= Norm_laplacian_matrix; 

ss=sparse(49149,49149,0); 

count=zeros(1,49149); 

k=0; 

for i=1:length(rr) 

 if (sum(rr(i,:))~=1) 

      k=k+1; 

      ss(k,1:48127)=rr(i,1:48127); 

      count(k)=degree(i); 

      ss(k,48128:49151)=rr(i,64512:65535); 

 end 

end 

for i=k+1:49149 

    ss(i,i)=1; 

end 

Manipulated_Norm_Lap =sparse(49149,49149,0); 

Manipulated_Norm_Lap =ss; 

save('ManipulatedNormLapMatrix','Manipulated_Norm_Lap') 

clear 

load Manipulated_degree.mat 

load ManipulatedNormLapMatrix.mat 

[V D] = eigs(Manipulated_Norm_Lap,2,'SA'); 

x=V(:,2); 

x=x'; 

index=1:1:length(x); 
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for i=1:length(x) 

    for j=i:length(x) 

        if x(j)<x(i) 

            tmp=x(j); 

            x(j)=x(i); 

            x(i)=tmp; 

            tmp=index(i); 

            index(i)=index(j); 

            index(j)=tmp; 

        end 

    end 

end 

for i=1:length(Manipulated_Degree) 

    if Manipulated_Degree(index(i))==0 

        connection(i)=0; 

    else 

        connection(i)=1; 

    end 

end 

plot(length(connection):-1:1,connection, '.'); 

ylabel('Connectivity status: smallest 

 eigenvalue','fontsize',16,'fontname','times') 

xlabel('Index of element','fontsize',16,'fontname','times') 

ylim([0 2]); 

 

 

8.2.9 Connectivity status: the largest eigenvalue 

% Sample code to calculate the elements of the eigenvector 

corresponding to the largest eigenvalue of the normalized Laplacian 

matrix and to plot the connectivity status as shown in Figure 5.11 and 

Figure 5.12. Similar code is used to calculate the elements of the 

eigenvector corresponding to the largest eigenvalue of the adjacency 

matrix as shown in Figure 5.7 and Figure 5.8. % 

 

clear 

load Manipulated_degree.mat 

load ManipulatedNormLapMatrix.mat 

[V D] = eigs(Manipulated_Norm_Lap,2,'LA'); 

 x=V(:,1); 

x=x'; 

index=1:1:length(x); 

for i=1:length(x) 

    for j=i:length(x) 

        if x(j)<x(i) 

            tmp=x(j); 

            x(j)=x(i); 

            x(i)=tmp; 

            tmp=index(i); 

            index(i)=index(j); 

            index(j)=tmp; 

        end 

    end 

end 

for i=1:length(Manipulated_Degree) 
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    if Manipulated_Degree(index(i))==0 

        connection(i)=0; 

    else 

        connection(i)=1; 

    end 

end 

plot(length(connection):-1:1,connection, '.'); 

ylabel('Connectivity status: largest eigenvalue','fontsize' 

 ,16,'fontname','times') 

xlabel('Index of lements','fontsize',16,'fontname','times') 

ylim([0 2]); 

 

8.2.10 Elements of eigenvector: the second smallest eigenvalue 

% Sample code to calculate the elements of the eigenvector 

corresponding to the second smallest eigenvalue of the adjacency matrix 

and to plot them vs. order as shown in Figure 5.15. Similar code is 

used to plot the elements of the eigenvector corresponding to the 

second smallest eigenvalue based on the normalized Laplacian matrix as 

shown in Figure 5.21. % 

 

clear 

cd('Routeview_2003') 

load AdjacencyMatrix.mat 

[V D] = eigs(Adjacency_matrix,2,'SA'); 

x=V(:,2); 

x=sort(x,'descend') 

p=plot(x,'.') 

set(p,'Color','red') 

 cd ../. 

cd('RIPE 2003') 

clear 

hold all 

load AdjacencyMatrix.mat 

[V D] = eigs(Adjacency_matrix,2,'SA'); 

x=V(:,2); 

x=sort(x,'descend') 

p=plot(x,'.') 

set(p,'Color','blue') 

 cd ../. 

cd('Routeview_2008') 

hold all 

clear 

load AdjacencyMatrix.mat 

[V D] = eigs(Adjacency_matrix,2,'SA'); 

x=V(:,2); 

x=sort(x,'descend') 

p=plot(x,'.') 

set(p,'Color','green') 

cd ../. 

cd('RIPE 2008') 

clear 

hold all 

load AdjacencyMatrix.mat 

[V D] = eigs(Adjacency_matrix,2,'SA'); 
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x=V(:,2); 

x=sort(x,'descend') 

p=plot(x,'.') 

set(p,'Color','black') 

ylabel('Elements of eigenvector of second smallest 

eigenvalues','fontsize',16,'fontname','times') 

xlabel('Rank','fontsize',16,'fontname','times') 

h=legend('RouteViews 2003','RIPE 2003','RouteViews 2008','RIPE 2008'); 

set(h, 'fontsize',16,'fontname','times'); 

 

8.2.11 Elements of eigenvector: the largest eigenvalue 

% Sample code to calculate the elements of the eigenvector 

corresponding to the largest eigenvalue of the adjacency matrix and to 

plot them vs. order as shown in Figure 5.18. Similar code is used to 

plot the elements of the eigenvector corresponding to the largest 

eigenvalue based on the normalized Laplacian matrix as shown in Figure 

5.25. % 

 

clear 

cd('Routeview_2003') 

load AdjacencyMatrix.mat 

[V D] = eigs(Adjacency_matrix,2,'LA'); 

x=V(:,1); 

x=sort(x,'descend') 

p=plot(x,'.') 

set(p,'Color','red') 

cd ../. 

cd('RIPE 2003') 

clear 

hold all 

load AdjacencyMatrix.mat 

[V D] = eigs(Adjacency_matrix,2,'LA'); 

x=V(:,1); 

x=sort(x,'descend') 

p=plot(x,'.') 

set(p,'Color','blue') 

cd ../. 

cd('Routeview_2008') 

hold all 

clear 

load AdjacencyMatrix.mat 

[V D] = eigs(Adjacency_matrix,2,'LA'); 

x=V(:,1); 

x=sort(x,'descend') 

p=plot(x,'.') 

set(p,'Color','green') 

cd ../. 

cd('RIPE 2008') 

clear 

hold all 

load AdjacencyMatrix.mat 

[V D] = eigs(Adjacency_matrix,2,'LA'); 

x=V(:,1); 

x=sort(x,'descend') 
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p=plot(x,'.') 

set(p,'Color','black') 

ylabel('Elements of eigenvector of largest 

eigenvalue','fontsize',16,'fontname','times') 

xlabel('Rank','fontsize',16,'fontname','times') 

h=legend('RouteViews 2003','RIPE 2003','RoutViews 2008','Blue: RIPE 

2008'); 

set(h, 'fontsize',16,'fontname','times'); 


