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ABSTRACT

In this thesis, we present the analysis on power-laws and spectral
properties of the Internet topology at AS level based on Border Gateway Protocol
(BGP) routing datasets collected from two repositories (Route Views and RIPE)

over the period of five years.

Analysis of collected datasets revealed that the two datasets have similar
historical trends in the development of the Internet. Furthermore, the power-law
exponents have not substantially changed over time while spectral analysis
revealed notable changes in the clustering of AS nodes and their connectivity.
This finding indicates that power-laws do not capture all properties of the Internet

graph and are only a measure used to characterize the Internet topology.

The spectral analysis of both the adjacency and the normalized Laplacian
matrices of the associated graphs revealed new historical trends in the clustering
of AS nodes and their connectivity. Clusters of connected nodes were observed
while examining the elements values of the eigenvectors corresponding to the

second smallest and the largest eigenvalues.

Keywords: Traffic collection; Internet topology; Autonomous System (AS);
Broader Gateway Protocol (BGP); Power-law; Spectral analysis.
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1. INTRODUCTION

1.1 Overview

The Internet network has grown from a few hundred nodes of Autonomous
System (AS) to many thousands of AS nodes with millions of users without
centralized control. Despite the increase in size and complexity, the performance
of the Internet network is remarkable. The Internet network structure, called the
Internet topology, has a great impact on the performance of network protocols
and applications. Thus, understanding the properties of the Internet topology is
important for the development of new protocols, algorithms, and new network
infrastructure. These properties are also useful to realistically model the Internet
topology for evaluation of various protocols and algorithms and for testing

purposes.

Various properties of the Internet topology such as power-laws and
clustering nature of ASes have been identified. These properties of the Internet
topology have been analyzed by observing the graphs capturing the Internet
structure at AS level [18], [23], [29], [33], [48], [52]. Thus, analysis of the Internet
topology graphs relies on mining data and capturing information about

Autonomous Systems [1].

The routing table of Border Gateway Protocol (BGP) routers contains
reachability information of ASes from which the Internet topology at AS level can

be inferred. BGP routers use BGP routing protocol, which is an inter-autonomous



system routing protocol that exchanges routing reachability information between
peers. Every BGP router connected to ASes receives reachability information
from its neighbours and this information consists of the list of ASes between the
source AS and the destination AS. Such AS information from BGP routing tables
is used to infer the logical connection between ASes and to infer the Internet

topology at AS level.

Route Views and Réseaux IP Européens (RIPE) projects collect the BGP
routing table and provide the research community an access to their database for
analysis. Route Views began the collection of BGP routing datasets from
participating ASes located in North America in November 1997. Meanwhile, RIPE
started the collection process from participating ASes located mostly in Europe in
October 1999. Other tools such as traceroute provide the route including
intermediate routers information over the network between two systems while the
Looking Glass project provides servers that give public a remote access to view
routing information of the user network. However, these datasets do not provide
historical views of the datasets as available from Route Views and RIPE
datasets. The research community [18], [23], [29], [33], [48], [52] has extensively
used Route Views and RIPE datasets to observe the Internet topological
characteristics. We, thus, adopt the datasets from Route Views and RIPE

projects for the analysis of power-laws and spectral properties of the Internet
topology.

The analysis of power-laws and spectral properties of the Internet

topology has been based on the connectivity matrix of a graph called the



adjacency matrix. This matrix has element value 1 in the position (i, j) if there
is an edge between node i and j. Otherwise, the element value is zero. The

eigenvalues, called spectrum, and eigenvectors of such matrix are related to
many graph properties such as connected components and the diameter of the
network. Thus, the spectral analysis is associated with the analysis of the

eigenvalues and the eigenvectors of the matrices.

Power-law is a polynomial expressed in the form of Y oC Xa, where 'y

and X are the measures of interest and exponent a is a constant. The existence
of various power-laws such as node degree vs. node rank, frequency of node
degree vs. node degree, number of nodes within a number of hops vs. number of
hops, and eigenvalue of the adjacency matrix vs. its index were observed in 1999
[29]. These power-laws were observed while analyzing the adjacency matrix of
AS level Internet graph derived from Route Views datasets. The subsequent
revisions regarding the existence of power-laws were also performed [48].
However, the datasets from Route Views reveal heavy tailed node degree
distribution that is close to Weibull distribution (a continuous probability
distribution). The power-laws are present only in the tail of the distribution. Thus,
additional datasets are needed to capture the Internet topology in order to

analyze its properties [23].

Another method to study the Internet topology is to employ the spectral
analysis, which provides information about structural properties of graphs such

as clustering and connectivity of graph nodes. The eigenvalues and the



associated eigenvectors of a graph have been used to find the clusters and
connectivity of AS nodes in the Internet topology [22], [34]. The eigenvectors
corresponding to small eigenvalues tend to capture the local characteristics such
as connectivity of nodes. Similarly, the eigenvectors corresponding to the large
eigenvalues capture the global characteristics of the graph such as clusters of
connected nodes based on geographic regions [34]. The clusters of ASes based
on the largest eigenvalue are consistent over time and are considered to be a

robust characteristic to represent the Internet topology [34].

Based on the power-laws property of the Internet topology, a number of
topology generator tools such as the Boston University Representative Internet
Topology Generator (BRITE) [44] were developed. However, a combination of
spectral properties and power—laws properties may be needed while developing

the Internet topology generators [52].

In this thesis, we present historical trends in the development of the
Internet topology by analyzing BGP routing datasets collected from two
repositories (Route Views and RIPE) over a period of five years. We analyze the
evolution of following power-laws: 1) node degree vs. rank; 2) CCDF of node
degree vs. node degree; and 3) eigenvalue vs. index. We also observe the
spectral properties based on both the adjacency matrix and the normalized
Laplacian matrix in order to find the clustering and connectivity characteristics of
AS nodes. Finally, we analyze the connectivity and clustering properties of the
Internet topology by examining element values of the eigenvectors corresponding

to the second smallest and the largest eigenvalues.



1.2 Motivation

Since the discovery of power-laws in 1999 [29], the Internet topology has
increased in size and complexity. The number of Autonomous Systems has
increased approximately ten times over the last ten years [3], as shown in Figure
1.1. The constant growth of the Internet has made it difficult to develop its
representative model. However, certain characteristics of the Internet topology
remain unchanged in spite of its exponential growth. We analyze the Internet
topology in search of such invariants at AS level, analyze the existence of
power-laws, and perform spectral analysis based on the adjacency and the

normalized Laplacian matrices.
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35000 | / -
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Figure 1.1 The cumulative number of assigned AS numbers over time [3].

In a simple example of a small world network with 20 nodes [55], we
observed that the elements of the eigenvector corresponding to the largest

eigenvalue of the adjacency matrix indicate clusters of connected nodes. Values



of these elements divide nodes into clusters depending on the degree of the
nodes. No such clustering was observed based on the elements of the
eigenvector corresponding to the second smallest eigenvalue. Section 5.3

presents detailed description of these observations.

In search of such clustering properties of ASes in the Internet topology
over the time, we perform spectral analysis based on both the adjacency matrix
and the normalized Laplacian matrix. We observe patterns of connected AS
nodes in the Internet topology based on the adjacency matrix. We also examine
the elements of the eigenvectors corresponding to the second smallest and the

largest eigenvalues of both matrices.

1.3 Findings

The analysis of Route Views and RIPE datasets shows similar trends in
the development of the Internet topology. Despite the growth of the Internet and
increasing number of users, the exponent values of various power-laws such as
node degree vs. rank, CCDF of node degree vs. node degree, and the
eigenvalue vs. index have not substantially changed over the period of five years.
We also observe a new property that the eigenvalues based on the normalized
Laplacian matrix also exhibit eigenvalue vs. index power-law property similar to
eigenvalue power-law based on the adjacency matrix. They have, as expected,

different values for power-law exponents.

By plotting the elements of the adjacency matrix, we observe various

patterns of connected AS nodes over the years. While power-laws properties of



the Internet topology graphs have not substantially changed over the years, the
spectral analysis of the adjacency and the normalized Laplacian matrices of the
associated graphs reveals notable changes and new historical trends in the

clustering of AS nodes and their connectivity.

1.4 Organization of thesis

The organization of the thesis is as follows. The Internet structure and
routing, BGP routing protocols, Autonomous System, and description of Route
Views and RIPE datasets are presented in Chapter 2. Chapter 3 presents the
definition of various power-laws and a short introduction to spectral analysis.
Related work on the analysis of the Internet topology is also included. Chapter 4
contains the analysis of power-laws using Route Views and RIPE datasets.
Chapter 5 describes spectral analysis of the Internet topology based on Route
Views and RIPE datasets. We conclude with Chapter 6. MATLAB sample code is

presented in the Appendix.



2. INTERNET ROUTING AND DESCRIPTION OF BGP
DATASETS

In this Chapter, we introduce the Internet structure, its routing procedures,
notion of Autonomous System, BGP routing protocol, and give snippets of a
routing table. We describe Route Views and RIPE datasets and also provide
sample of collected data and an example of the Internet topology graph at AS

level.

2.1 Internet structure

The Internet architecture is based on the Transmission Control
Protocol/Internet Protocol (TCP/IP) suite. TCP/IP provides a reliable transmission
of data between two end hosts in the Internet. The two interconnected nodes can
communicate with TCP/IP protocol regardless of their geographical location and

this very feature enables the Internet architecture to grow to a global scale.

An individual node accesses the Internet through a local Internet service
provider (ISP). The local ISPs are connected to a regional network and the
regional networks in turn are connected to a national network thereby culminating

into the global network.

Every host on the Internet has a unique numerical address, called an
Internet Protocol (IP) address that is used to route packets across the Internet to

and from that host. When a host communicates with another host in the Internet,



each packet from the source host contains the source and destination host IP
addresses and is sent to the nearest router. The IP addresses of the source and
destination are stored in the header of every packet that flows across the

Internet.

An Internet router typically connects several different networks. For
example, university network consists of several interconnected routers where
only few routers are connected to the wide area network (WAN). Each packet
goes up the hierarchy of the Internet network to reach its destination network
where local routers deliver packet to the destination address. The router uses a

routing algorithm to route packet from the source to the destination host.

The router employs the Interior Gateway Protocols (IGP) to route Internet
packets within a local area network such as a university network. The two main
types of IGP protocols are Routing Information protocol (RIP) [10] and Open
Shortest Path First (OSPF) protocol [11]. RIP uses the distant vector algorithm,
also called the Bellman-Ford algorithm to calculate the routing paths. OSPF
protocol uses the Shortest Path First (SPF) algorithm, also called the Dijkstra's
algorithm. OSPF routers keep the topology map of the network and send updates
of the routing information to other routers in the network. The convergence time
of the SPF algorithm is faster than the distant vector algorithm. In addition to the
RIP and OSPF protocols, there are various proprietary network protocols such as
Interior Gateway Routing Protocol (IGRP) and Enhanced IGRP developed by

Cisco Systems. Enhanced IGRP uses the distance vector algorithm and distance



information as IGRP. However, the convergence properties and the operating

efficiency of Enhanced IGRP is better than IGRP.

The Exterior Gateway Protocol (EGP) such as BGP-4 is used for routing
packets between two different routing domains. BGP-4 is an inter-autonomous
system routing protocol used to exchange routing reachability information
between ASes. Every BGP-4 router that connects ASes receives reachability
information from its neighbours. It then chooses routes with the shortest path,
updates its routing table, and announces the path to other neighbouring routers
according to the routing policy. The network reachability information consists of
the list of every AS between the source and the destination ASes. Thus, AS
information from BGP routing tables is used to infer logical connection between

ASes and to infer the Internet topology at AS level.

2.2 Autonomous Systems (ASes)

The Internet is composed of a collection of routing domains called
Autonomous Systems. The AS is a network or a group of networks with a
common routing policy. For example, an AS consists of a university network, a
business enterprise, or a corporation network. The network within an AS uses a
common IGP to route packets. However, two ASes use BGP to share routing
information. BGP information at each AS router is kept consistent by receiving
BGP update messages from BGP routers of other ASes. Each AS is identified by
a unique number known as Autonomous System Number (ASN) assigned by the

Internet Assigned Number Authority (IANA).
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IANA allocates the Internet Protocol addresses from the pool of
unallocated addresses to the Regional Internet Registries (RIR) according to the
global policy. An AS consists of a range of IP addresses and the Internet Service
Providers (ISPs) assign these IP addresses to its users. ISPs obtain IP
addresses from a Local Internet Registry (LIR), National Internet Registry (NIR),

or from their appropriate RIR:

« African Regional Internet Registry (AfriNIC), Africa region

« Asia Pacific Network Information Centre (APNIC), Asia Pacific region

e American Registry for Internet Numbers (ARIN), North America region

e Latin American and Caribbean Internet Address Registry (LACNIC),
Latin America and Caribbean Islands region

e Réseaux IP Européens Network Coordination Centre (RIPE NCC),

Europe, Middle East, and Central Asia region.

The Internet topology can be analyzed at two different granularities:
router level and the Autonomous System level, also called the Inter-domain level.
At Autonomous System level, each AS domain is represented as a node. Links
between two nodes represent the logical connection between two ASes. Thus,
the AS graph represents the connections between ASes. Each AS is represented
by an ASN. The AS numbers range from 0 to 65,535. The existing ASes are
assigned by the regional IANA registries. IANA designates the remaining AS
numbers for private use. Certain AS numbers are reserved and do not appear in

the Internet graph at AS level.
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The assigned AS numbers are listed in Table 2.1. IANA assigned only
33,984 AS numbers in 2003 and 49,150 AS numbers in 2008. In 2003, most
unassigned AS numbers were between 34,000 to 64,000. In 2008, the range of

unassigned AS numbers was between 49,000 to 64,000.

Table 2.1  AS numbers assigned by IANA.

Number/Date 2003-07-31 2008-07-31
0-30979 = 30980 0-30979 = 30980
31810-33791=1981 | 30980-48127 =17147
Assigned AS numbers 64512-65534 = 1022 | 64512-65534 = 1022
65535 = 1 65535 = 1
Total number of assigned ASes | 33984 49150

2.3 Border gateway protocol (BGP)

BGP is a robust and scalable routing protocol widely used in TCP/IP
networks to exchange routing reachability information with other BGP systems.
BGP maintains routing tables, transmits routing updates, and provides routing
decisions based on routing metrics such as link bandwidth, network delay,
number of hops, path cost, and load. BGP uses the Classless Inter-Domain
Routing (CIDR) in order to reduce the size of the Internet routing table. CIDR
allows routers to group routes together in order to minimize the number of routing

information carried by the core routers.

BGP uses TCP as its transport protocol. That eliminates explicit

implementation of retransmission, acknowledgment, and sequencing
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mechanisms. Two systems exchange messages to open and to confirm the
connection through the TCP connection. BGP routers exchange routing

information using four types of messages [9]:

open

updates

notification

keep-alive.

Open

After a TCP connection is established, each BGP peer sends an open
message to open an initial connection. This is the first message sent between
peers after the TCP connection is established. BGP sends keep-alive message
between peers to confirm the open message. The open message has additional
header that contains protocol version, sender ASN, hold time, BGP identifier,

authentication code, and authentication data.

Updates

The update message is used to transfer and update routing information
between BGP peers. As the routing table changes, incremental updates are sent
to peers using update message. The update information allows routers to
construct a consistent view of the network topology that describes the
relationships between various ASes. The update message has additional header
that contains total path attributes length, path attributes, and network layer

reachability information.
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Notification

The notification message is sent to any connected peer in response to
errors or special conditions. If a connection between the connected routers
encounters an error, notification message is sent to announce the error and to
close the active connection between the routers. The header of notification

message contains error code, error sub-code, and data.

Keep-alive

The keep-alive message is used by BGP router to determine whether the
peers are reachable or not. BGP router sends the keep-alive messages
periodically between the peers in order to ensure the active connection between
them. Thus, these messages help avoid active sessions from expiring. The keep-
alive messages contain only BGP message header format: marker, length, and

type of the message.

2.3.1 Cisco router data

Cisco systems implemented customized version of BGP that runs on the
proprietary operating system used by its routers [8]. The routing table
information from Cisco routers can be collected in different formats using various
tools and commands such as show ip bgp command that displays entries in the
BGP routing table of Cisco routers. Table 2.2 shows snippets of datasets from a
BGP routing table [2]. The first row shows symbols of status codes that appear in
the first two character positions of each line of a route and indicates the status of

the route. The second row shows symbols of origin codes that appear in the last
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character of each line of a route and indicate BGP origin attribute. The remaining

rows shown in Table 2.2 contain the following information:

Table 2.2  Sample data of a BGP routing table.

Status codes: s suppressed, d damped, h history, * valid, > best, i internal
Origin codes: i IGP, e EGP, ? incomplete
Network Next hop Metric | LocPrf | Weight Path
4.25.52.128/26 | 203.62.252.21 0 78 1221138179 1
1221 16779 1
*
203.62.252.21 2 189 2
4513 1755 1
*
198.32.162.18 | 51804 0 8 189 2
* > 4.0.0.2 18740 0 9 11897

The network column contains BGP prefix for a route. This column includes
prefix length or mask unless the network has a pre-CIDR length of 0, 8, 16, or 24
bits corresponding to a default route (0 bits) or a class A, B, or C. The blank field

indicates another route for the same prefix that appeared last.

The next hop column contains the address to which traffic for the prefix
will be forwarded. It shows BGP next hop attribute. The address 0.0.0.0 indicates

that the next hop is directly connected.

The metric column contains a non-transitive metric value or cost. The
lowest metric value is preferred while selecting a route. It has an upper bound of

32

27 -1.
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The LocPrf column contains a local administrative preference attribute of

BGP. A higher value is preferred while selecting a route.

The weight column contains the local value that is not exchanged between
BGP peers. It shows an administrative preference particular to Cisco routers. The

highest value is preferred while selecting a route.

The path column contains BGP AS path attribute. It shows the
Autonomous Systems through which a route has been exchanged before it was
received by the router. If the field is empty, the route was generated by the local
Autonomous System. When considered in the BGP route selection process, path

having a few numbers of ASNs is preferred.

The BGP routers share routing information with each other during
withdrawal or announcement of a route. The syntax of routing information for
withdrawn route is |BGP protocol| unix time in second| Withdraw or Announce|
Peer IP| Peer AS| Prefix|. Example of routing table data for such withdrawn route

is IBGP4MP | 1052452930| W| 198.58.5.254| 3727| 194.127.245.0/24|.

The syntax of routing information for route announcement is |BGP
protocol| unix time in seconds| Withdraw or Announce| Peer IP| Peer AS| Prefix|
AS_PATH| Origin|] Next Hop| Local Preff MED| Community|] Atomic AGG|
AGGREGATOR|. Example of routing table data for such route announcement is
ITABLE_DUMP| 1050122432| B| 213.140.32.184| 12956/ 0.0.0.0/0| 12956| IGP|

213.140.32.184| 0] 0| | NAG] |.

16



2.3.2 Zebra server data

The Zebra software manages the TCP/IP based routing protocols such as
BGP4 [8]. The server that uses the Zebra routing software is called Zebra server.
This server has built-in mechanism to collect BGP routing table datasets by using
the dump bgp routes-mrt command. It dumps complete BGP routing data stream
of each peer and various state information in Multi-threaded Routing Toolkits
(MRT) format. This format is used to export routing protocol messages, state
changes, and routing information base contents. The route_btoa tool is used to
read MRT data and to extract it in ASCIl format. There are two forms of data
representation: human-readable and machine-readable. The human-readable
form displays a paragraph for each MRT record. The machine-readable form
presents the same data separated by "|" and occupies a single line. We use

machine-readable format to extract routing information.

The syntax of routing information to withdraw routes is [BGP protocol| unix
time in seconds| Withdraw or Announce| Peer IP| Peer AS| Prefix|. Example of
routing table data for such withdrawn route is |[BGP4MP| 1052452930| W]

198.58.5.254| 3727| 194.127.245.0/).

The syntax of routing information to announce routes is |BGP protocol|
unix time in seconds| Withdraw or Announce| Peer IP| Peer AS| Prefix|
AS_PATH| Origin| Next_Hop| Local Preff MED| Community| Atomic AGG|
AGGREGATOR|. Example of routing table data for such announced route is

IBGP4AMP| 1052452919| A| 198.58.5.254| 3727| 195.28.224.0/19| 3727 2914
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6730 8640| IGP| 198.58.5.254| 0| 0] 2914:420 2914:2000 2914:3000 3727:380|

AG| 195.141.213.58.

2.4 Description of Route Views and RIPE datasets

Route Views project collects BGP routing tables from multiple
geographically distributed BGP Cisco routers and Zebra servers every two hours.
Two Cisco routers and two Zebra servers are located at University of Oregon,
USA. The remaining five Zebra servers are located at Equinix-USA, ISC-USA,
KIXP-Kenya, LINX-Great Britain, and DIXIE-Japan [2]. Most participating ASes in

this project are located in North America.

The Routing Information Service (RIS) is a Réseaux IP Européens
Network Coordination Centre (RIPE NCC) [12] project that collects and stores
the Internet routing data using Remote Route Collectors (RRCs) at various
Internet Exchanges. An RRC is a daemon running to collect default-free BGP
routing information. These RRCs are peered with local operators to collect
routing datasets. Several RRCs have been deployed in Europe, North America,
and Asia. However, most of the participating ASes are located in Europe. The
datasets are collected from seventeen different locations: RIPE NCC-
Amsterdam, LINX-London, SFINX-Paris, AMS-IX-Amsterdam, CIXP-Geneva,
VIX-Vienna, Otemachi-Japan, Stockholm-Sweden, San Jose-USA, Zurich-
Switzerland, Milan-ltaly, New York-USA, Frankfurt-Germany, Moscow-Russia,
Palo Alto-USA, Sao Paulo-Brazil, and Miami-USA. The RRCs in each location

collect entire routing tables. The collected routing data are then transferred every
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eight hours through an incremental file transfer utility called rsync to a central

storage area at the RIPE center in Amsterdam.

The routing datasets collected from Route Views and RIPE projects
contain BGP routing information from the participating ASes located in North
America and in Europe. In contrast to the centralized way of collecting routing
data in Route Views projects, RIPE applies a distributed approach to the data
collection. The regional growth of ASes is larger and more dynamic in Europe
than in North America [28]. Route Views and RIPE projects collect datasets from
Border Gateway Protocols (BGP) routing tables and have been extensively used
by the research community [18], [23], [29], [33], [48], [52]. Route Views began the
routing data collection process in November 1997 while RIPE is active since
October 1999. Other sources of routing data such as traceroute and Looking
Glass servers [6] do not provide such historical information. Traceroute provides
the route including intermediate routers information over the network between
two systems. Looking Glass project [6], on the other hand, provides servers that
give public remote access to view routing information of the user network. These
servers are run by ISPs. Thus, we analyze various graph properties of the
Internet topology based on the datasets collected from Route Views and RIPE

projects.

In this thesis, we evaluate and compare the Internet graph properties from
Route Views and RIPE datasets over the period of five years: 2003-2008. We
analyze the datasets collected at 00:00 am on July 31, 2003 and at 00:000 am

on July 31, 2008. Datasets from two different locations from Route Views and
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datasets from ten different locations from RIPE are selected for 2003. Datasets
from six different locations from Route Views and datasets from ten different
locations from RIPE are selected for 2008. The number of ASes observed in the

analyzed datasets from Route Views and RIPE projects are shown in Table 2.3.

Table 2.3 Number of ASes observed in Route Views and RIPE datasets.

Date 2003-07-31 00:00 | 2008-07-31 00:00
Route Views 15,826 29,166
RIPE 15,777 29,197

2.4.1 Sample datasets

Samples of datasets from Route Views and RIPE projects are:

Sample data from Route Views project:

« TABLE_DUMP| 1050122432| B| 204.42.253.253| 267| 3.0.0.0/8| 267
2914 174 701| IGP| 204.42.253.253| 0| 0| 267:2914 2914:420
2914:2000 2914:3000| NAG] |

« TABLE_DUMP| 1050122432 B| 213.140.32.184| 12956 0.0.0.0/0|

12956| IGP| 213.140.32.184] 0| 0] | NAG] |.

Sample data from RIPE project:

« TABLE_DUMP| 1041811200| B| 212.20.151.234| 13129| 3.0.0.0/8|
13129 6461 7018 80| IGP| 212.20.151.234| 0| 0| 6461:5997

13129:3010| NAG] |
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« TABLE_DUMP| 1041811200| B| 193.148.15.85| 3257| 3.0.0.0/8| 3257
1239 7018 80| IGP| 193.148.15.85] 0] 99| 3257:3000 3257:3030

3257:5044| NAG| |.

2.4.2 BGP datasets and Internet topology

The routing table datasets of a BGP router are used to infer the Internet
topology graph at AS level. For example, the AS path 267-2914-174-701 of the
first sample data of Route Views project in Section 2.4.1 can be located in the

sample Internet graph shown in Figure 2.1.

21889

Figure 2.1. Example of the Internet graph derived from BGP routing table datasets.

21



3. POWER-LAWS AND SPECTRUM OF THE INTERNET
GRAPHS

Power-laws and spectral properties of the Internet topology have been
analyzed based on the adjacency matrix and the normalized Laplacian matrix of
graphs that capture the Internet topology at AS level [34][17], [48], [52]. In this
Chapter, we define the Internet topology at AS level in terms of matrices. We
describe various power-laws associated with the Internet topology graph and
summarize related work. We also define eigenvalues and eigenvectors of a
matrix and explain their significance in spectral analysis of the Internet topology.
Furthermore, we present work related to the analysis of the Internet graph using

spectral analysis.

3.1 Internet topology and graph theory

An Internet AS graph G(V,E) is an undirected, unweighted graph without
self-loops and multiple edges from one node to another with V set of vertex and
E set of edge. The graph G(V,E) represents a set of ASes connected via
logical links. The number of edges incident to a node in an undirected graph is
called the degree of a node. Two nodes i and | are called adjacent if they are
connected by a link. The Internet network at AS level can be represented by the
adjacency matrix A(G) as:

1 ifiand jareadjacent
0 otherwise

A(i,j)Z{
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A diagonal matrix D(G) associated with A(G), with row-sums of A(G) as
the diagonal elements of D(G), indicates the degree of each node. The

Laplacian matrix of a graph G(V,E) is defined as:
L(G) = D(G) — A(G).

The eigenvalues of L(G)are closely related to certain graph invariants. For
example, the spectrum of L(G) is the collection of all eigenvalues and contains 0
for every connected graph component. The normalized Laplacian matrix NL(G)

is defined as:

-

1 if i=jandd, =0

NL(, j)=+1— if iand jareadjacent

1
+/ didj

0 otherwise,

“

where di and d. are the degrees of nodes | and j, respectively. The

J
eigenvalues of the normalized Laplacian matrix lie in the range between 0 and 2.
This property enables the comparison of the distribution of the eigenvalues of two
distinct graphs if there is a large difference in their size. Various power-laws may

be associated with the graph properties [29], [48].

3.2 Power-laws and the Internet topology

Various power-laws properties are derived using linear regression line. In

this Section, we define power-laws and linear regression based on the least
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square approximation method and summarize work related to power-laws

properties of the Internet topology.

3.2.1 Power-laws
Power-laws have been extensively used to describe and model the

a
Internet at AS level. Power-laws are expressed in the form of Y o€ X | where

y and X are the measures of interest and exponent @ is a constant. The

variables y and X has linear relationship when plotted in log-log scale:

y =10° x x®

logy =10g10° + log x®
logy =b+axlogx

y' =b+ax.

The presence of power-laws in nhode degree vs. node rank, frequency of
node degree vs. node degree, complementary cumulative distribution function
(CCDF) of node degree vs. node degree, number of nodes within a number of
hops vs. number of hops, and eigenvalue of the adjacency matrix vs. its index

were observed in [29] and [48].

The node degree power-law is observed while examining the degree of a
node. The number of edges incident to a node is called a node degree. When the

nodes are sorted in decreasing order of node degree and plotted vs. the rank

according to its index in the sequence, the power-law is observed as dV oC I’VR ,
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where dy is the degree of a node V, Iy is the rank of node Vv, and R is the
exponent of the power-law.

The frequency vs. degree power-law implies fd oc do, where fd is
the frequency of degree d and the constant O is the power-law exponent. The

frequency fd of a degree d is the number of nodes with degree d .

The CCDF of node degree vs. node degree power-law implies

Dd ocd D, where Dd is the CCDF of a node degree d and D is the CCDF

power-law exponent. The CCDF is defined as F, (X)=P(X >X), where
P(X > x) is the probability that the random variable X has a value greater

than X. Thus, CCDF of a node degree d indicates the percentage of nodes that

have degree greater than d and shows the distribution of the degree of a node.

.E
Similarly, the eigenvalue vs. its index power-law implies /li oc | , where

}“i is the eigenvalue of the matrix associated with the increasing sequence of

numbers i, the constant £ is the power-law exponent associated with the

eigenvalue of the matrix.

3.2.2 Linear regression

Linear regression approach is used to model the power-law relationship

between two variables. The exponent of a power-law is calculated by determining
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the slope of the estimated linear regression line. The technique is based on the

least square approximation.

For each set of data points, we derive a straight line Yy = b + ax through
the available set of points x and y such that sum of squares of distances from set

of data points to the straight line Y = b + ax is minimum, where

2
_TyEX —TXTyX

b
nEx’—(=x)°  ang
_NIyX-3IXzy
nzx? —(zx)%

The correlation coefficient, also called the cross-correlation coefficient,

provides the quality measure of a least square fitting to the original data. For

linear least squares fitting, the coefficient a in y:b+ax IS given by

_NIYX—3IXTY
nzx? —(zx)?

The coefficient @ in X=b +a Yy is given by

. NZYyX—xXzy
nzy® —(y)?

The correlation coefficient denoted by r = aa is expressed as

o (MTxy->x¥y)°
(T x* - (EZx)MTy> - y)?)
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The correlation coefficient is calculated between linear regression line and
plotted data. The correlation coefficients for linear fits to data having different
data distributions are shown in Figure 3.1. The correlation coefficient value of 1.0
indicates that the data points are exactly on a line. Thus, a high correlation

coefficient indicates the existence of power-law.
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Figure 3.1 Correlation coefficients for linear fits to data having different data
distributions.

3.2.3 Power-laws and the Internet topology

Analyzing the Internet topology using randomly generated graphs, where
routers are represented by vertices and transmission lines by edges, has been
widely replaced by exploring properties of the Internet topology at AS-level [33].

Datasets collected from BGP routing tables of Route Views project [2] indicate
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that the Internet topology is characterized by the presence of various power-laws.
Four different power-laws were observed when considering a node degree vs.
node rank, frequency of node degree vs. node degree, a number of nodes within
a number of hops vs. number of hops, and eigenvalue of the adjacency matrix
vs. its index [29], [48]. The existence of these power-laws in the Internet topology
indicates highly skewed distributions of various topology properties measured by
power-law exponents [29], [48]. Some of these conclusions were subsequently
revised by considering a more complete AS-level representation of the Internet

topology [18], [23].

Q. Chen et al., [23] reported that BGP datasets collected by Route Views
project from limited vantage points represent a partial view of the Internet
topology. Thus, the degree distribution power-laws observed in [29] may not exist
in the Internet topology. These power-laws are only consistent with graphs of
ASes from Route Views datasets [2] and are inconsistent when analyzing
extended graphs that have a more complete view of AS connections. The
comparison of the connectivity of ASes derived from BGP routing tables of forty-
one individual ASes and the information from the Looking Glass project [6] to the
connectivity of ASes derived from Route View BGP datasets showed that the AS
paths derived from BGP routing table do not completely capture the Internet
topology. Furthermore, datasets from Route Views project reveal heavy tailed
node degree distribution that is close to Weibull distribution. Thus, only the tail
exhibits power-laws [23]. Weibull distribution is a continuous probability

distribution with the probability density function:
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(kI A)(x/ ) e D" if x>0

f(x)=
0 if x<0,

where k > 0 is the shape parameter and A > 0 is the scale parameter.

P. Mahadevan et al., [42] compared the power-law exponents calculated
using three different datasets, traceroute data from the Skitter project of
Cooperative Association for Internet Data Analysis (CAIDA) [4], Route Views
datasets [2], and RIPE WHOIS database [12]. The Skitter project uses a tool
called skitter to collect the BGP routing table. RIPE WHOIS database provides
routing datasets of RIPE Internet routing registries (IRR). The IRR provide
routing information in order to validate BGP messages and to map the AS
number at origin to a list of networks. This routing information is stored in WHOIS
database of individual registries. The routing data from RIPE WHOIS database is
obtained using whois command (whois -h whois.ripe.net AS <ASN>). The
comparison of the power-law exponents revealed that Route Views and Skitter
project datasets obey power-laws characteristics. However, RIPE datasets do
not follow power-laws due to excessive number of nodes with minimum node

degree [42].

In order to find the relationship between ASes, D. Magoni et al., [40]
analyzed various metrics such as connectivity and degree distribution of ASes in
the Internet topology graph emanated from BGP routing datasets collected by
Route Views project. The result showed that in addition to power-laws reported in
[29], the Internet topology exhibits four different power—laws associated with the

shortest path between the ASes [40]. The shortest path between any two nodes
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is the minimum number of nodes that must be traversed from one node to
another. The comparison of the power-law exponents for the paths having
various length between a pair of ASes confirmed their existence in the shortest
path between a pair of ASes. However, the observed variations in power-law
exponents suggest that the power-law exponents might not be consistent over

time [40].

Rationale of power-laws

In order to analyze the cause of power-laws in the Internet topology, A.
Medina et al., [43] considered four different factors: 1) preferential connectivity of
a new node to existing nodes, 2) incremental growth of the network, 3)
distribution of nodes in space, and 4) locality of edge connection. Preferential
connectivity indicates that a new node is more likely to be connected to existing
nodes that are highly connected than to nodes that are less connected.
Incremental growth implies that networks are formed by continual addition of new
nodes. Hence, the size of the network gradually increases. Distribution of nodes
in space indicates that nodes are distributed in space according to skewed
(heavy-tailed) distribution. Locality of edge connection implies the tendency of a
new node to connect to the existing nodes that are closer in distance. A. Medina
et al., [43] generated topologies having nodes between 500 and 15,000 with and
without incremental growth and preferential connectivity using BRITE [44],
analyzed these synthetically generated topologies, and observed the presence of
power-laws. The result showed that some of the generated topologies do not

obey node degree vs. rank and frequency of node degree vs. node degree
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power-laws. However, eigenvalue power-law existed in all topologies but with
different value of the power-law exponent. The simulated topologies using
preferential connectivity and incremental growth have similar power-laws as the
real Internet topologies. Thus, the Internet topology having power-laws exhibits
the properties of preferential connectivity and incremental growth and the power-

law exponents are the metrics used to verify the simulated Internet topology [43].

Power-laws and topology generators

The Internet topology is considered to have a scale free network structure.
In order to find the best metrics that generates a large scale graph structure, H.
Tangmunarunkit et al., [51] generated the Internet topology graph using various
topology metrics such as neighbourhood size (expansion), the size of a cut-set
for a balanced bi-partition graph (resilience), and the minimum communication
cost spanning tree (distortion). They reported that the network generator based
on the degree distribution more accurately captured the large scale structure of
the measured topology. Furthermore, the degree-based generator produces a
form of hierarchical topology that closely resembles the hierarchical nature of the
Internet topology [51]. Considering the Internet topology as a hierarchical
structure, T. Bu et al., [15] introduced an algorithm based on the decomposition
technique to understand how well the power-law graphs capture the
interconnection structure such as hierarchical structure of the Internet graph. The
Internet AS graph and the graphs produced by topology generators based on

power-laws distribution show similar hierarchical structure [15].
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P. Mahadevan et al., [42] analyzed the synthetic topology generated using
Power-Laws Random Graphs (PLRG) [13] and compared it with traceroute data
from the Skitter project of Cooperative Association for Internet Data Analysis
(CAIDA) [4], Route Views datasets [2], and RIPE WHOIS database [12]. The
PLRG generator uses power-law exponents as an input to create a topology. For
a given number of nodes and power-law exponent, PLRG assigns degrees to
nodes based on the power-law distribution. It then randomly matches degrees
among all nodes generating a topology. The analysis indicated that PLRG model
failed to recreate RIPE WHOIS graph since its node distribution does not follow
power-laws. However, the comparison of the graphs emanated from Skitter and
Route Views datasets to those emanated from PLRG topology generator
revealed that the generated topologies do not accurately capture the important
properties such as joint degree distribution and clustering properties of Skitter

and Route Views graphs [42].

Various characteristics of the Internet topology indicate complex behaviour
of the Internet. Based on the observed properties of the Internet, different
topology generators such as Waxman, PLRG, Barabasi-Albert (BA) model, and
the Internet Topology Generator (Inet) were developed. In Waxman topology
model, the nodes of the network are uniformly distributed in the plane and edges
are added according to probabilities that depend on the distances between
nodes. BA model implements the power-laws properties based on the
preferential attachment of nodes in order to generate the Internet topology. The

Inet model calculates the frequency-degree and rank-degree distributions. It then
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assigns degrees to each node according to these distributions forming a
topology. The comparison of the topology generators reveals that no single
topology generator can capture all the characteristics observed in the present

state of the Internet [15].

3.3 Spectral analysis of the Internet topology

In this Section, we define eigenvalues and eigenvectors of a matrix and
their role in spectral analysis of the Internet topology. We also present work
related to the analysis of clustering and connectivity properties of AS nodes in

the Internet topology based on spectral analysis.

3.3.1 Eigenvalues and eigenvectors

An AS graph constructed from the BGP routing tables is undirected and
does not contain self-loops. Thus, the adjacency matrix of such graph is
symmetric and has a complete set of real eigenvalues and an orthogonal

eigenvector basis. The definition of eigenvalue follows:

Let X be an n-dimensional real vector such that X is a function of the
vertices of graph G, then X is called the eigenvector of A with eigenvalue A if
and only if it satisfies the eigenvalue equation AX = AX. The eigenvalue A of

A corresponding to the eigenvector X is a scalar quantity.
Every nxn real symmetric matrix A has spectrum on n orthogonal
eigenvectors €;,€,,€5,...,8, with real eigenvalues 43 =21, 2 45,2 4,.

The set of eigenvalues of the adjacency matrix is known as the spectrum of a
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graph. The analysis of spectrum can be performed for any matrix with real
spectrum. The eigenvalues of a matrix are closely related to certain graph
invariants. Furthermore, the eigenvalues of a network graph are associated with
topological characteristics of the network such as number of edges, spanning
trees, connected components, diameter of the network, presence of cohesive

clusters, long paths and bottlenecks, and randomness of the network.

The second smallest eigenvalue

The second smallest eigenvalue of the Laplacian matrix of a graph G is
called the algebraic connectivity of the graph [32]. This eigenvalue is greater than
0 iff G is a connected graph. This indicates that the number of times 0 appears
as an eigenvalue of the Laplacian matrix is equal to the number of connected
components in a graph. The algebraic connectivity also provides information

about an average distance of graph nodes.

The algebraic connectivity is related with the usual vertex and edge
connectivity of a graph [31], [32]. If a graph G gets disconnected by removing
minimum K vertices together with the adjacent edges, then the graph is said to
have k vertex connectivity. Similarly, if a graph G gets disconnected by
removing minimum K edges, then the graph is said to have k edge connectivity.
The relationships between the algebraic connectivity and the vertex and edge
connectivity are described in [31], [32]. For example, a(G) < v(G) < e(G),

where a(G) is the algebraic connectivity, v(G) is the vertex connectivity and

e(G) is the edge connectivity of a non-complete graph G.
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The magnitude of the second smallest eigenvalue indicates the
robustness of a network. Its value depends on the number of vertices and the
diameter of a graph. The diameter of a graph is the shortest path between two
widest vertices and it gives the maximum number of vertices that need to be

passed in order to reach from one vertex to another vertex of a graph. For a
connected graph with N vertices and D diameter, the algebraic connectivity lies
between 1 and 1/ nD. For a large graph, the algebraic connectivity is small and

is closer to 1/NnD. Thus, the algebraic connectivity depends on the number of
vertices and in the way vertices are connected. In general, the algebraic
connectivity decreases with the number of vertices, and increases with the

average degree in case of random graphs.

The large eigenvalues

The spectrum of the adjacency matrix has been extensively used to find
the cluster of ASes having similar characteristics such as connectivity pattern
[34]. The eigenvectors corresponding to the large eigenvalues contain
information relevant to clustering. The large eigenvalues and the corresponding
eigenvectors of the adjacency matrix provide information suggestive to the

intracluster traffic patterns of the Internet topology [34].

3.3.2 Clusters and connectivity in the Internet topology

The spectrum of the Internet topology graph is considered as the metric
for clustering and connectivity analysis. In addition to power-laws properties,

properties such as connectivity and clustering properties of the Internet graph
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were also studied [34], [52]. The eigenvectors corresponding to the small
eigenvalues tend to capture the local characteristics that can be determined from
the data. Similarly, the eigenvectors corresponding to the large eigenvalues tend
to capture the global characteristics of the graph and its semantics such as

clusters of connected nodes.

C. Gkantsidis et al., [34] used a spectral filtering method in order to find
the clusters of connected nodes in the Internet topology based on the elements
values of the eigenvector corresponding to the large eigenvalues of the
adjacency matrix. They analyzed graphs derived from various BGP routing table
datasets and graphs generated from four different topology generator models:
Inet-2.1, Waxman with preferential connectivity, improved Generalized Linear
Preference (GLP) heuristics, and PLRG topology generators [34]. The GLP
model generates the Internet topology using power-laws such that the probability
that node increases its degree is a function of the degree. The results show that
synthetically generated topology graphs lack view of the entire Internet topology
because the topology generators address only AS or router-level topologies. The
analysis of BGP datasets reveals that the clustering varies in the core and at the
edges of the network. It also varies at different geographic locations. However,
the clustering based on the largest eigenvalue is consistent over time and can be
used as a robust characteristic to represent the Internet topology. Thus, good
clustering methods are needed in order to identify the clustering properties of the

Internet topology [34].
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The eigenvalue spectrum of real world graphs provides information about
their structural properties. I. Farkas et al., [30] studied the properties of real world
graphs such as the Internet in terms of spectral density by analyzing the
spectrum of graphs. They developed an algorithm to analyze the nature of
spectral density of real world graphs represented as random graph, small world,
and scale free models. Plots of the complete spectrum of the graphs show that
the spectrum of scale free graph has a triangle-like spectral density in the centre
with power-law decay in the tail, while the spectrum of small world graphs shows

a complex pattern of spectral density with several random sharp peaks [30].

D. Vukadinovic et al., [52] used the AS topology emanated from BGP
routing table collected by NLANR project and from synthetic topology generated
using Inet-2.1 topology generator in order to analyze the spectrum of the
normalized Laplacian matrix. The normalized Laplacian spectrums of synthetic
graphs show variation and significant difference, whereas the spectrums of AS
graphs from BGP routing table show invariance over time despite exponential
growth of the Internet. Thus, the normalized Laplacian spectrum of a graph
provides concise fingerprint of the real Internet topology [52]. Furthermore,
analysis of sub-graphs derived from synthetic graphs shows the presence of new
power-laws within the connected components at the core of the network
topology. Thus, this combination of structural properties and power—laws is

needed when developing topology generators [52].
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4. POWER-LAWS AND THE INTERNET TOPOLOGY

In this Chapter, we observe four different power-laws: node degree vs.
rank, CCDF of node degree vs. node degree, eigenvalue of the adjacency matrix
vs. index, and eigenvalue of the normalized Laplacian matrix vs. index over the
period of five years using Route Views and RIPE 2003 and 2008 datasets. We
use linear regression based on the least square approximation method to model
the relationship between y-axis and x-axis parameters. Furthermore, we
calculate the confidence intervals of power-law exponents on randomly selected

data from Route Views and RIPE 2003 and 2008 datasets.

4.1 Node degree

In this Section, we observe the node degree vs. rank power-law. The

graph nodes V are sorted in descending order based on their degrees dV and

are indexed with a sequence of numbers indicating their ranks Iy, . The (FV, dV)
pairs are plotted on a log-log scale. Node degrees in decreasing order vs. rank
are shown in Figure 4.1 and Figure 4.2. The points represent measured data and
the solid line represents the least square approximation. The plots imply
dV oC rVR, where V is the node number and R is the node degree power-law

exponent. The node degree power-law exponent is the slope of the degrees of

nodes plotted vs. the rank of the nodes on a log-log scale.
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Figure 4.1 Route Views 2003 and 2008 datasets: The node degree power-law exponent R
for Route Views 2003 (top) is —0.7325 with correlation coefficient —0.9661. The
node degree power-law exponent R for Route Views 2008 (bottom) is —=0.7712
with correlation coefficient —=0.9721.
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Figure 4.2 RIPE 2003 and 2008 datasets: The node degree power-law exponent R for
RIPE 2003 (top) is —0.7636 with correlation coefficient —0.9687. The node

degree power-law exponent R for RIPE 2008 (bottom) is —0.8439 with
correlation coefficient —-0.9744.
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The node degree power-law exponents R are —0.7325 and —-0.7712 for
Route Views 2003 and 2008, respectively. Similarly, the node degree power-law
exponents R are —-0.7636 and —0.8439 for RIPE 2003 and 2008, respectively.
The correlation coefficients are above 96 percent for both 2003 datasets and
above 97 percent for both 2008 datasets. The difference of the power-law

exponent values is small for 2003 and 2008 datasets.

The first twenty ASes with the highest node degree from all four datasets
are identified in order to observe node degrees and the position of highly
connected nodes over the years. Table 4.1 lists the first twenty ASes having
larger node degree. The node degrees are comparatively larger in 2008
datasets. The node degrees of Route Views and RIPE 2008 datasets are
comparable. Similarly, the node degrees of Route Views and RIPE 2008
datasets are comparable. The first 10 ASes with the largest node degrees in
Route Views 2003 datasets are similar to those appeared in RIPE 2003 datasets.
The first 10 ASes are similar in Route Views and RIPE 2008 datasets.
Furthermore, we observe that 80 percent of the ASes in 2003 datasets appear in

the first 20 position in 2008 datasets.
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Table 4.1 The first 20 ASes with the highest node degree for each dataset.

Route Views 2003 RIPE 2003 Route Views 2008 RIPE 2008
ASN degree ASN degree | ASN degree ASN degree
701 2422 701 2420 701 2645 701 2625
1239 1800 1239 1802 7018 2132 7018 2138
7018 1661 7018 1660 174 1983 174 1979
209 862 209 862 3356 1932 3356 1937
3356 815 3356 801 1239 1670 1239 1653
3561 689 3561 674 209 1386 209 1353
3549 628 3549 640 3549 1129 3549 1148
2914 567 2914 599 4323 1094 4323 990
702 553 8220 579 6939 823 13030 887
6461 513 702 574 19151 779 6939 883
4513 469 6461 502 6461 740 6461 852
1 356 4589 487 2828 676 19151 785
4323 355 3303 428 7132 668 9002 771
16631 318 13237 410 2914 629 4589 698
8220 309 6730 398 9002 607 2914 688
7132 295 1 350 1299 542 8928 659
3257 294 4323 346 702 532 2828 642
6347 279 16631 309 8220 520 8220 621
3786 270 3257 303 7575 515 7132 615
4766 267 7132 282 6667 506 3257 553

4.2 Complementary Cumulative Distribution Function (CCDF) of
node degree

In this Section, we analyze the distribution of node degrees. We use

CCDF Dd of a node degree d . It indicates the percentage of nodes that have

degree greater than degree d and provides the distribution of the degree of
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nodes. The CCDF of node degree vs. node degree plotted on a log-log scale are

shown in Figure 4.3 and Figure 4.4. It implies Dd oc d P, where D is the CCDF

power-law exponent. The CCDF power-law exponents are —1.2519 and —1.3696
for 2003 and 2008 Route Views datasets, respectively and —1.2830 and —1.5010
for 2003 and 2008 RIPE datasets, respectively. The correlation coefficient is
above 98 percent for each 2003 dataset and above 96 percent for each 2008
dataset. The difference of the power-law exponent values for Route Views and

RIPE 2003 and 2008 datasets is small.

In a perfect power-law distribution, the node degree power-law exponent
is related to CCDF power-law exponent as R=1/D, where R is the node
degree power-law exponent [29], [48]. We use the value of R from Section 4.1 to
calculate the CCDF power-law exponent for each dataset. Table 4.2 lists the
values of CCDF power-law exponents. The relationship R=1/D holds
theoretically in a perfect power-laws distribution. However, we have inferred the
CCDF power-law exponents from the empirical datasets. This may have caused

the discrepancies in the exponent values as shown in Table 4.2.

Table 4.2 CCDF power-law exponents.

Values | Route Views 2003 | Route Views 2008 | RIPE 2003 | RIPE 2008

D -1.2519 —-1.3696 —-1.2830 -1.5010

1/R -1.3650 -1.2967 —-1.3096 -1.1850
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Route Views 2003 and 2008 datasets: The CCDF power-law exponent D for
Route Views 2003 (top) is —1.2519 with correlation coefficient —0.9810. The

CCDF power-law exponent D for Route Views 2008 (bottom) is —1.3696 with
correlation coefficient —-0.9626.
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Figure 4.4 RIPE 2003 and 2008 datasets: The CCDF power-law exponent D for RIPE 2003
(top) is —1.2830 with correlation coefficient -0.9812. The CCDF power-law

exponent D for RIPE 2008 (bottom) is —1.5010 with correlation coefficient
—-0.9676.
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4.3 Eigenvalues of the adjacency matrix
The eigenvalues of a graph indicate its topological properties such as

diameter, number of edges, and number of connected components in a graph.

The eigenvalue power-law based on the adjacency matrix implies /Iai oC ig,

where ﬂai is an eigenvalue, | is an index, and & is an eigenvalue power-law

exponent of the adjacency matrix.

The eigenvalues /1ai of the adjacency matrix are sorted in decreasing

order and plotted vs. the associated increasing sequence of numbers |
representing the order of the eigenvalue. The power-law dependence between
the graph eigenvalue and the eigenvalue index is shown in Figure 4.5 and Figure
4.6 for Route Views 2003 and 2008 and RIPE 2003 and 2008 datasets,
respectively. Plotted on a log-log scale are eigenvalues of a graph matrix in

decreasing order. Only the first 150 largest eigenvalues are considered.

The eigenvalue power-law exponents are —0.5173 and —0.4860 for Route
Views 2003 and 2008 datasets, respectively and —0.5232 and —0.4927 for RIPE
2003 and 2008 datasets, respectively. The exponent values for Route Views and
RIPE 2003 datasets are comparable. Similarly, Route Views and RIPE 2008
datasets have comparable exponent values. The values of the exponent have
small difference for Route Views and RIPE 2003 and 2008 datasets. The

correlation coefficients are above 96 percent for all four datasets.
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correlation coefficient —0.9982.
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RIPE 2003 and 2008 datasets: The eigenvalue power-law exponent £ based
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coefficient —0.9989. The eigenvalue power-law exponent & based on the
adjacency matrix for RIPE 2008 (bottom) is —0.4927 with correlation coefficient
-0.9970.
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The first 5,000 largest eigenvalues are calculated and plotted vs. the order

for all four datasets as shown in Figure 4.7. The MATLAB code was run on Quad

core CPU with 2.39 GHz of processing speed and 3.93 GB of RAM and took four

days to calculate the first 5,000 largest eigenvalues for each 2003 dataset and

six days for each 2008 dataset. The plot that consists of only the first 600

eigenvalues shown in Figure 4.7 indicates that Route Views and RIPE 2008

datasets have larger eigenvalues in comparison to the eigenvalues of Route

Views and RIPE 2003 datasets. The eigenvalues of RIPE 2008 datasets have

larger value than Route Views 2008 datasets. Furthermore, the eigenvalues of

RIPE 2003 datasets have larger value than Route Views 2003 datasets. The first

twenty largest eigenvalues of the datasets are listed in Table 4.3.

Figure 4.7
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Route Views and RIPE 2003 and 2008 datasets: The first 5,000 largest
eigenvalues plotted in descending order. Route Views and RIPE 2008 datasets
have higher eigenvalues than Route Views and RIPE 2003 datasets.
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Table 4.3 The first 20 largest eigenvalues of Route Views and RIPE 2003 and 2008

datasets.
order | Route Views 2003 | Route Views 2008 | RIPE 2003 | RIPE 2008
1 64.30 85.43 66.65 122.28
2 47.75 58.56 54.19 63.94
3 38.15 42.77 38.24 46.14
4 36.23 40.85 36.14 41.98
5 29.88 39.69 31.21 41.08
6 28.50 37.85 27.38 38.93
7 25.47 36.21 26.41 37.94
8 25.06 34.66 25.06 36.47
9 24.13 31.58 23.86 35.08
10 22.51 29.34 23.32 34.47
11 21.61 27.40 22.02 30.97
12 20.69 25.69 21.77 30.54
13 18.58 25.00 20.75 29.68
14 17.94 24.82 19.55 27.03
15 17.78 23.89 18.67 25.74
16 17.31 23.69 18.42 25.35
17 16.99 22.81 17.85 24.83
18 16.75 22.46 17.44 24.30
19 16.22 22.04 17.24 24.06
20 16.01 21.36 16.63 24.00

The power-law exponent and correlation coefficient of the eigenvalue
power-law using the first 5,000 largest eigenvalues for Route Views 2008
datasets are —24.73 and -0.7232, respectively. The comparable values of
power-law exponent and correlation coefficient are also observed for the
remaining three datasets. This indicates that the eigenvalue power-law exists
only in the tail of the distribution.
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4.4 Eigenvalues of the normalized Laplacian matrix

The presence of eigenvalue power-law reported in [29] is based on the
eigenvalues of the adjacency matrix. We also analyze the eigenvalue power-law
based on the eigenvalues of the normalized Laplacian matrix. The newly
observed power-law dependence between the eigenvalue of the normalized
Laplacian matrix and the eigenvalue index is shown in Figure 4.8 and Figure 4.9
for Route Views 2003 and 2008 datasets and RIPE 2003 and 2008 datasets,

respectively.

The eigenvalue power-law based on the normalized Laplacian matrix vs.

its index implies /ILi oC iL, where /ILi is the eigenvalue, i is the index, and

L is the eigenvalue power-law exponent of the normalized Laplacian matrix. We
use similar procedure as in Section 4.3 to calculate the eigenvalue power-law
exponent of the normalized Laplacian matrix. The eigenvalue power-law
exponents are —0.0198 and -0.0177 for Route Views 2003 and 2008 datasets,
respectively and —0.0206 and -0.0190 for RIPE 2003 and 2008 datasets,
respectively. The difference of the power-law exponent values for Route Views
and RIPE 2003 and 2008 datasets is small. The correlation coefficients are

above 95 percent for all four datasets.

In order to observe the first 5,000 largest eigenvalues of the normalized
Laplacian matrix, we ran the MATLAB code in Quad core CPU with 2.39 GHz

processing speed and 3.93 GB of RAM for ten days without a success.

51



NORMALIZED LAPLACIAN MATRTX 7
+ Route Views 2003-07-31 00:00
——10(0:3012),,(-0.0198)

Eigenvalue of the normalized Laplacian matrix

Index
£ " NORMALIZED LAPLACIAN MATRIX
107 F 2
= + Route Views 2008-07-31 00:00
E — 10(0:3034),(-0.0177)
[ ]
= .
o,
= 029 | % |
=3 10 E o
= 9.
[(P]
N
0.28 Lo,
g 107 F -, e
o »
= N,
< N
2
E 100.27 B )
-
=
[P
.o
Lﬂ 1 1
10° 10" 10° 10°
Index

Figure 4.8 Route Views 2003 and 2008 datasets: The eigenvalue power-law exponent L
based on the normalized Laplacian matrix for Route Views 2003 (top) is
—-0.0198 with correlation coefficient —-0.9564. The eigenvalue power-law

exponent L based on the normalized Laplacian matrix for Route Views 2008
(bottom) is =0.0177 with correlation coefficient —0.9782.
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Figure 4.9 RIPE 2003 and 2008 datasets: The eigenvalue power-law exponent L based
on the normalized Laplacian matrix for RIPE 2003 (top) is -0.0206 with

correlation coefficient —0.9636. The eigenvalue power-law exponent L based
on the normalized Laplacian matrix for RIPE 2008 (bottom) is —=0.0190 with
correlation coefficient —-0.9758.
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4.5 Confidence intervals

The four different datasets collected on July 31%' 2003 and 2008 from
Route Views and RIPE projects indicate the presence of power-laws. In order to
further verify the result and to estimate the mean value of the power-law
exponents, we collect twenty-four random sample datasets and calculate the
power-law exponents for each sample. The sample datasets and the calculated
power-law exponents for Route Views and RIPE 2003 and 2008 datasets are

shown in Table 8.1 — Table 8.3 in Appendix.

The number of samples of each dataset is smaller than 30, with unknown
standard deviation. Hence, we use the t-distribution to compute the confidence

intervals of power-law exponents at 95 percent confidence level:

X —t,,,(s/vn) < <X +t,,(s/</n)
where X is the sample mean, t,,, is the t-distribution, s is the sample standard

deviation, n is the number of samples, and x is the population mean. We

estimate the confidence intervals using six random samples selected from each
2003 and 2008 Route Views and RIPE datasets. The estimated confidence

intervals of the power-law exponents are listed in Table 4.4.

The plot of the confidence intervals of the node degree power-law
exponents and CCDF power-law exponents of four datasets is shown in Figure
4.10. The width of the confidence intervals is similar for Route Views 2008, RIPE
2003, and RIPE 2008 datasets. The confidence interval for Route Views 2003

datasets is comparatively wider. The node degree and CCDF of node degree
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power-law exponents have comparable values for both RIPE and Route Views
2003 and 2008 datasets. The analysis of node degree and CCDF of node degree
power-law exponents in Sections 4.1 and 4.2, respectively also reveals
insignificant increase of node degree and CCDF of node degree power-law
exponents for 2008 datasets. The correlation coefficients of the node degree
power—law exponent are above 96 percent for all random datasets. Meanwhile,
the correlation coefficients of the CCDF power-law exponent are above 90

percent for all random datasets.

Table 4.4 Confidence intervals of power-law exponents at 95 percent confidence level.

Exponent | Range Route Views RIPE Route Views RIPE
2003 2003 2008 2008
higher -0.7328 -0.7467 -0.7776 —0.8443
R lower —0.6909 —0.7307 -0.7712 —0.8281
higher -1.2692 -1.2714 —1.4086 -1.5115
P lower -1.1794 -1.2307 -1.3622 -1.4411
higher -0.5118 —0.5105 —0.4886 —0.4985
¢ lower —0.5046 —0.5033 —0.4840 -0.4914
higher —0.0193 —0.0206 —-0.0184 —-0.0204
) lower —0.0187 —0.0188 —0.0173 —0.0188
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The plots of the confidence intervals of the eigenvalue power-law
exponent based on the adjacency and the normalized Laplacian matrices for
Route Views and RIPE 2003 and 2008 datasets are shown in Figure 4.11. The
confidence intervals of power-law exponents for all four datasets have
comparable width. The values of the eigenvalue power-law exponent based on
the adjacency matrix have small difference between Route Views and RIPE 2003
and 2008 datasets. Figure 4.11 (top) reveals that the eigenvalue power-law
exponents based on the adjacency matrix have not significantly changed over
the last five years. Figure 4.11 (bottom) reveals that the eigenvalue power-law
exponents based on the normalized Laplacian matrix are also comparable over

the last five years.

The correlation coefficients of eigenvalue power-law exponents based on
the adjacency matrix and the normalized Laplacian matrix for all datasets are

above 99 percent and 95 percent, respectively.

In all four power-laws, confidence intervals of power-law exponents have
small width and are comparable. The values of the correlation coefficients are
also larger for all power-laws. This indicates the presence of four power-laws in
the Internet topology over the period of five years. The small shift in the values of
power-law exponents indicates that power-law exponents have not significantly

changed over the last five years.
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5. SPECTRAL ANALYSIS AND THE INTERNET
TOPOLOGY

In this Chapter, we analyze the spectrum of the adjacency matrix and the
normalized Laplacian matrix of the Internet graph at AS level derived from Route
Views and RIPE 2003 and 2008 datasets. We plot the patterns of connected AS
nodes over the years based on the adjacency matrix. We compare the
connectivity status based on the second smallest and the largest eigenvalues in
order to observe the clusters of connected nodes. Finally, we analyze the
elements values of the eigenvectors based on the second smallest and the

largest eigenvalues.

5.1 Clusters of ASes based on the adjacency matrix

The element value of the adjacency matrix Axy is 1 if nodes X and Yy are

connected and O if nodes x and y are not connected. The patterns of connected
AS nodes in Route Views and RIPE datasets for 2003 and 2008 are shown in
Figure 5.1 and Figure 5.2, respectively. A dot in the position (X, y) in the plot of
the adjacency matrix represents the connection patterns between AS nodes. No
connectivity is shown between the unassigned AS nodes. The clusters are wider
in case of Route Views 2008 and RIPE 2008 since the number of ASes in 2008

datasets is larger than in 2003 datasets.
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The plots depict interesting clusters associated not only with the ASes
having higher node degree but also with the ASes with medium and lower node
degrees. The existence of higher connectivity inside a particular cluster and
relatively lower connectivity between clusters is also visible as shown in Figure
5.3. Similar patterns of clusters are observed when comparing Route Views and

RIPE 2003 and 2008 datasets.

Figure 5.3 Route Views 2008: Zoomed view of the patterns of ASes based on the
adjacency matrix.
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5.2 Connectivity status based on the elements of the
eigenvectors

In this Section, we analyze the elements of the eigenvectors
corresponding to the second smallest and the largest eigenvalues of the
adjacency matrix and the normalized Laplacian matrix in order to observe the
clusters of ASes having similar connectivity. The second smallest eigenvalue,
called algebraic connectivity [31], [32] of a normalized Laplacian matrix is related
to the connectivity characteristic of the graph. The elements of the eigenvector
corresponding to the large eigenvalue also contain information relevant to

clustering [34].

In order to determine clusters of connected AS nodes in the Internet
graphs, we consider the elements of the eigenvectors corresponding to the
second smallest and the largest eigenvalues of the adjacency and the
normalized Laplacian matrices. Each element of the eigenvector is associated
with the AS node having same index in the Internet graph. All AS nodes are
sorted in ascending order based on the corresponding elements values of the
eigenvector. The sorted AS vector is then indexed and the connectivity status is
equal to 1 if an AS is connected to another AS or zero if an AS is isolated or is
not present in the datasets. We have used only assigned ASes. This sorting
separates the connected nodes from the disconnected nodes and generates the

clusters of connected AS nodes.

In order to create a connected graph from a matrix, let us consider a graph

with six nodes [N1, N2, N3, N4, N5, N6]. Let us assume that the elements of the
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eigenvector corresponding to an eigenvalue of a matrix of the graph are [0.35, —
0.35, —0.35, 0.41, 0.50, 0.61]. Let us assume that the node N4 is not connected
and all other nodes are connected. The elements of the eigenvector are assigned
to the nodes: [N1(0.35), N2(-0.35), N3(-0.35), N4(0.41), N5(0.50), N6(0.61)] and
arranged in the ascending order [-0.35, —0.35, 0.35, 0.41, 0.50, 0.61]. The nodes
are then sorted based on the index of the corresponding element of the
eigenvector. The resulting order of nodes is [N2, N3, N1, N4, N5, N6]. The value
of the connectivity status is 1 if a node is connected or O if a node is isolated.
Thus, the value of connectivity status is O for node N4 and 1 for the remaining
nodes. The assigned connectivity status values vs. the order of the nodes are
plotted as shown in Figure 5.4. This sorting makes the ASes having similar

element values stay closer generating the clusters of connected nodes.
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Figure 5.4 Example of connectivity status based on the eigenvector of a matrix.
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5.2.1 Analysis based on the adjacency matrix

In this Section, we observe the connectivity status based on the elements
of the eigenvectors corresponding to the second smallest and the largest
eigenvalues of the adjacency matrix. We follow similar procedure as in Section

5.2 to plot the clusters of connected AS nodes.

The connectivity status based on the second smallest eigenvalue of the
adjacency matrix is shown in Figure 5.5 and Figure 5.6 for Route Views 2003
and 2008 and RIPE 2003 and 2008 datasets, respectively. The clusters of AS
nodes are similar for Route Views 2003 and RIPE 2003 datasets. Route Views
2008 datasets also reveal similar clusters of nodes to RIPE 2008 datasets.
However, Figure 5.5 and Figure 5.6 indicate visible changes in the connectivity
status of AS nodes while comparing the connectivity status of Route Views and

RIPE 2003 datasets with Route Views and RIPE 2008 datasets.

We also calculate the elements of the eigenvector corresponding to the
largest eigenvalue of the adjacency matrix for each dataset. The connectivity
status of each dataset is shown in Figure 5.7 and Figure 5.8. Similar to the
connectivity status based on the second smallest eigenvalue, the connectivity
status based on the largest eigenvalues for Route Views 2003 and RIPE 2003
datasets is similar. Route Views 2008 datasets also have similar connectivity
status to RIPE 2008 datasets. The comparison of the connectivity status of 2003

datasets and 2008 datasets shows visible changes over the period of five years.
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Figure 5.6 RIPE 2003 and 2008 datasets: Spectral views of the AS connectivity based on
the second smallest eigenvalue of the adjacency matrix for RIPE 2003 (top)
and 2008 (bottom) datasets.

67



o ADJACENCY MATRIX
o - . _
= 18 + Route Views 2003-07-31 00:00
>
S 16} i
.on
L
ea 1.4F il
0
g5 12f -
[P ]
s 4} §
%
= 08f -
73
Bost .
.z
h—
O 04t .
=
=
8 02} -
D | I I 1 1 1
0 05 1 15 2 258 3 348
Index of elements 10
2 T T T T T T T T T
o ADJACENCY MATRIX
= 18y + Route Views 2008-07-31 00:00 []
>
S 16} i
.on
L
ea 1.4F il
0
g5 12f -
[P ]
S 1}
%
= 08f L
73
Bost .
.z
h—
D 04f -
=
=
8 02} -
D I i I 1 1 1 1 1 1
0 05 1 15 2 248 3 35 4 45 5
Index of elements 10

Figure 5.7 Route Views 2003 and 2008 datasets: Spectral views of the AS connectivity
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Figure 5.8 RIPE 2003 and 2008 datasets: Spectral views of the AS connectivity based on
the largest eigenvalue of the adjacency matrix for RIPE 2003 (top) and 2008
(bottom) datasets.
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5.2.2 Analysis based on the normalized Laplacian matrix

In this Section, we observe the connectivity status based on the elements
of the eigenvectors corresponding to the second smallest and the largest
eigenvalues of the normalized Laplacian matrix. We follow similar procedure as

in Section 5.2 to plot the clusters of connected AS nodes.

The connectivity status of AS nodes based on the second smallest
eigenvalue is shown in Figure 5.9 and Figure 5.10 for Route Views 2003 and
2008 and RIPE 2003 and 2008 datasets, respectively. We observe that the
connectivity status of Route Views 2003 datasets is similar to RIPE 2003
datasets. Furthermore, Route Views 2008 datasets reveal similar connectivity

patterns as RIPE 2008 datasets.

The connectivity status of AS nodes based on the largest eigenvalue is
shown in Figure 5.11 and Figure 5.12. Route Views 2003 datasets shows similar
connectivity trends to RIPE 2003 datasets. The connectivity status of Route
Views 2008 datasets is also similar to RIPE 2008 datasets. The comparison of
the connectivity status of 2003 datasets to 2008 datasets shows visible changes

over the last five years.

We note that the connectivity status based on the second smallest
eigenvalue of the adjacency matrix is similar to the connectivity graph based on
the largest eigenvalue of the normalized Laplacian matrix, and vice versa. This
interesting property has its basis in the spectral properties of the two matrices
since L=D— A, where L is the Laplacian matrix, D is the degree matrix

having node degree in the diagonal, and A is the adjacency matrix.
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Figure 5.10 RIPE 2003 and 2008 datasets: Spectral views of the AS connectivity based on
the second smallest eigenvalue of the normalized Laplacian matrix for RIPE
2003 (top) and 2008 (bottom) datasets.
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based on the largest eigenvalue of the normalized Laplacian matrix for Route
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Figure 5.12 RIPE 2003 and 2008 datasets: Spectral views of the AS connectivity based on
the largest eigenvalue of the normalized Laplacian matrix for RIPE 2003 (top)
and 2008 (bottom) datasets.
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5.3 Clusters of ASes based on the elements of eigenvectors

When we examine the elements of the eigenvectors corresponding to the
second smallest and the largest eigenvalues of the adjacency matrix of a small
world network with 20 nodes [55], we observe that the nodes having similar
degrees are grouped together based on the element values of the eigenvector
corresponding to the largest eigenvalue. We first calculate the elements of the
eigenvectors corresponding to the second smallest and the largest eigenvalues.
We then sort the elements in descending order and plot them vs. order as shown
in Figure 5.13. We also calculate the index of node based on the index of the
corresponding element of the eigenvector. We then plot the node degree of a

node vs. the index of the node as shown in Figure 5.14.
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Figure 5.13 Small world graph: Elements of the eigenvector corresponding to the largest
eigenvalue of the adjacency matrix sorted in decreasing order.

The values of the elements of the eigenvector corresponding to the largest

eigenvalue of the adjacency matrix group nodes having similar node degrees.
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The group of nodes having small node degree appear first, followed by the nodes
having larger node degrees, as shown in Figure 5.14. No such grouping is
observed based on the elements values of the eigenvector corresponding to the

second smallest eigenvalue.
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Figure 5.14 Small world graph: Groups of connected nodes based on the elements values
of the eigenvector corresponding to the largest eigenvalue of the adjacency
matrix.

In search of such clusters of connected AS nodes in the Internet graphs,
we examine the elements of the eigenvectors corresponding to the second

smallest and the largest eigenvalues of both the adjacency and the normalized

Laplacian matrices.

5.3.1 Analysis based on the adjacency matrix

In this Section, we observe the cluster of ASes based on the elements of
the eigenvectors corresponding to the second smallest and the largest

eigenvalues of the adjacency matrix. The elements of the eigenvectors are
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sorted in descending order based on the weight of each element and plotted vs.
the order. AS nodes are also sorted based on the corresponding elements values
of the eigenvector to determine the index of the AS node. The node degree of AS

node vs. the index of the AS are then plotted to observe the clusters of nodes.

The elements of eigenvector corresponding to the second smallest
eigenvalue of the adjacency matrix are plotted vs. the order as shown in Figure
5.15. Only nodes on the lowest and the highest ends of the rank spectrum are
shown. Majority of the nodes ranked in between belong to a cluster that
corresponds to similar element value of the eigenvector. Figure 5.15 indicates
that very few nodes have large element values of the eigenvector corresponding
to the second smallest eigenvalue and comparatively large numbers of nodes
have small element values. Route Views datasets reveals that the number of
nodes having larger element values of the eigenvector is higher in 2008 in
comparison to Route Views and RIPE 2003 datasets. However, the elements
values of the eigenvector for RIPE 2008 are comparatively smaller to that for
Route Views 2008 datasets. The lowest end indicates that all four datasets have

similar element values.

The node degree of each AS node plotted vs. the index of the AS based
on the adjacency matrix is shown in Figure 5.16 and Figure 5.17 for Route Views
2003 and 2008 and RIPE 2003 and 2008 datasets, respectively. The element
values of the eigenvector corresponding to the second smallest eigenvalue of the

adjacency matrix divide nodes into two separate clusters of connected nodes.
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Figure 5.16 Route Views 2003 and 2008 datasets: Clusters of connected nodes based on
the elements values of the eigenvector corresponding to the second smallest
eigenvalue of the adjacency matrix for Route Views 2003 (top) and 2008

(bottom) datasets.
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Figure 5.17 RIPE 2003 and 2008 datasets: Clusters of connected nodes based on the
elements values of the eigenvector corresponding to the second smallest
eigenvalue of the adjacency matrix for RIPE 2003 (top) and 2008 (bottom)

datasets.
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The elements of the eigenvector corresponding to the largest eigenvalue
of the adjacency matrix are arranged in decreasing order and are plotted vs. the
order as shown in Figure 5.18 (top). The plots reveal that for large number of
nodes the elements of the eigenvector have very small values in the range of
10*°. Only few nodes at the highest end of the rank spectrum have
comparatively large negative elements values. The values of the elements at the

highest ends of the rank spectrum are visible in Figure 5.18 (bottom).

In order to observe the clusters of AS nodes based on the element values,
the index of AS nodes are identified that corresponds to the index of the element
values of the eigenvector arranged in descending order. The node degree of AS
node vs. the index of the AS based on the adjacency matrix are plotted as shown
in Figure 5.19 and Figure 5.20 for Route Views 2003 and 2008 and RIPE 2003
and 2008 datasets, respectively. The elements values of the eigenvector
corresponding to the largest eigenvalue also separate nodes into a cluster of
connected nodes. The clusters are observed at the highest end of the rank
spectrum for each dataset. The length of the cluster is comparable for Route
Views and RIPE 2003 datasets. Route Views and RIPE 2008 datasets also have
similar length of clusters. However, the length of the cluster is smaller for 2003
datasets. This is due to the smaller number of assigned ASes in 2003 than in

2008.
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Elements of the eigenvector
corresponding to the largest eigenvalue

Elements of the eigenvector
corresponding to the largest eigenvalue
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the nodes at all (top) and the highest (bottom) ends of the rank spectrum.
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Figure 5.19 Route Views 2003 and 2008 datasets: Clusters of connected nodes based on
the elements values of the eigenvector
eigenvalue of the adjacency matrix for Route Views 2003 (top) and 2008
(bottom) datasets.
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Figure 5.20 RIPE 2003 and 2008 datasets: Clusters of connected nodes based on the
elements values of the eigenvector corresponding to the largest eigenvalue of
the adjacency matrix for RIPE 2008 (top) and 2008 (bottom) datasets.
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5.3.2 Analysis based on the normalized Laplacian matrix

We also examine the elements of the eigenvectors corresponding to the
second smallest and the largest eigenvalues of the normalized Laplacian matrix.

We adopt similar sorting method as in Section 5.3.1.

The elements of the eigenvector corresponding to the second smallest
eigenvalue of the normalized Laplacian matrix are arranged in descending order
and plotted vs. the index as shown in Figure 5.21. The plot reveals the clustering
behaviour of the elements values similar to the elements values corresponding to
the adjacency matrix. Majority of the nodes ranked in between have similar

element values. Furthermore, few nodes have large element values.

The node degree of AS node plotted vs. the index of the AS based on the
element value of the eigenvector corresponding to second smallest eigenvalue of
the normalized Laplacian for Route Views 2003 and 2008 and RIPE 2003 and
2008 datasets are shown in Figure 5.22 and Figure 5.23, respectively. The
cluster of connected nodes is present towards the highest end of the rank
spectrum. The small elements values of the eigenvector corresponding to the
second smallest eigenvalue of the normalized Laplacian matrix correspond to the
connected nodes forming a cluster. The nodes having similar node degrees are
grouped together within the cluster. Furthermore, the nodes having small node
degrees appear in the highest end of the rank spectrum followed by the nodes

having higher node degrees as shown in Figure 5.24.
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Figure 5.21 Route Views and RIPE 2003 and 2008 datasets: Elements of the eigenvector
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Figure 5.22 Route Views 2003 and 2008 datasets: Clusters of connected nodes based on
the elements values of the eigenvector corresponding to the second smallest
eigenvalue of the normalized Laplacian matrix for Route Views 2003 (top) and
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Figure 5.23 RIPE 2003 and 2008 datasets: Clusters of connected nodes based on the
elements values of the eigenvector corresponding to the second smallest
eigenvalue of the normalized Laplacian matrix for RIPE 2003 (top) and 2008
(bottom) datasets.
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Figure 5.24 RIPE 2008: Zoomed view of node degree vs. rank.

The sorted elements of the eigenvector corresponding to the largest
eigenvalue of the normalized Laplacian matrix are plotted vs. the order as shown

in Figure 5.25. Most of the elements in the middle of the rank spectrum have very

small value (107

) for all four datasets. The elements of the eigenvector for few
nodes at the lowest end of the rank spectrum have positive values while few
nodes at the highest end of the rank spectrum have negative value. The pattern

is similar for Route Views and RIPE 2003 datasets and for Route Views and

RIPE 2008 datasets.

The node degrees distribution based on the decreasing order of the
elements values of the corresponding AS nodes is shown in Figure 5.26 and
Figure 5.27. Two clusters of connected nodes are visible at the lowest and the
highest ends of the rank spectrum for all four datasets.
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Figure 5.25 Route Views and RIPE 2003 and 2008 datasets: Elements of the eigenvector
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Figure 5.26 Route Views 2003 and 2008 datasets: Clusters of connected nodes based on
the elements values of the eigenvector corresponding to the largest
eigenvalue of the normalized Laplacian matrix for Route Views 2003 (top) and
2008 (bottom) datasets.
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An interesting property is observed when comparing the clusters of AS
nodes based on the second smallest and the largest eigenvalues of the
adjacency and the normalized Laplacian matrices. The cluster of nodes based on
the elements values of the eigenvector corresponding to the second smallest
eigenvalue of the adjacency matrix is similar to the cluster based on the largest
eigenvalue of the normalized Laplacian matrix and vice versa. This property has
its basis in the spectral properties of the two matrices since L =D — A, where
L is the Laplacian matrix, D is the degree matrix, which is the diagonal matrix
formed from the node degrees, and A is the adjacency matrix. However, how
this relationship affects theoretically in the spectral properties of the adjacency
and the Laplacian matrices could be an interesting research. It would also be
interesting to investigate the spectral properties of matrices such as Laplacian

and signless Laplacian matrix, which is defined as Q = D + A.
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6. CONCLUSIONS

We have analyzed the Internet topology datasets collected from Route
Views and RIPE projects and have confirmed the presence of power-laws in
graphs capturing the AS-level Internet topology in both datasets over the past
five years. We have evaluated four power-laws: node degrees vs. rank, CCDF of
node degree vs. node degree, eigenvalue of the adjacency matrix vs. index, and
eigenvalue of the normalized Laplacian matrix vs. index. We found that
eigenvalues based on the normalized Laplacian matrix also exhibit power-law
similar to eigenvalue power-law based on the adjacency matrix. They have, as
expected, different values for power-law exponents. The results showed that the
power-law exponents associated with the Internet topology have not significantly
changed over the years indicating that the power-laws do not capture every

property of graph and are only a measure used to characterize the Internet
topology.

Spectral analysis based on the more intuitive adjacency matrix and the
normalized Laplacian matrix derived from the Route Views and RIPE datasets
was used to examine the clustering of ASes and their connectivity in the Internet
graphs. By plotting the elements of the adjacency matrix, we observed similarity
in the pattern of clusters of connected AS nodes in the Internet topology over the
years. The clusters indicate higher connectivity inside a particular cluster and

relatively lower connectivity between clusters. While power-laws properties of the
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Internet topology graphs have not substantially changed over the years, spectral
analysis revealed notable changes in the connectivity and clustering of AS
nodes. The connectivity status based on the adjacency and the normalized
Laplacian matrices indicated visible changes in the clustering of connected AS

nodes over the past five years.

We also identified clusters of AS nodes based on the eigenvectors
corresponding to the second smallest and the largest eigenvalues of the
adjacency and the normalized Laplacian matrices. Presented spectral analysis of
both the matrices of the associated graphs also revealed new historical trends in
the clustering of AS nodes. We observed that clustering based on the second
smallest eigenvalue of the adjacency matrix is similar to clustering based on the
largest eigenvalue of the normalized Laplacian matrix, and vice versa. The
cluster based on the second smallest eigenvalue of the normalized Laplacian
matrix consists of the groups of nodes having similar node degree. Furthermore,
group of nodes having larger node degree follows group of nodes having smaller
node degree within a cluster. It would be interesting to investigate whether the
observed clusters have any significant effect in the modeling of the Internet

topology and the performance of the network protocols and new algorithms.
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8. APPENDIX
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8.1 Confidence intervals

The calculated power-law exponents and the correlation coefficients for

four power-laws from the sample datasets collected from Route Views and RIPE

2003 and 2008 datasets are shown in Table 8.1 - Table 8.4. The following

symbols are used for the power-law exponents and correlation coefficients:

R — exponent of node degree vs. rank power-law

D — exponent of CCDF of node degree vs. node degree power-law

€ — exponent of eigenvalue of the adjacency matrix vs. index power-

law

L — exponent of eigenvalue of the normalized Laplacian matrix vs.

index power-law

r — correlation coefficient.

Table 8.1 Power-law exponents for Route Views 2003 datasets. Datasets were randomly
selected.
Dataset
number
value r value r value r value r
1 —0.7342 | —-0.9671 | -1.2673 | —0.9188 | —0.5088 | —0.9991 | —0.0191 | —0.9670
2 —0.7062 | —0.9645 | —1.2088 | —0.9077 | —0.5101 | —0.9990 | —0.0188 | —0.9537
3 —0.6910 | —-0.9614 | —1.1809 | —0.9163 | —0.5060 | —0.9988 | —0.0189 | —0.9712
4 —0.7368 | —0.9668 | —1.2844 | —0.9130 | —0.5134 | —0.9992 | —0.0186 | —0.9541
5 -0.7113 | -0.9642 | —1.2191 | —0.9149 | —0.5034 | —0.9990 | —-0.0191 | —0.9524
6 —0.6917 | —-0.9612 | —1.1853 | —0.9046 | —0.5074 | —0.9989 | —0.0194 | —0.9582
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Table 8.2

Power-law exponents for Route Views 2008 datasets. Datasets were randomly

selected.
Dataset R D
number value r value r value r value r
1 —0.7712 | —0.9721 | -1.3696 | —0.9626 | —0.4850 | —0.9982 | —0.0177 | —0.9782
2 -0.7779 | -0.9732 | -1.3572 | -0.9094 | —0.4874 | —0.9952 | —0.0187 | —0.9870
3 -0.7715 | -0.9721 | -1.3848 | -0.9182 | —0.4843 | —0.9980 | —0.0174 | -0.9749
4 -0.7781 | -0.9727 | —-1.4158 | -0.9223 | —0.4887 | —0.9985 | —0.0179 | —-0.9807
5 —0.7730 | —0.9724 | —-1.3790 | —0.9158 | —0.4833 | —0.9983 | —0.0182 | —0.9705
6 -0.7749 | -0.9722 | -1.4062 | -0.9212 | —0.4882 | —0.9985 | —0.0173 | —0.9662
Table 8.3 Power-law exponents for RIPE 2003 datasets. Datasets were randomly
selected.
Dataset R D
number value r value r value r value r
1 —0.7340 | —0.9662 | —1.2341 | —0.9154 | —0.5026 | —0.9994 | —0.0208 | —0.9633
2 —0.7384 | —0.9665 | —1.2497 | -0.9171 | —-0.5073 | —0.9994 | —0.0189 | —0.9565
3 —0.7319 | —0.9654 | —1.2304 | —0.9155 | —0.5035 | —0.9994 | —0.0199 | —0.9615
4 —0.7319 | —0.9654 | —1.2448 | -0.9146 | —0.5113 | —0.9992 | —0.0206 | —0.9625
5 —0.7495 | —0.9680 | —1.2810 | —-0.9188 | —0.5100 | —0.9991 | —0.0187 | —0.9640
6 —0.7465 | -0.9674 | -1.2661 | —0.9122 | —0.5069 | —0.9994 | —0.0195 | —0.9526
Table 8.4 Power-law exponents for RIPE 2008 datasets. Datasets were randomly
selected.
Dataset R D
number value r value r value r value r
1 —0.8323 | —0.9742 | —1.4743 | —0.9248 | —0.4958 | —0.9968 | —0.0202 | —0.9756
2 —0.8352 | —-0.9741 | —1.4341 | —0.9152 | —0.4943 | —0.9968 | —0.0194 | —0.9689
3 —0.8240 | —0.9745 | —1.4616 | —0.9271 | —0.4899 | —0.9973 | —0.0183 | -0.9621
4 —0.8451 | —0.9759 | —1.4565 | —0.9210 | —0.5003 | —0.9977 | —0.0205 | —0.9800
5 —0.8434 | —-0.9748 | 1.5233 | —0.9301 | —0.4937 | —0.9969 | —0.0195 | —0.9769
6 —-0.8371 | —-0.9741 | -1.5081 | —0.9293 | —0.4959 | —0.9971 | —0.0196 | —-0.9722
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8.2 MATLAB code
This Section contains the sample MATLAB code used to analyze the

datasets collected from Route Views and RIPE projects.

The binary files with BGP routing information are downloaded from the
databases of Route Views and RIPE projects [2], [12]. The binary files are then
converted into the text file using “bgpdump” Linux command. We use MATLAB
tool to extract the AS numbers from the text file and to create the adjacency
matrix. Further analysis was also performed using MATLAB tool. The sample

code follows.

8.2.1 The adjacency matrix
% Sample script to change the binary file into text file.%

./bgpdump -m /local-scratch/1sa38/RIPE/2003/rc00/bview.20030715.0000.9z
> /local-scratch/1sa38/RIPE/2003/julyl5/rc00.txt

./bgpdump -m /local-scratch/1sa38/RIPE/2003/rc00/bview.20030716.0000.gz
> /local-scratch/1sa38/RIPE/2003/julyl6/rc00.txt

./bgpdump -m /local-scratch/1sa38/RIPE/2003/rc00/bview.20030717.0000.9z
> /local-scratch/1sa38/RIPE/2003/julyl7/rc00.txt

./bgpdump -m /local-scratch/1sa38/RIPE/2003/rc00/bview.20030718.0000.gz
> /local-scratch/1sa38/RIPE/2003/julyl8/rc00.txt

o)

% Sample code to create the adjacency matrix from the text file

[

containing BGP routing information. %

close all;
clear all;
Adjacency matrix=sparse (65535,65535);

for 1i=1:39
fileName=["'../RouteViews2008/july31l/rc',num2str (i), "'.txt"'];
fileId=fopen (fileName) ;

while 1

eachLine = fgetl (fileld);
if isempty(eachLine); else
count=0;
for ii=1l:length (eachLine)
if (eachLine(ii)=="|")
count=count+1;
if (count==6)
startPoint=ii;
end
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if (count==7)
stopPoint=ii;
end
end
end
singleLine=[];
for ii=startPoint+l:stopPoint-1
singlelLine=[singleline, eachLine (ii) ];
end
if isempty(singlelLine);
singleLine=str2num(singlelLine) ;
for ii=l:length(singlelLine)-1
Arow=singlelLine (ii);
Acolumn=singlelLine (ii+1);
Adjacency matrix (Arow,Acolumn)=1;
Adjacency matrix (Acolumn,Arow)=1
end

’

end
end
if (feof (fid))
break;
end
end fclose (fid);
end;
fclose('all');
save ../RV2008Results/july31l/AdjacencyMatrix.mat ADJIM;
clear all;
load AdjacencyMatrix.mat;
for i=1:length(Adjacency matrix)
node degree (i)=sum(Adjacency matrix(i,:));
end
save ('NodeDegree', 'node degree');

8.2.2 The normalized Laplacian matrix
% Sample code to create the normalized Laplacian matrix. %
clear
load AdjacencyMatrix.mat;
load NodeDegree.mat;
n= length (Adjacency matrix)
Norm laplacian matrix= sparse(l:n,1:n,0);
for i=l:n
for j=1:n
if i==3j & node degree (i)~=0
Norm laplacian matrix(i,Jj)=1;
elseif (Adjacency matrix(i,Jj)~=0
Norm laplacian matrix(i,J)
1/ (sqgrt (node_degree (i) *node degree(j)));

)

end
end
end
save ('NormLaplacianMatrix', '"Norm laplacian matrix"')
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8.2.3 Power-law: node degree vs. rank

Q

% Sample code to calculate the node degrees from the adjacency matrix

and to plot them in log-log scale as shown in Figure 4.1 and Figure

4.2. %

load AdjacencyMatrix.mat
for i = l:length(Adjacency matrix)
node degree (i) = sum(Adjacency matrix(:,1));
end
node degree=full (node degree) ;
node degree=sort (node degree, 'descend’) ;
loglog (node degree, '.");
s = nonzeros (node_degree);
n=length(s) ;
xxXx=(1l:n);
x=10g10 (xxx) ;
y=node degree (l:n);
y=1logl0 (y);
m=(n*sum(x.*y)-sum(x) *sum(y) )/ (n*sum(x."2) - (sum(x) ) "2)
b= (sum(y) -m*sum(x))/n
r=(n* sum(x.*y)-sum(x)*sum(y))/ sgrt((n*sum(x.”"2)-
sum(x) ~2) * (n*sum(y.”"2) -sum(y) *2))
hold on figurel
loglog (xxx,10"b.*xxx."m) ;
ylabel ('Node degree', 'fontsize', 16, 'fontname', 'times"')
xlabel ('Rank', 'fontsize',16, 'fontname', 'times"')

8.2.4 Power-law: CCDF of node degree vs. node degree

o)

% Sample code to calculate the CCDFs of node degrees and to plot

[

in log-log scale as shown in Figure 4.3 and Figure 4.4. %

load NodeDegree.mat
maxDegree=max (node_ degree) ;
n=length (node degree);
x=zeros (1,maxDegree) ;
for i=1:maxDegree
m=0;
for j=1:n
if node degree (j)==i
m=m+1;
end
end
X (1)=m;
end

ccdf=zeros (1l,maxDegree) ;
cedf (1)=x (1) /sum(x) ;
for i=2:1length (x)
ccdf (1)=x (1) /sum(x)+ccdf (i-1);
end
one= ones (1l,maxl);
ccdf=one-ccdf;
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for i = 1l:length(ccdf)
ccdf (i) = sum(ccdf(:,1));
end

ccdf=full (ccdf) ;

ccdf=sort (ccdf, 'descend') ;

loglog(ccdf, '.");

s = nonzeros (ccdf) ;

n=length(s)-1;

xxXx=(1l:n);

x=10g10 (xxx) ;

y=ccdf (l:n);

y=1logl0 (y);

m=(n*sum(x.*y)-sum(x) *sum(y) )/ (n*sum(x."2) - (sum(x) ) "2)

b= (sum(y) -m*sum(x))/n

r=(n* sum(x.*y)-sum(x) *sum(y))/sqrt ((n*sum(x.”2)-sum(x)"2)* (n*sum(y."2)
—-sum(y) *2))

hold on figurel

loglog (xxx,10"b.*xxx."m) ;

ylabel ('CCDF of node degree', 'fontsize',16, 'fontname', 'times"')

xlabel ('Node degree', 'fontsize', 16, 'fontname', 'times")

8.2.5 Power-law: eigenvalue of the adjacency matrix vs. index

% Sample code to calculate the first 150 largest eigenvalues of the
adjacency matrix and to plot them vs. index in log-log scale as shown

o)

in Figure 4.5 and Figure 4.6. %

clear;
load AdjacencyMatrix.mat;
eigen values= eigs(Adjacency matrix, 300);
save ('EigenvaluesAdjMatrix.mat',6 'eigen values');
eigen values= sort(eigen values, 'descend');
for 1i=1:1:150
toplot (i)=eigen values (i)
end
loglog (toplot,'.");
b=toplot;
n=150;
xxXx=(1l:n);
x=10g10 (xxx) ;
y=b(l:n);
y=1ogl0(y);
m=(n*sum(x.*y)-sum(x) *sum(y) )/ (n*sum(x.”2) - (sum(x) ) "2)
b= (sum(y)-m*sum(x)) /n
r=(n* sum(x.*y)-sum(x)*sum(y))/ sgrt((n*sum(x.”"2)-
sum(x) ~2) * (n*sum(y.”"2) -sum(y) *2))
hold on figurel
loglog (xxx, 10"b. *xxx."m) ;
ylabel ('Eigenvalue of adjacency matrix', fontsize',16, ‘fontname’,
'times') ;
xlabel ('Index', 'fontsize',16, 'fontname', 'times"')
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8.2.6 Power-law: eigenvalues of the normalized Laplacian matrix vs. index
% Sample code to calculate the first 150 largest eigenvalues of the
normalized Laplacian matrix and to plot them vs. index in log-log scale
as shown in Figure 4.8 and Figure 4.9. %

clear;
load NormlaplacianMatrix.mat;
eigen values= eigs(Norm laplacian matrix, 150);
save ('EigenvaluesLapMatrix', 'eigen values');
eigen values= sort(eigen values, 'descend');
for i=1:1:150
toplot (i)=eigen values (i) ;
end
loglog (toplot,'.");
b=toplot;
n=150;
xxXx=(1l:n);
x=10g10 (xxx) ;
y=b(l:n);
y=1logl0 (y);
m=(n*sum(x.*y)-sum(x) *sum(y) )/ (n*sum(x.”2) - (sum(x) ) "2)
b= (sum(y) -m*sum(x))/n
r=(n* sum(x.*y)-sum(x)*sum(y))/ sgrt((n*sum(x.”"2)-
sum(x) ~2) * (n*sum(y.”"2) -sum(y) *2))
hold on figurel
loglog (xxx,10"b.*xxx."m) ;
ylabel ('Eigenvalue of normalized Laplacian matrix',
'fontsize', 16, 'fontname', 'times"') ;
xlabel ('Index', 'fontsize', 16, 'fontname', 'times"');

8.2.7 Pattern of connected AS nodes

% Sample code to plot the patterns of connected ASes as shown in Figure

[

5.1 and Figure 5.2. %

clear

load AdjacencyMatrix.mat

spy (Adjacency matrix)

ylabel ('Autonomous system (AS)

number', 'fontsize',16, 'fontname', 'times")
xlabel ("Autonomous System Number

(ASN) ', '"fontsize',16, 'fontname', 'times"')
h= legend('RIPE 2003-07-31 00:00"');

set (h, 'fontsize',16,'fontname', 'times');

8.2.8 Connectivity status: the second smallest eigenvalue
% Sample code to calculate the elements of the eigenvector
corresponding to the second smallest eigenvalue of the normalized
Laplacian matrix and to plot the connectivity status as shown in Figure
5.9 and Figure 5.10. Similar code is used to calculate the elements of
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the eigenvector corresponding to the second smallest eigenvalue of the

[

adjacency matrix as shown in Figure 5.5 and Figure 5.6. %

clear

load NodeDegree.mat

degree=node_ degree;

load AdjacencyMatrix.mat

rr = Adjacency matrix;

n=49149;

ss=sparse(n,n,0);

count=zeros (1l,n);

k=0;

for i=1:48127
k=k+1;
count (k) =degree (i) ;
ss(k,1:48127)=rr(i,1:48127);
ss(k,48128:49151)=rr(i,064512:65535);

end

for i=64512:65535
k=k+1;
count (k) =degree (1) ;
ss(k,1:48127)=rr(i,1:48127);
ss(k,48128:49151)=rr(i,64512:65535);

end
Manipulated adjacency matrix =sparse(n,n,0);
Manipulated adjacency matrix = ss

save ('ManipulatedAdjacencyMatrix', Manipulated adjacency matrix')
save ('ManipulatedNodeDegree', 'count')

clear

load NodeDegree.mat

degree= node_ degree;

load Norm laplacian matrix.mat

rr= Norm laplacian matrix;

ss=sparse(49149,49149,0);

count=zeros (1,49149);

k=0;
for i=1l:length(rr)
if (sum(rr(i,:))~=1)
k=k+1;
ss(k,1:48127)=rr(i,1:48127);
count (k) =degree (1) ;
ss(k,48128:49151)=rr(i,64512:65535);
end
end

for 1i=k+1:49149
ss(i,1)=1;
end
Manipulated Norm Lap =sparse(49149,49149,0);
Manipulated Norm Lap =ss;
save ('ManipulatedNormLapMatrix', '"Manipulated Norm Lap')
clear
load Manipulated degree.mat
load ManipulatedNormLapMatrix.mat
[V D] = eigs(Manipulated Norm Lap,2, 'SA'");
x=V(:,2);
x=x";
index=1:1:length(x);
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for i=l:length (x)
for j=i:length (x)
if x(3)<x (1)
tmp=x(7J) ;
x(J)=x(1);
X (1)=tmp;
tmp=index (1) ;
index (i)=index (Jj);
index (j)=tmp;
end
end
end
for i=l:length (Manipulated Degree)
if Manipulated Degree (index (i) )==
connection (i) =0;
else
connection (i) =1;
end
end
plot (length (connection) :-1:1,connection, '.'");
ylabel ('Connectivity status: smallest
eigenvalue', 'fontsize', 16, 'fontname', 'times")
xlabel ('"Index of element', 'fontsize',16, 'fontname', 'times")
ylim ([0 2]);

8.2.9 Connectivity status: the largest eigenvalue
% Sample code to calculate the elements of the eigenvector
corresponding to the largest eigenvalue of the normalized Laplacian
matrix and to plot the connectivity status as shown in Figure 5.11 and
Figure 5.12. Similar code 1is used to calculate the elements of the
eigenvector corresponding to the largest eigenvalue of the adjacency

[

matrix as shown in Figure 5.7 and Figure 5.8. %

clear
load Manipulated degree.mat
load ManipulatedNormLapMatrix.mat
[V D] = eigs(Manipulated Norm Lap,2, 'LA'");
x=V(:,1);
x=x";
index=1:1:1length(x);
for i=l:length (x)
for j=i:length (x)
if x(3)<x (1)
tmp=x(J) ;
x(3)=x(1);
X (1)=tmp;
tmp=index (i) ;
index (i)=index (3);
index (j)=tmp;
end
end
end
for i=1l:length (Manipulated Degree)
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if Manipulated Degree (index (i) )==
connection (i) =0;
else
connection (i)=1;
end
end
plot (length (connection) :-1:1,connection, '.');
ylabel ('Connectivity status: largest eigenvalue', 'fontsize'
,16, 'fontname', 'times")
xlabel ('Index of lements', 'fontsize',16, 'fontname', 'times"')
ylim ([0 2]);

8.2.10 Elements of eigenvector: the second smallest eigenvalue

% Sample code to calculate the elements of the eigenvector
corresponding to the second smallest eigenvalue of the adjacency matrix
and to plot them vs. order as shown in Figure 5.15. Similar code 1is
used to plot the elements of the eigenvector corresponding to the
second smallest eigenvalue based on the normalized Laplacian matrix as

[

shown in Figure 5.21. %

clear
cd('Routeview 2003")
load AdjacencyMatrix.mat
[V D] = eigs(Adjacency matrix,2,'SA'");
x=V(:,2);
x=sort (x, '"descend"')
p=plot(x,'.")
set (p, 'Color', 'red")
cd ../.
cd('RIPE 2003")
clear
hold all
load AdjacencyMatrix.mat
[V D] = eigs(Adjacency matrix,2,'SA'");
x=V(:,2);
x=sort (x, '"descend"')
p=plot(x,'.")
set (p, 'Color', 'blue')
cd ../.
cd('Routeview 2008")
hold all
clear
load AdjacencyMatrix.mat
[V D] = eigs(Adjacency matrix,2,'SA'");
x=V(:,2);
x=sort (x, '"descend"')
p=plot(x,'.")
set (p, 'Color', 'green')
cd ../.
cd('RIPE 2008")
clear
hold all
load AdjacencyMatrix.mat
[V D] = eigs(Adjacency matrix,2,'SA'");
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x=V(:,2);

x=sort (x, 'descend")

p=plot(x,'.")

set (p, 'Color', 'black")

ylabel ('"Elements of eigenvector of second smallest
eigenvalues', 'fontsize', 16, 'fontname', 'times"')

xlabel ('Rank', 'fontsize',16, 'fontname', 'times"')

h=legend ('RouteViews 2003', 'RIPE 2003', 'RouteViews 2008', 'RIPE 2008");
set (h, 'fontsize',16, 'fontname', 'times'");

8.2.11 Elements of eigenvector: the largest eigenvalue
% Sample code to calculate the elements of the eigenvector
corresponding to the largest eigenvalue of the adjacency matrix and to
plot them vs. order as shown in Figure 5.18. Similar code is used to
plot the elements of the eigenvector corresponding to the largest
eigenvalue based on the normalized Laplacian matrix as shown in Figure
5.25. %

clear

cd ('Routeview 2003")

load AdjacencyMatrix.mat

[V D] = eigs(Adjacency matrix, 2, 'LA'");

x=V(:,1);
x=sort (x, 'descend")
p=plot(x,'.")

set (p, 'Color', 'red")

cd ../.

cd('RIPE 2003")

clear

hold all

load AdjacencyMatrix.mat
[V D] = eigs(Adjacency matrix,2, 'LA'");
x=V(:,1);
x=sort (x, 'descend")
p=plot(x,'.")

set (p, 'Color', 'blue')

cd ../.

cd('Routeview 2008")
hold all

clear

load AdjacencyMatrix.mat
[V D] = eigs(Adjacency matrix,2, 'LA'");
x=V(:,1);
x=sort (x, 'descend')
p=plot(x,'.")

set (p, 'Color', 'green')
cd ../.

cd('RIPE 2008")

clear

hold all

load AdjacencyMatrix.mat
[V D] = eigs(Adjacency matrix,2, 'LA'");
x=V(:,1);

x=sort (x, 'descend")
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p=plot(x,"'.")

set (p, 'Color', 'black")

ylabel ('Elements of eigenvector of largest

eigenvalue', 'fontsize',16, 'fontname', 'times"')

xlabel ('Rank', 'fontsize',16, 'fontname', '"times"')

h=legend ('RouteViews 2003', 'RIPE 2003', 'RoutViews 2008', 'Blue: RIPE
2008") ;

set (h, 'fontsize',16, 'fontname', 'times');
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