

Prerna Batta <a href="mailto:pbatta@sfu.ca">pbatta@sfu.ca</a>

Communication Networks Laboratory
http://www.ensc.sfu.ca/~ljilja/cnl/
School of Engineering Science
Simon Fraser University

## Roadmap

- Introduction:
  - Border Gateway Protocol (BGP)
  - Machine learning
- Feature extraction and selection
- Support vector machine and kernels
- Research contributions
- Experimental procedure and classification results
- Conclusions and future work
- References

## Roadmap

- Introduction
  - Border Gateway Protocol (BGP)
  - Machine learning
- Feature extraction and selection
- Support vector machine and kernels
- Research contributions
- Experimental procedure and classification results
- Conclusions and future work
- References



## Introduction: Border Gateway Protocol

- BGP's main function is to optimally route data between Autonomous Systems (ASes)
- AS: a collection of BGP routers (peers) within a single administrative domain
- Four types of BGP messages:
  - open, keepalive, update, and notification
- BGP anomalies:
  - Slammer, Nimda, Code Red I, routing misconfigurations



### Introduction: Machine learning

- Machine learning models classify data using a feature matrix:
  - rows: data points
  - columns: feature values
- Algorithms:
  - Logistic Regression, Naïve Bayes,
     Support Vector Machine (SVM)
- SVM defines decision boundary to geometrically lie midway between the support vectors



### Machine learning techniques

- Supervised learning:
  - input data is labelled
  - goal is to find specific connection among the input variable to predict the correct output
- Unsupervised learning:
  - input data is unlabeled
  - goal is to label the input data before determining the hidden patterns and structures

## Roadmap

- Introduction
  - Border Gateway Protocol (BGP)
  - Machine learning
- Feature extraction and selection
- Support vector machine and kernels
- Research contribution
- Experimental procedure and classification results
- Conclusions and future work
- References



### Feature extraction: BGP messages

- Extract 37 features
- Sample every minute during a five-day period:
  - the peak day of an anomaly
  - two days prior and two days after the peak day
- 7,200 samples for each anomalous event:
  - 5,760 regular samples (non-anomalous)
  - 1,440 anomalous samples
  - imbalanced dataset

## BGP features

| Feature | Definition                        | Category |
|---------|-----------------------------------|----------|
| 1       | Number of announcements           | Volume   |
| 2       | Number of withdrawals             | Volume   |
| 3       | Number of announced NLRI prefixes | Volume   |
| 4       | Number of withdrawn NLRI prefixes | Volume   |
| 5       | Average AS-PATH length            | AS-path  |
| 6       | Maximum AS-PATH length            | AS-path  |
| 7       | Average unique AS-PATH length     | AS-path  |
| 8       | Number of duplicate announcements | Volume   |
| 9       | Number of duplicate withdrawals   | Volume   |
| 10      | Number of implicit withdrawals    | Volume   |

## **BGP** features

| Feature | Definition                                     | Category |
|---------|------------------------------------------------|----------|
| 11      | Average edit distance                          | AS-path  |
| 12      | Maximum edit distance                          | AS-path  |
| 13      | Inter-arrival time                             | Volume   |
| 14–24   | Maximum edit distance = n, where n = (7,, 17)  | AS-path  |
| 25–33   | Maximum AS-path length = n, where n = (7,, 15) | AS-path  |
| 34      | Number of IGP packets                          | Volume   |
| 35      | Number of EGP packets                          | Volume   |
| 36      | Number of incomplete packets                   | Volume   |
| 37      | Packet size (B)                                | Volume   |



### Feature extraction: BGP messages

- Border Gateway Protocol (BGP) enables exchange of routing information between gateway routers using update messages
- Collections of BGP update message:
  - Réseaux IP Européens (RIPE) under the Routing Information Service (RIS) project
  - Route Views
- Available in multi-threaded routing toolkit (MRT) binary format



#### **BGP** anomalies

#### Slammer:

 infected Microsoft SQL servers through a small piece of code that generated IP addresses at random

#### Nimda:

 exploited vulnerabilities in the Microsoft Internet Information Services (IIS) web servers for Internet Explorer 5

#### Code Red I:

 attacked Microsoft IIS web servers by replicating itself through IIS server weaknesses

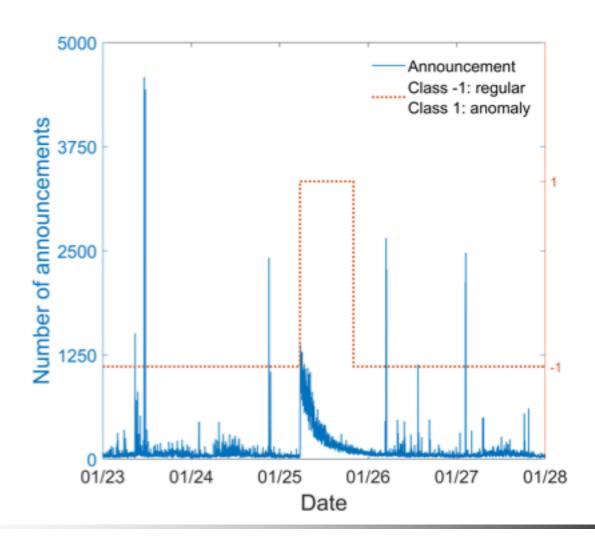


### **Duration of BGP events**

| Anomaly    | Date                  | Anomaly (min) | Regular<br>(min) |
|------------|-----------------------|---------------|------------------|
| Slammer    | January 25, 2003      | 869           | 6,331            |
| Nimda      | September 18-20, 2001 | 3,521         | 3,679            |
| Code Red I | July 19, 2001         | 600           | 6,600            |

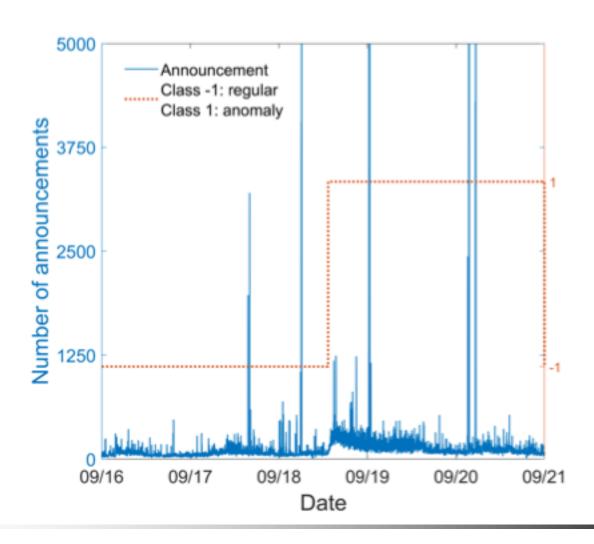


## Number of BGP announcements: Slammer

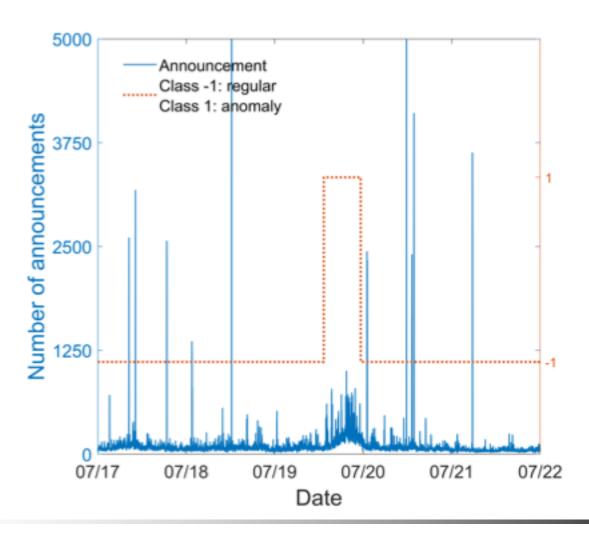


## 4

## Number of BGP announcements: Nimda

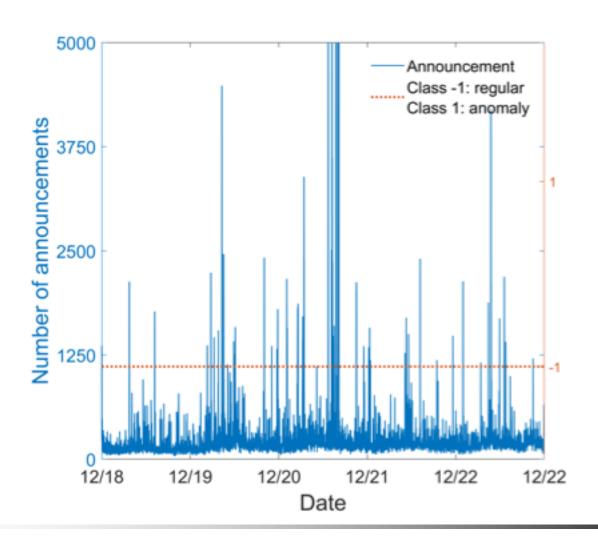


### Number of BGP announcements: Code Red I



# 4

## Number of BGP announcements: Regular



## Roadmap

- Introduction
  - Border Gateway Protocol (BGP)
  - Machine learning
- Feature extraction and selection
- Support vector machine and kernels
- Research contribution
- Experimental procedure and classification results
- Conclusions and future work
- References



#### Feature selection

- Reduces redundancy among features and improves the classification accuracy
- Decision tree algorithm was used for for feature selection:
  - one of the most successful techniques for supervised classification learning
- It can handle both numerical and categorical features
- Publicly available software tool: C5



### Feature selection: decision tree

| Dataset   | Training data        | Selected features  |
|-----------|----------------------|--------------------|
| Dataset 1 | Slammer + Nimda      | 1–21, 23–29, 34–37 |
| Dataset 2 | Slammer + Code Red I | 1-22, 24-29, 34-37 |
| Dataset 3 | Code Red I + Nimda   | 1–29, 34–37        |

- Either four (30, 31, 32, 33) or five (22, 30, 31, 32, 33) features are removed in the constructed trees mainly because:
  - features are numerical and some are used repeatedly

## Roadmap

- Introduction
  - Border Gateway Protocol (BGP)
  - Machine learning
- BGP Feature extraction and selection
- Support vector machine and kernels
- Research contributions
- Experimental procedure and classification results
- Conclusions and future work
- References



- SVM defines a separating hyperplane in order to assign the target variables into distinct categories
- It is a non-probabilistic binary classifier
- Used for classification problems and in pattern recognition applications
- Modified version of logistic regression



For a given dataset x with n number of training data, SVM finds the maximum margin hyperplane separating different classes of data:

$$\mathbf{x} = (\mathbf{x}_n, y_n), \mathbf{x}_n \in \mathbb{R}^p, y_n \in \{1, -1\}, \forall n = 1, 2, ..., N$$

- x<sub>n</sub>: p-dimensional input vector
- $y_n$ : output value (1 or -1)
- Decision vector separating two classes is given by:

$$\mathbf{w}^T \cdot \mathbf{x} + b = 0$$

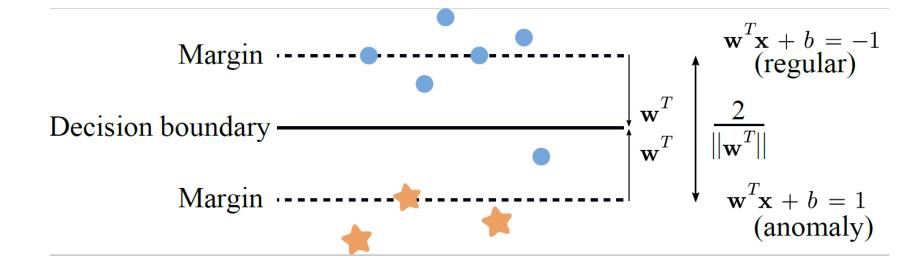
- w<sup>T</sup>: optimal weighing vector
- b: bias



- For linearly separable training data, margins are defined as:
  - $\mathbf{w}^T \cdot \mathbf{x} + b = 1$
  - $\mathbf{w}^T \cdot \mathbf{x} + b = -1$

## 4

### **Support Vector Machine**



SVM with linear kernel: correctly classified regular (circles) and anomalous (stars) data points as well as one incorrectly classified regular (circle) data point



- Distance between the margins:  $2/\|\mathbf{w}^T\|$
- Objective function: minimize || w<sup>T</sup> ||
- Let C be the regularization parameter that defines the separation of two classes and the error when using a training dataset. The hyperplane is acquired by minimizing the margins:

$$C\sum_{n=1}^{n}\zeta_{n}+\frac{1}{2}\|w\|^{2},$$

with constraints  $t_n y(x_n) \ge 1 - \zeta_n$ , n = 1, ..., N

- $t_n$ : target value
- $\zeta_n$ : set of slack variables



## Support Vector Machine: kernel trick

- Instead of calculating each mapping, the "kernel trick" is used to directly calculate the inner product in the input space
- The mapping defines feature space and generates a decision boundary for input data points
- Using the "kernel trick" reduces the complexity of the optimization problem that now only depends on the input space instead if the feature space



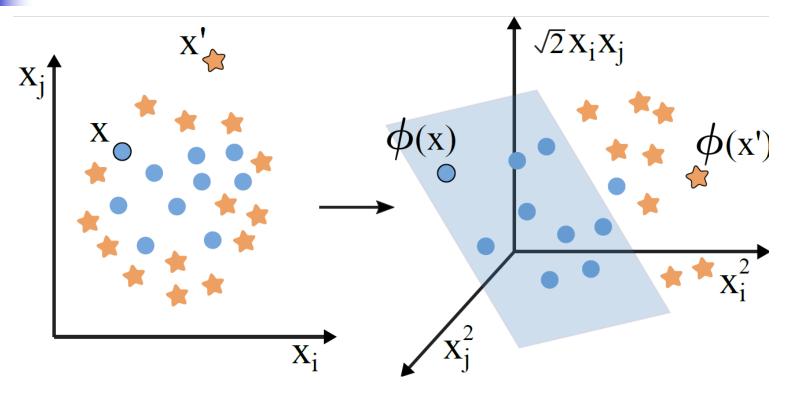
 Instead of employing a minimization model, the problem be formulated using Lagrangian dual multiplier β as:

$$\max \sum_{n=1}^{n} \beta_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \beta_n \beta_m y_n y_m \langle \mathbf{x}_n, \mathbf{x}_m \rangle,$$

subject to:

$$0 \le \beta_i \le C \ \forall \ i = 1, 2, ..., n \ \text{and} \sum_{i=1}^n \beta_i y_i = 0$$





SVM with the nonlinear kernel function: the three-dimensional space shows a hyperplane dividing regular (circles) and anomalous (stars) data points

## Roadmap

- Introduction
  - Border Gateway Protocol (BGP)
  - Machine learning
- Feature extraction and selection
- Support vector machine and kernels
- Research contributions
- Experimental procedure and classification results
- Conclusions and future work
- References



#### Research contributions

- Revised and extended our previous research findings and results by employing various SVM kernels for detecting anomalies
- Trained SVM with linear, polynomial, quadratic, cubic, Gaussian RBF, and sigmoid kernels
- Tested the models using various datasets
- Evaluated these SVM kernels based on accuracy and F-Score

## Roadmap

- Introduction
  - Border Gateway Protocol (BGP)
  - Machine learning
- Feature extraction and selection
- Support vector machine and kernels
- Research contributions
- Experimental procedure and classification results
- Conclusions and future work
- References



### Experimental procedure

#### Step 1:

- Use 37 features or select the most relevant features using the decision tree algorithm
- Step 2:
  - Train the SVM with linear, polynomial, quadratic, cubic, Gaussian RBF, or sigmoid kernel
- Step 3:
  - Test the models using various datasets
- Step 4:
  - Evaluate the SVM kernels based on accuracy and F-Score

## Training and test datasets

|           | Training dataset       | Test dataset           |
|-----------|------------------------|------------------------|
| Dataset 1 | Slammer and Nimda      | Code Red I             |
| Dataset 2 | Nimda and Code Red I   | Slammer                |
| Dataset 3 | Slammer and Code Red I | Nimda                  |
| Dataset 4 | Slammer                | Nimda and Code Red I   |
| Dataset 5 | Nimda                  | Slammer and Code Red I |
| Dataset 6 | Code Red I             | Slammer and Nimda      |



### Experimental procedure

- MATLAB 2019a Statistics and Machine Learning Toolbox
- The performance of SVM with various kernels is evaluated using combinations of datasets
- SVM performance was measured based on accuracy and F-Score
- The confusion matrix is used to evaluate performance of classification algorithms
- True positive (TP) and false negative (FN) are the number of anomalous data points that are classified as anomaly and regular, respectively



### Performance measures

- Accuracy:
  - (TP+TN)/(TP+TN+FP+FN)
- F-Score signifies harmonic mean between precision and sensitivity:
  - 2 x (precision x sensitivity)/(precision + sensitivity)
  - precision: TP/(TP+FP)
  - sensitivity: TP/(TP+FN)



| Linear kernel     |                     | Accuracy (%) |       | F-Score (%) |       |
|-------------------|---------------------|--------------|-------|-------------|-------|
| Selected features | Training<br>dataset | Test         | RIPE  | BCNET       | Test  |
|                   | Dataset 1           | 72.76        | 61.34 | 54.21       | 73.60 |
|                   | Dataset 2           | 70.81        | 52.89 | 45.36       | 73.19 |
| 1-37              | Dataset 3           | 73.36        | 64.27 | 56.18       | 74.62 |
| 1-37              | Dataset 4           | 68.91        | 46.83 | 42.49       | 70.85 |
|                   | Dataset 5           | 61.03        | 40.97 | 38.90       | 67.40 |
|                   | Dataset 6           | 61.28        | 42.55 | 39.71       | 68.07 |



| Linear kernel     |                     | Accuracy (%) |       | F-Score (%) |       |
|-------------------|---------------------|--------------|-------|-------------|-------|
| Selected features | Training<br>dataset | Test         | RIPE  | BCNET       | Test  |
|                   | Dataset 1           | 74.71        | 63.26 | 55.39       | 76.29 |
|                   | Dataset 2           | 73.27        | 54.12 | 49.38       | 74.48 |
| 1-21, 23-         | Dataset 3           | 70.63        | 53.89 | 49.01       | 72.05 |
| 29, 34-37         | Dataset 4           | 69.25        | 50.13 | 42.44       | 68.33 |
|                   | Dataset 5           | 66.31        | 50.78 | 41.49       | 65.03 |
|                   | Dataset 6           | 69.66        | 53.41 | 46.87       | 69.56 |



| Polynomial kernel |                     | Accuracy (%) |       | F-Score (%) |       |
|-------------------|---------------------|--------------|-------|-------------|-------|
| Selected features | Training<br>dataset | Test         | RIPE  | BCNET       | Test  |
|                   | Dataset 1           | 66.42        | 59.26 | 48.19       | 68.43 |
|                   | Dataset 2           | 64.73        | 46.53 | 37.27       | 66.71 |
| 1-37              | Dataset 3           | 68.78        | 60.37 | 52.41       | 69.09 |
| 1-37              | Dataset 4           | 58.27        | 50.65 | 45.56       | 56.33 |
|                   | Dataset 5           | 54.40        | 44.56 | 41.87       | 53.35 |
|                   | Dataset 6           | 57.31        | 49.37 | 42.75       | 54.47 |



| Polynomial kernel |                  | Accuracy (%) |       | F-Score (%) |       |
|-------------------|------------------|--------------|-------|-------------|-------|
| Selected features | Training dataset | Test         | RIPE  | BCNET       | Test  |
|                   | Dataset 1        | 70.26        | 59.43 | 49.86       | 74.39 |
|                   | Dataset 2        | 67.51        | 46.69 | 40.73       | 69.84 |
| 1-21, 23-         | Dataset 3        | 66.80        | 45.38 | 37.41       | 67.05 |
| 29, 34-37         | Dataset 4        | 63.02        | 42.95 | 36.03       | 65.73 |
|                   | Dataset 5        | 60.29        | 41.24 | 33.92       | 64.24 |
|                   | Dataset 6        | 65.37        | 44.50 | 38.10       | 68.59 |



| Quadratic kernel  |                     | Accuracy (%) |       | F-Score (%) |       |
|-------------------|---------------------|--------------|-------|-------------|-------|
| Selected features | Training<br>dataset | Test         | RIPE  | BCNET       | Test  |
|                   | Dataset 1           | 58.55        | 52.73 | 43.68       | 58.85 |
|                   | Dataset 2           | 61.27        | 42.87 | 35.52       | 60.19 |
| 1-37              | Dataset 3           | 62.78        | 56.28 | 45.30       | 63.15 |
| 1-37              | Dataset 4           | 59.68        | 39.17 | 33.15       | 55.73 |
|                   | Dataset 5           | 54.04        | 37.65 | 31.49       | 53.64 |
|                   | Dataset 6           | 59.13        | 40.92 | 34.61       | 61.35 |



| Quadratic kernel  |                  | Accuracy (%)       |       | F-Score (%) |       |
|-------------------|------------------|--------------------|-------|-------------|-------|
| Selected features | Training dataset | Test               | RIPE  | BCNET       | Test  |
|                   | Dataset 1        | <mark>63.84</mark> | 58.51 | 46.39       | 67.24 |
|                   | Dataset 2        | 63.36              | 46.55 | 38.73       | 64.68 |
| 1-21, 23-         | Dataset 3        | 62.53              | 43.30 | 37.12       | 63.09 |
| 29, 34-37         | Dataset 4        | 57.40              | 40.59 | 34.78       | 60.33 |
|                   | Dataset 5        | 55.58              | 37.13 | 30.53       | 58.29 |
|                   | Dataset 6        | 60.21              | 41.85 | 35.17       | 62.48 |



| Cubic kernel      |                     | Accuracy (%) |       | F-Score (%) |       |
|-------------------|---------------------|--------------|-------|-------------|-------|
| Selected features | Training<br>dataset | Test         | RIPE  | BCNET       | Test  |
|                   | Dataset 1           | 65.33        | 54.31 | 45.53       | 58.85 |
|                   | Dataset 2           | 63.15        | 46.23 | 40.17       | 65.49 |
| 1-37              | Dataset 3           | 68.83        | 57.57 | 46.47       | 70.03 |
| 1-37              | Dataset 4           | 59.50        | 41.44 | 35.88       | 62.15 |
|                   | Dataset 5           | 50.37        | 35.47 | 30.17       | 55.28 |
|                   | Dataset 6           | 59.28        | 38.04 | 33.20       | 58.33 |



| Cubic kernel      |                  | Accuracy (%)       |       | F-Score (%) |       |
|-------------------|------------------|--------------------|-------|-------------|-------|
| Selected features | Training dataset | Test               | RIPE  | BCNET       | Test  |
|                   | Dataset 1        | <mark>69.21</mark> | 58.12 | 49.26       | 70.14 |
|                   | Dataset 2        | 67.79              | 49.78 | 42.36       | 69.55 |
| 1-21, 23-         | Dataset 3        | 65.58              | 48.20 | 40.44       | 66.92 |
| 29, 34-37         | Dataset 4        | 58.70              | 41.56 | 35.18       | 56.66 |
|                   | Dataset 5        | 55.19              | 37.23 | 32.71       | 51.58 |
|                   | Dataset 6        | 61.05              | 45.23 | 38.23       | 61.35 |



| Gaussian RBF kernel |                  | Accuracy (%)       |       | F-Score (%) |       |
|---------------------|------------------|--------------------|-------|-------------|-------|
| Selected features   | Training dataset | Test               | RIPE  | BCNET       | Test  |
|                     | Dataset 1        | 70.11              | 60.36 | 51.76       | 70.42 |
|                     | Dataset 2        | 68.28              | 49.23 | 40.85       | 69.19 |
| 1-37                | Dataset 3        | <mark>72.82</mark> | 63.39 | 54.12       | 71.48 |
| 1-37                | Dataset 4        | 64.49              | 46.12 | 37.49       | 64.29 |
|                     | Dataset 5        | 58.30              | 37.31 | 35.11       | 60.42 |
|                     | Dataset 6        | 61.25              | 40.28 | 36.78       | 63.04 |



| Gaussian RBF kernel |                  | Accuracy (%) |       | F-Score (%) |       |
|---------------------|------------------|--------------|-------|-------------|-------|
| Selected features   | Training dataset | Test         | RIPE  | BCNET       | Test  |
|                     | Dataset 1        | 72.84        | 62.37 | 52.49       | 75.21 |
|                     | Dataset 2        | 70.53        | 50.19 | 44.60       | 70.09 |
| 1-21, 23-           | Dataset 3        | 69.48        | 48.05 | 43.29       | 68.23 |
| 29, 34-37           | Dataset 4        | 66.12        | 45.89 | 39.11       | 62.18 |
|                     | Dataset 5        | 61.23        | 42.18 | 37.98       | 60.42 |
|                     | Dataset 6        | 65.03        | 46.12 | 41.04       | 67.45 |



| Sigmoid kernel    |                     | Accuracy (%)       |       | F-Score (%) |       |
|-------------------|---------------------|--------------------|-------|-------------|-------|
| Selected features | Training<br>dataset | Test               | RIPE  | BCNET       | Test  |
|                   | Dataset 1           | 60.37              | 55.72 | 44.51       | 62.39 |
|                   | Dataset 2           | 62.55              | 43.96 | 38.24       | 64.87 |
| 1-37              | Dataset 3           | <mark>65.18</mark> | 58.30 | 47.39       | 64.95 |
| 1-37              | Dataset 4           | 58.90              | 43.05 | 36.45       | 51.78 |
|                   | Dataset 5           | 53.12              | 39.11 | 30.53       | 45.30 |
|                   | Dataset 6           | 55.38              | 40.48 | 32.96       | 48.59 |



| Sigmoid kernel    |                  | Accuracy (%)       |       | F-Score (%) |       |
|-------------------|------------------|--------------------|-------|-------------|-------|
| Selected features | Training dataset | Test               | RIPE  | BCNET       | Test  |
|                   | Dataset 1        | <mark>66.12</mark> | 59.24 | 48.43       | 68.34 |
|                   | Dataset 2        | 65.49              | 47.93 | 41.88       | 67.19 |
| 1-21, 23-         | Dataset 3        | 63.53              | 46.89 | 38.19       | 66.30 |
| 29, 34-37         | Dataset 4        | 58.42              | 40.71 | 32.37       | 60.25 |
|                   | Dataset 5        | 55.71              | 36.34 | 30.42       | 55.37 |
|                   | Dataset 6        | 60.11              | 41.35 | 35.90       | 64.48 |

# Roadmap

- Introduction
  - Border Gateway Protocol (BGP)
  - Machine learning
- Feature extraction and selection
- Support vector machine and kernels
- Research contributions
- Experimental procedure and classification results
- Conclusions and future work
- References



### Conclusions

- SVM algorithm is one of the most efficient ML tools
- Kernels are used to transform the input data into a high dimensional space
- Their performance depends on both the feature selection and the type of datasets
- Analyzed BGP anomaly datasets are linearly separable
- SVM with linear and Gaussian RBF kernels outperform SVMs with polynomial, quadratic, cubic, and sigmoid kernels



#### Future work

- Perform concatenation, such as use 60% of data for training and 40% for testing
- Compare the present results achieved using the whole training and testing data versus 80%-20% or 60%-40% of training and testing data respectively

# Roadmap

- Introduction
  - Border Gateway Protocol (BGP)
  - Machine learning
- Feature extraction and selection
- Support vector machine and kernels
- Research contributions
- Experimental procedure and classification results
- Conclusions and future work
- References



### References: Data sources

- RIPE RIS raw data [Online]. Available: http://www.ripe.net/data-tools/.
- University of Oregon Route Views project [Online]. Available: http://www.routeviews.org/.
- BCNET [Online]. Available: http://www.bc.net/.

# References:

- Z. Li, P. Batta, and Lj. Trajković, "Comparison of machine learning algorithms for detection of network intrusions," in *Proc. IEEE International Conference on Systems, Man, and Cybernetics (SMC 2018)*, Miyazaki, Japan, Oct. 2018, pp. 4248-4253.
- P. Batta, M. Singh, Z. Li, Q. Ding, and Lj. Trajković, "Evaluation of support vector machine kernels for detecting network anomalies," in *Proc. IEEE Int. Symp. Circuits and Systems*, Florence, Italy, May 2018, pp. 1-4.
- Q. Ding, Z. Li, S. Haeri, and Lj. Trajković, "Application of machine learning techniques to detecting anomalies in communication networks: Datasets and Feature Selection Algorithms" in Cyber Threat Intelligence, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, 2018, pp. 47-70.
- Z. Li, Q. Ding, S. Haeri, and Lj. Trajković, "Application of machine learning techniques to detecting anomalies in communication networks: Classification Algorithms" in *Cyber Threat Intelligence*, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, 2018, pp. 71-92.
- Q. Ding, Z. Li, P. Batta, and Lj. Trajković, "Detecting BGP anomalies using machine learning techniques," in *Proc. IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016)*, Budapest, Hungary, Oct. 2016, pp. 3352-3355.
- Y. Li, H. J. Xing, Q. Hua, X.-Z. Wang, P. Batta, S. Haeri, and Lj. Trajković, "Classification of BGP anomalies using decision trees and fuzzy rough sets," in *Proc. IEEE International* Conference on Systems, Man, and Cybernetics, SMC 2014, San Diego, CA, October 2014, pp. 1312-1317.



#### References:

- N. Al-Rousan, S. Haeri, and Lj. Trajković, "Feature selection for classification of BGP anomalies using Bayesian models," in *Proc. International Conference on Machine Learning and Cybernetics, ICMLC 2012*, Xi'an, China, July 2012, pp. 140-147.
- N. Al-Rousan and Lj. Trajković, "Machine learning models for classification of BGP anomalies," in *Proc. IEEE Conf. High Performance Switching and Routing*, *HPSR 2012*, Belgrade, Serbia, June 2012, pp. 103-108.



## Acknowledgemnets

- Chair:
  - Prof. Ivan V. Bajić
- Senior supervisor:
  - Prof. Ljiljana Trajković
- Supervisor:
  - Prof. Parvaneh Saeedi
- SFU Examiner:
  - Mirza Faisal Beg



# Thank you!

## Questions?