
APPLICATIONS OF 
REINFORCEMENT LEARNING TO 
ROUTING AND VIRTUALIZATION 

IN COMPUTER NETWORKS 

Soroush Haeri
Communication Networks Laboratory
http://www.ensc.sfu.ca/~ljilja/cnl/

Simon Fraser University
Vancouver, British Columbia, Canada



Roadmap
• Introduction
• Deflection routing
• Virtual network embedding
• Conclusion
• Publications and references

March 17, 2016 Ph.D. Defense 2



Introduction: 
Machine Learning
• Machine learning:

• improves agents’ behaviors by analyzing examples of 
desirable interactions

• Three main learning categories:
• supervised 
• unsupervised
• reinforcement
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Introduction:
Reinforcement Learning (RL)
• RL agent observes the state of the environment
• It then selects an appropriate action 
• The environment generates a reinforcement signal 

and transmits it to the agent
• The agent employs the reinforcement signal to improve 

its subsequent decisions
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Introduction: 
RL and Computer Networks
• Not widely used in conventional computer networks:

• RL algorithms were mostly designed to solve 
problems with a high degree of complexity

• early computer networks were mostly operated in 
controlled environments: low degree of complexity

• RL algorithms required high computational power
and/or large memory

• network devices had rather limited computational 
power and memory 
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Introduction: 
Recent Trends
• Recent trend in computer networking:

• Software-Defined Networks
• centralized implementation of network control logic

• Consequences:
• more powerful network control units
• new applications and challenges
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Deflection Routing vs. VNE
• Deflection routing:

• classical networking question
• decision making instances may be intermittent

(no cause and effect relationship), hence:
• more challenging learning problem

• VNE:
• recent networking challenge
• classical learning problem
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Optical Burst Switching (OBS)
• Enables an all-optical switching

• eliminates optical/electrical/optical conversions
• Contention is one of the main challenges (no optical 

buffers)

March 17, 2016 Ph.D. Defense 9

1

3

d1

d2

4

?



Deflection Routing
• A contending flow is routed through the optimal link 

defined by the routing table 
• Temporarily deflect the other flow away from the path 

that is prescribed by the routing table 
• Deflection routing algorithms coexist in the network 

along with underlying routing protocols
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Deflection Routing by 
Reinforcement Learning: iDef Framework
• Facilitate development of reinforcement learning-based 

deflection routing protocols
• Two main components:

• signaling algorithm
• learning algorithm

• Implemented in ns-3 and made publicly available
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Existing Reinforcement Learning-Based 
Deflection Routing Algorithms
• Q-learning Path Selection algorithm
• Reinforcement Learning-Based Deflection Routing 

Scheme (RLDRS)
• Uses Q-learning
• One entry for every destination in the network

• complexity: size of the network
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Q-learning: Deficiencies
• Table-Based (Q-table) learning algorithm
• One table entry for every state-action pair
• Deficiencies:

• no path recovery and reselection
• does not use reinforcement signals efficiently
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Contributions: Algorithms
• Proposed the Predictive Q-learning Deflection Routing

(PQDR) algorithm
• complexity: size of the network
• uses predictive Q-learning:

• enables path recovery and reselection
• Proposed the Node Degree Dependent (NDD) signaling 

algorithm
• complexity: node degree
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Contributions
• Proposed a Neural Network (NN) and an Episodic Neural 

Network (ENN) learning algorithms
• use the reinforcement signals more efficiently
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The Node Degree Dependent Algorithm
• Defines the state of the system locally at each node
• Consider a buffer-less node with n outgoing links
• Two binary vectors:

• : if the      outgoing link of the node is 
blocked, then 

• blocking state of a node’s outgoing links

• : if the the burst that is to be deflected 
contends for the      outgoing link, then
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State Definition: Example
• A buffer-less node with 5 links
• Two incoming flows from violet and black links 

contending for the green link
• The blue links are idle
•
•
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Neural Networks for Deflection Routing
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Simulations
• National Science Foundation (NSF) network topology 

(64 wavelengths):
• burst loss probability 
• average number of hops
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Results: Burst loss Probability (Prequel)
• Internet backbone was engineered to keep link load 

levels < 50%
• Studies show that the overloads of > 50% occur < 0.2% 

of a link life-time
• Goal: 

• achieve good performance in low to moderate traffic 
loads
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Results: Burst Loss Probability
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Results: Average Number of Hops
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• The RLDRS and PQDR signaling algorithms take into 
account the number of hops to destination:
• smaller average end-to-end delay and average 

number of hops traveled by bursts 
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Network Virtualization
• Enables coexistence of multiple virtual networks on a 

physical infrastructure
• Virtualized network model divides the role of the 

Internet Service Providers (ISPs) into:
• Infrastructure Providers (InPs):

• manage the physical infrastructure
• Service Providers (SPs):

• aggregate resources from multiple InP into 
multiple Virtual Networks (VNs)
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Virtual Network Embedding
• Virtual Network Embedding (VNE) allocates 

substrate network resources to VNs
• InPs’ revenues depend on VNE efficiency
• VNE problem may be reduced to the multi-way separator

problem:
• NP-hard problem
• optimal solutions are only feasible for small problems
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VNE Solution
• Two subproblems:

• Virtual Node Mapping (VNoM): maps virtual nodes to 
substrate nodes

• Virtual Link Mapping (VLiM): maps virtual links to 
substrate paths

• VNE algorithms address the VNoM while solving the VLiM 
using algorithms:
• Shortest-Path (SP)
• Multicommodity Flow (MCF)
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VNE Formulation: Constrains
• Substrate network graph:
• Resources:

• substrate nodes: CPU capacity
• substrate links: bandwidth

• Virtual network graph:
• Resource requirements:

• virtual nodes: CPU capacity
• virtual links: bandwidth
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VNE Objective
• We consider embedding one VNR at a time
• Maximize the profit of InPs
• Contributing factors to the generated profit:

• embedding revenue
• embedding cost
• acceptance ratio
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VNE Objective: Revenue
• Maximize revenue:

• : weights for CPU requirements
• : weight for bandwidth requirements
• Assumption: 

• Generated revenue is not a function of the embedding 
configuration
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VNE Objective: Cost
• Minimize the cost:

• : total bandwidth of the substrate link    
allocated to virtual link  

• Cost depends on the embedding configuration
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VNE Objective: Acceptance Ratio
• Maximize acceptance ratio:

• : number of accepted Virtual Network
Requests (VNRs) in a given time interval 

• : number of all arrived VNRs in 
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VNE Objective Function
• We propose to maximize:

• : large negative penalty for unsuccessful embedding
• Proved the upper bound:
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Available VNE Algorithms: 
Vine and Global Resource Capacity (GRC)
• Vine (R-Vine and D-Vine): 

• formulate VNE problem as a Mixed Integer Program 
(MIP)

• use Multicommodity Flow algorithm for solving VLiM
• GRC:

• Node-ranking-based algorithm
• Employs the Shortest-Path algorithm to solve VLiM
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Contributions: Algorithms and Tools
• Find a near-optimal VNE solution using 

Monte Carlo Tree Search
• Improve the solution by parallelizing MCTS
• Why MCTS?

• success of MCTS in solving optimization problems
• We developed VNE-Sim:

• a discrete event VNE simulator written in C++
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Monte Carlo Tree Search (MCTS)
• The decision-making agent has access to a generative

model
• generates samples of successor states and rewards 

given current state and an action:

• MCTS employs     to construct a sparse search tree:
• deepens the tree in the most promising direction
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MCTS Parallelization
• Root parallelization

• processes do not require to share their trees
• may be implemented lock free
• less coordination and communication between the 

processes
• superior performance
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Proposal: MaVEn algorithms

• MaVEn-M:
• MCF algorithm for link mapping

• MaVEn-S:
• a breadth-first search-based shortest-path algorithm

for link mapping
• Parallelize the MaVEn algorithms 
• Advantage:

• adjustable execution time
• more computational power = better performance
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Simulations
• Substrate Network:

• 50 nodes and 221 edges
• Virtual network requests:

• number of nodes uniformly distributed 
between 3 and 10

• Performance measures:
• acceptance ratio
• revenue to cost ratio
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Acceptance and Revenue to Cost Ratios 
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Parallel MaVEn-M
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Parallel MaVEn-S
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Discussion
• Proposed algorithms perform better than the existing 

algorithms
• Superior performance comes at the cost of higher 

execution time
• The stochastic processes governing distributions of VNR 

arrivals and life-times have not been well investigated
• difficult to estimate a reasonable trade-off between 

execution time and profitability
• Parallelizing MCF and eliminating disk I/O operations 

improves the execution time of MaVEn-M and Vine 
Algorithms
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Conclusion
• Considered application of reinforcement learning to 

deflection routing and virtualization in computer 
networks

• While reinforcement learning algorithms have found 
applications in various fields, they are still not widely 
employed for computer networking applications

• Presented algorithms demonstrated that learning 
algorithms provide viable solutions and may be 
implemented in computer networks
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Introduction: Proposal
• Two applications of reinforcement learning algorithms in 

computer networks:
• deflection routing in optical burst-switched networks
and
• virtual network embedding
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Reinforcement Learning
• Formalizes trial-and-error-based learning processes
• Four basic elements:

• an agent or decision maker 
• the environment of the agent
• actions that the agent performs
• feedback signals generated by the environment

March 17, 2016 Ph.D. Defense 54



Markov Decision Process (MDP)
• MDP is the quintuple:

• : set of all decision-making instances
• : state space
• : action space
• reward function

• assigns real-valued rewards to state-action pairs
• transition probability distribution

• defines the distribution of the next state given a 
state and an action
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Markov Decision Process (MDP)
• Objective:

• find an action policy that maximizes the expected 
reward

• Exact MDP solution:
• value and policy iteration algorithms
• polynomial in the size of state space
• infeasible for MDP with exponentially large state 

space
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Neural Networks for Deflection Routing
• Feed-forward neural network for generating deflection 

decisions consists of:
• State: input layer 
• Middle layer
• Deflection decision: output layer
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Weight Updates
Neural network:
• Receives a state
• Translates the state to a deflection decision 
• Waits for the reward signal
• Updates its weight matrices:

• : non-negative rate factor
• : output of the ith neuron
• : probability of         , given the input and weight 

vectors
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Simulations: 
National Science Foundation Network
• National Science Foundation (NSF) network topology:
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Simulations: Setup
• Buffer-less optical burst switching architecture:

• 1 Gbps fiber links
• 64 wavelengths

• Traffic flows:
• Poisson arrivals
• 0.5 Gbps data rate
• 50 bursts:

• each burst carries 12.5 kB payload
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Results: Average Number of Deflections
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Substrate vs. Virtual Networks
• InPs operate physical substrate networks (SNs)
• SN components:

• physical (substrate) nodes
• physical (substrate) links

• Substrate nodes and links are:
• interconnected using arbitrary topology
• used to host various virtualized networks with 

arbitrary topologies
• Virtual networks are embedded into a substrate network

March 17, 2016 Ph.D. Defense 62



VNE Solution: VLiM and Path Splitting
• Path splitting:

• a flow may be divided into multiple flows with lower 
capacity

• The shortest-path algorithms do not permit path 
splitting:
• stricter than the MCF algorithm

• MCF enables path splitting:
• flows are routed through various paths

March 17, 2016 Ph.D. Defense

D. G. Andersen, “Theoretical approaches to node assignment,”  Dec. 2002, Unpublished 
Manuscript. [Online]. Available: http://repository.cmu.edu/compsci/86/. 

63



VNE Formulation: Constrains
• Substrate network graph:
• Resources:

• substrate nodes: CPU capacity
• substrate links: bandwidth
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VNE Formulation: Constrains
• Virtual network graph:
• Resources:

• virtual nodes: CPU capacity
• virtual links: bandwidth
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VNE as a Markov Decision Process
• Consider a substrate network with nodes and links
• At an arbitrary time instant    , the VNE solver receives 

for embedding a VNR that requires virtual nodes 
and virtual links. 

• First solve VNoM:
• select    substrate node for embedding VNR nodes
• yields    decision-making instances (horizon)
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MDP: Initial State and Action Set
• Initial state:

• : ordered set of all virtual nodes yet to be 
embedded

• : set of all substrate nodes initially available for 
embedding

• Initial action set:

• : forced transition to terminal state
• : set of all substrate nodes with enough 

resources for embedding 
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MDP: State Transition
• The decision-making agent selects a substrate node 

for embedding      
• The MDP transitions to state:

• with probability 1
• The action set in the second time step:
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MDP: Reaching the Horizon
• The decision-making horizon is reached after selecting

substrate nodes for embedding virtual nodes
• The agent proceeds to identifying the virtual link 

mappings (solve VLiM)
• If VLiM is successful, the agent receives a terminal 

reward

• Else, the reward: 
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MDP: Finding the Optimal Policy
• Number of substrate and virtual nodes: 

• determine the number of MDP state variables
• exponential growth of number of states 

• Finding an exact solution for the MDP is intractable for 
even fairly small substrate and virtual networks
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Monte Carlo Tree Search (MCTS)
• The nodes and edges of the search tree correspond to 

states and actions, respectively
• Each tree node stores a value and a visit count 
• MCTS algorithm begins with a tree that only consists of 

the root node 
• Executes four phases until a predefined computational 

budget is exhausted:
• selection
• expansion
• simulation
• backpropagation
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MCTS: Selection Phase
• The tree is traversed from the root until a non-terminal 

leaf node is reached 
• A child node is selected based on a selection strategy at 

each level of the tree 
• Exploration vs. Exploitation dilemma

• explore the undiscovered sections of the search tree 
to find better actions 

or 
• exploit promising subtrees that have already been 

discovered 
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• One of the most commonly used selection strategies: 

• : selected child
• : current node
• : set of all children of
• : exploration constant 

Upper Confidence Bound for Trees
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MCTS: Expansion
• After a non-terminal leaf node is selected, one or more 

of its successors are added to the tree
• The most common expansion strategy is to add one

node for every execution of the four MCTS phases
• The new node corresponds to the next state 
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MCTS: Simulation
• The generative model     is used to perform a sequence of 

actions from non-terminal until a terminal node is reached
• MCTS converges if actions are randomly selected
• Utilizing domain knowledge may improve the convergence 

speed 
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MCTS: Backpropagation
• The reward is calculated after a leaf node is reached in 

the Simulation phase 
• Reward is then propagated from the leaf node to the 

root 
• Every tree node in the current trajectory is updated: 

• adding reward to its current value
• incrementing its count
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MCTS Parallelization
Common techniques:
• Leaf parallelization
• Root parallelization

• processes do not require to share their trees
• may be implemented lock free
• less coordination and communication between the 

processes
• superior performance
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MCTS Parallelization

Root Parallelization

Leaf Parallelization

Search tree node of Proccess #1

Search tree node of Proccess #2

Search tree node of Proccess #3

Search tree node selected by UCT

Current location of Proccess #1

Current location of Proccess #2

Current location of Proccess #3
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VNE Search Tree Example
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Search tree for embedding a VNR with 3 nodes onto 
a substrate network with 5 nodes



Simulations
• Substrate Network:

• 50 nodes and 221 edges
• Nodes’ CPU and links’ bandwidth capacities uniformly 

distributed between 50 and 100 units
• Virtual network requests:

• number of nodes uniformly distributed 
between 3 and 10

• CPU requirements uniformly distributed 
between 2 and 20

• bandwidth requirements uniformly distributed 
between 0 and 50
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Simulations: MCTS Parameters
• Computational budget: 40
• Exploration constant: 0.5

March 17, 2016 Ph.D. Defense 81

M. P. D. Schadd, M. H. M. Winands, M. J. W. Tak, and J. W. H. M. Uiterwijk, 
“Single-player Monte-Carlo tree search for SameGame,” 

Knowledge-Based Systems, vol. 34, pp. 3–11, Oct. 2012. 



Simulations: Other Parameters
• MT19937 Mersenne Twister random number generator 

with seed 0
• Poisson distribution for arrivals with means

1 to 8 units per 100 time units
• Exponentially distributed life-times with mean 1,000 time 

units
• Traffic loads: 10, 20, 30, 40, 50, 60, 70, and 80 Erlangs
• Total simulation time: 50,000 time units
• Performance metrics:

• acceptance ratio, revenue to cost ratio
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Discussion
• Parallelizing MCF and eliminating disk I/O operations 

improves the execution time of MaVEn-M and Vine 
Algorithms

• MCTS parallelization improves performance of the 
MaVEn algorithms
• may be executed on clusters that are highly optimized 

for parallel computing and comprise large number of 
processors
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