Streaming Video And Audio Content Over Mobile WiMAX Networks

Will Hrudey

Communication Networks Laboratory http://www.ensc.sfu.ca/research/cnl School of Engineering Science Simon Fraser University

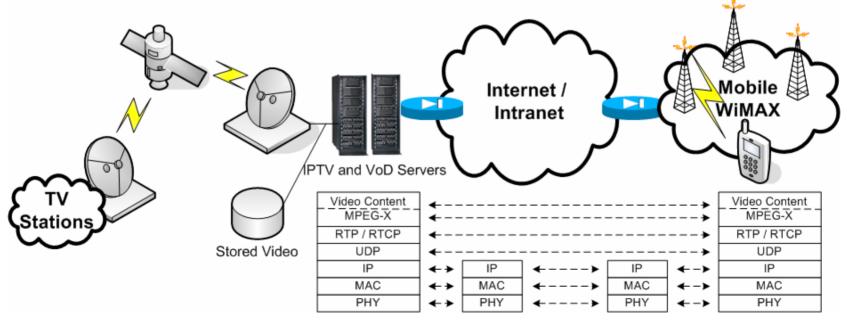
Roadmap

Introduction

- Technological overview (video content, RTP, WiMAX)
- Design and implementation
- Validation
- Simulation results
- Project challenges
- Closing comments
- References

Motivation – WiMAX growth trends

- In 2007: 100+ carrier trials were planned worldwide *
- In 2008: 133M WiMAX users by 2012 ** 198% compound annual growth rate to 2012 ***
- In 2009: 460 fixed & mobile WiMAX deployments ** 800M users by 2010 * 1.3B users to have WiMAX access by 2012 ****


* OPNETWORK 2007. www.opnet.com/opnetwork2007.

- ** WiMAX forum. www.wimaxforum.org/news/pressreleases.
- *** Telecom Application Report 2008. www.researchandmarkets.com.
- **** Intel WiMAX Subscriber Growth. www.wimaxday.net.

Project objective

 To stream bandwidth intensive, delay sensitive, video content representative of Video on Demand services over Mobile WiMAX to exploit potential throughput, delay, and mobility limitations

Project scope

Enhance an existing OPNET model from previous work *

- Upgrade model from OPNET 12.0.A to 14.5.A
- Generate and integrate audio component
- Refine performance metrics
- Enhance protocol stack Real Time Protocol (RTP)
- Design, integrate, and optimize WiMAX mobility
- Design and characterize WiMAX MAC and PHY Due to stability issues after the upgrade process, an entirely new OPNET model was created for this project

RTP	Real Time Protocol	MAC	Media Access Control	PHY	Physical	
-----	--------------------	-----	----------------------	-----	----------	--

* W. Hrudey and Lj. Trajkovic, "Streaming Video Content Over IEEE 802.16 / WiMAX Broadband Access," *OPNETWORK 2008*, Washington, DC, Aug. 2008.

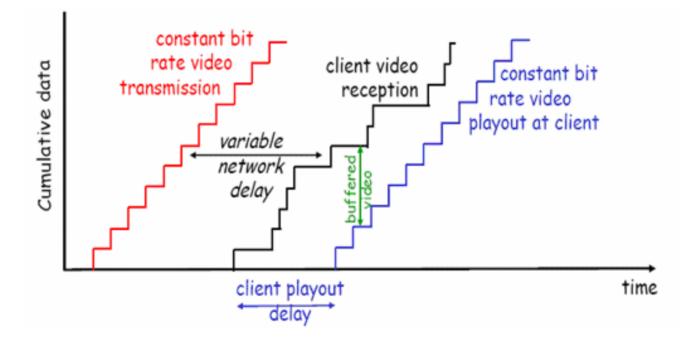
Roadmap

- Introduction
- Technological overview video content
- Design and implementation
- Validation
- Simulation results
- Project challenges
- Closing comments
- References

Video content is ...

- digital audio and visual information from sitcoms, newscasts, sporting events, movies, etc.
- streamed from Internet Protocol TV (IPTV) and Video on Demand (VoD) services hosted in an Internet / Intranet Data Center (IDC)
- delivered to video subscribers over an IP network
- organized as frames which are then compressed and encapsulated by lower layer protocols
- characterized by video resolution, color depth, compression scheme, number of audio channels, frame rate and frame size
 - video coding schemes exploit temporal and spatial characteristics
 - various standards and codecs ITU H.26x and ISO MPEG-x

IPTV	Internet Protocol TV	VoD	Video On Demand
IDC	Intranet Data Center	ITU	International Telecommunications Union
MPEG	Motion Pictures Experts Group		


Video format examples

Format	VCD	SVCD	DVD	HDTV	DivX	RM	MOV
Resolution	352x240	480x480	720x480	1920x1080	640x480	320x240	640x480
	352x288	480x576	720x576	1920x720			
Video	MPEG-1	MPEG-2	MPEG-1	MPEG-2	MPEG-4	RM	MPEG-4
codec			MPEG-2				
Video	1.15Mbps	2Mbps	5Mbps	20Mbps	1Mbps	0.35Mbps	1Mbps
bitrate							
Audio	MP1	MP1	MP1,	MP1, MP2,	MP3,	RM	MP3
codec			MP2,	AC3, DTS,	WMA,		
			AC3,	РСМ	AAC,		
			DTS,		AC3		
			РСМ				
Audio	224kbps	224kbps	448kbps	448kbps	128kbps	64kbps	128kbps
bitrate							

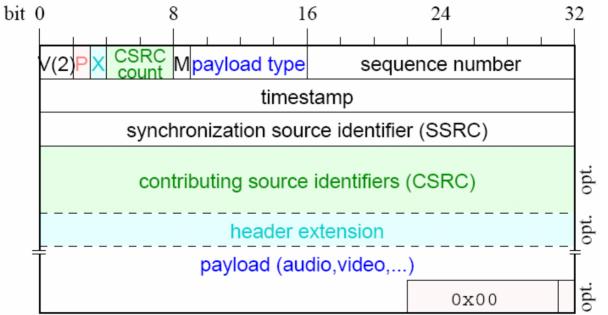
VideoHelp Forum [Online]. Available: http://www.videohelp.com/oldguides/comparison.

Video content is marginally loss tolerant yet delay sensitive

J. Kurose and K. Ross, *Computer Networking: A Top-Down Approach*, 4/e. Boston, MA: Pearson/Addison-Wesley, 2008.

Roadmap

- Introduction
- Technological overview RTP
- Design and implementation
- Validation
- Simulation results
- Project challenges
- Closing comments
- References



Real Time Protocol overview

RTP Real Time Protocol

IP Internet Protocol

RTP is widely used in IP video transmission systems * **

- * H. Nyberg, C. Johansson, B. Olin, "A Streaming Video Traffic Model for the Mobile Access Network," IEEE VTC 2001, Sep. 2001, pp. 423 427.
- ** T. Ahmed, G. Buridant, A. Mehaoua, "Encapsulation and Marking of MPEG-4 Video Over IP Differentiated Services", Proc IEEE ISCC 2001, Sep. 2001, pp. 346 – 352.

Real Time Protocol ...

RTP Real Time Protocol UDP User Datagram Protocol IP Internet Protocol

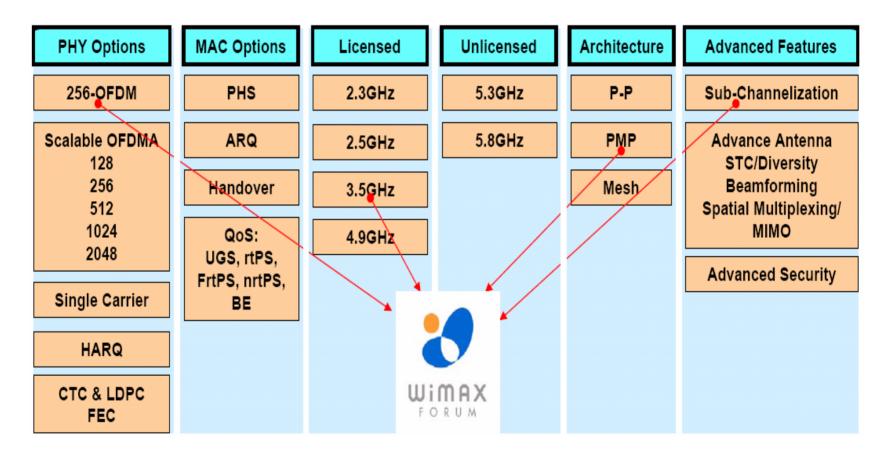
- does not reserve bandwidth, guarantee delivery or end to end delays
- provides timestamps for jitter calculations and sequencing for packet loss and out-of-order detection
- encapsulation is only seen at the end systems

IP Header	UDP RTP Header RTP Video Payload	audio and video
IP	UDP RTP	are encoded
Header	Header RTP Audio Payload	separately *

* Real time protocol RFC 3550 [Online]. Available: http://tools.ietf.org/html/rfc355

Roadmap

- Introduction
- Technological overview WiMAX
- Design and implementation
- Validation
- Simulation results
- Project challenges
- Closing comments
- References



WiMAX overview

- Worldwide interoperability for microwave access
- Line of sight (LOS) and non-LOS communications
- All IP network architecture
- Point to point, point to multipoint (PMP), and mesh modes
- Connection oriented MAC layer support for real time services
- High throughput rates
- 1.25 20 MHz channel bandwidths
- Mobility with vehicular speeds up to 120 kph
- Multiple PHY access schemes: SC, OFDM, and SOFDMA
- Multiple duplexing schemes: TDD and FDD
- Advanced antenna systems (AAS): beam forming, STC, and SM LOS Line of Sight NLOS Non Line of Sight Advanced Antenna Systems PHY Physical AAS Point to Multipoint Single Carrier OFDM **Orthogonal Frequency Division Multiplex** PMP SC SOFDM Scalable OFDM TDD Time Division Duplex FDD Frequency Division Duplex

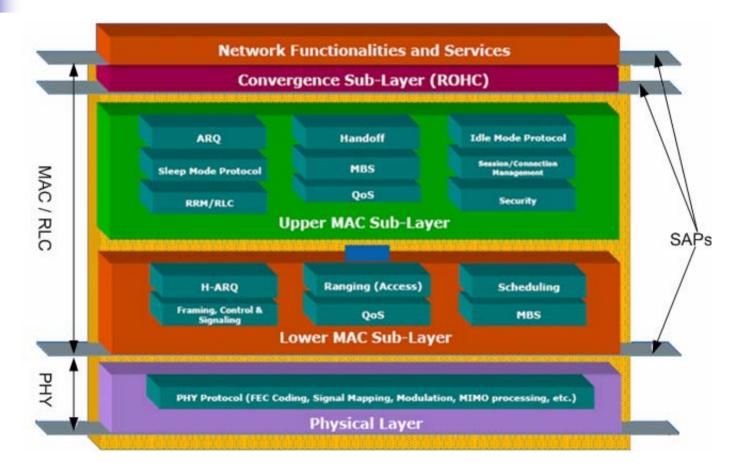
WiMAX system options

R. Golshan, Fixed and Mobile WiMAX Overview [Online]. Available: www.fujitsu.com/downloads/MICRO/fma/pdf/esc_wimax06.pdf

May 19, 2009 Streaming Video And Audio Content Over Mobile WiMAX Networks

WiMAX standards

IEEE 802.16 (2001)


- 10 66 GHz line of sight (LOS) operations
- IEEE 802.16c (2002)
 - amended system profiles
- IEEE 802.16a (2003)
 - 2 11 GHz non LOS (NLOS) operations
- IEEE 802.16d-2004 (informally known as Fixed WiMAX)
 - replaced all previous releases
- IEEE 802.16e-2005 (informally known as Mobile WiMAX)
 - mobility amendment

LOS Line of Sight

NLOS Non Line of Sight

WiMAX reference model

Intel – S. Ahmadi, Introduction to mobile WiMAX Radio Access Technology - PHY and MAC [Online]. Available: http://www.mat.ucsb.edu/~ggroup/ahmadiUCSB_slides_Dec7.pdf

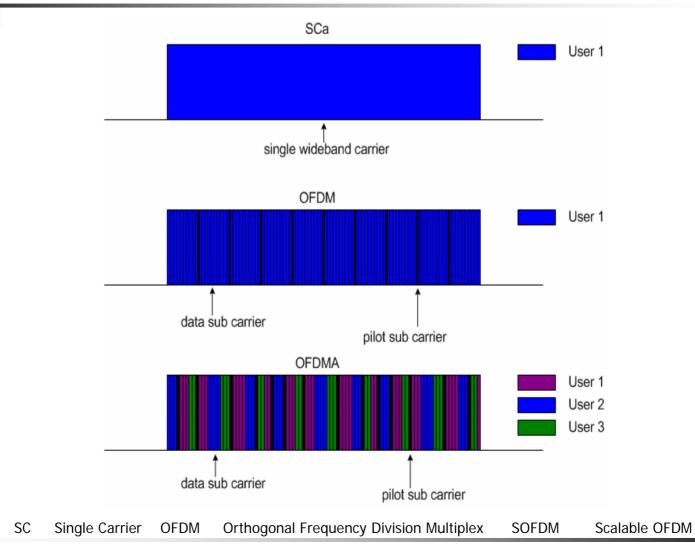
WIMAX MAC QoS

Service classes characterized by QoS parameters

- UGS, rtPS, ertPS, nrtPS, and BE schedulers
- min reserved and max sustainable data rates
- max latency and jitter tolerance
- traffic priorities
- Service flows (SF) are an instance of service class
 - carry unidirectional traffic
 - mobiles can have multiple service flows
 - can have unique MCS, MTU, retransmission scheme

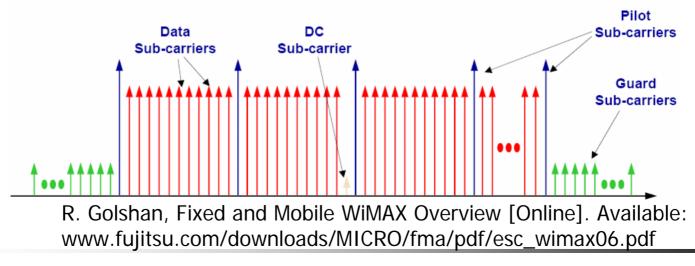
UGS	Unsolicited Grant Service	rtPS real-time F	olling Service	ertPS enhanced rtPS	BE Best Effort
SF	Service Flow	MCS Modulation	and Coding Scheme	MTU Max Transfer Uni	t

WIMAX MAC AMC


- Adaptive Modulation and Coding (AMC)
 - as channel conditions degrade, adaptively downgrade modulation to a lower order, more robust scheme

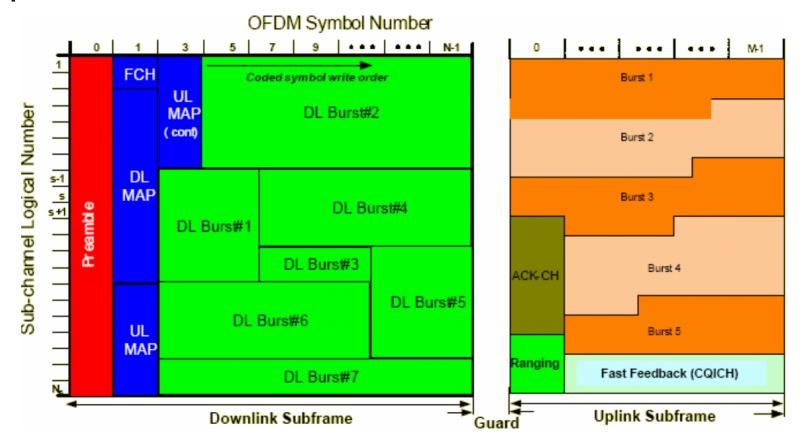
Modulation	Bits per Baud	FEC	Spectral Efficiency	Receiver SNR
		Rate	(bps/Hz)	(dB)
QPSK	2	1/2	1	5
Garon	2	3⁄4	1.5	8
16-QAM	4	1∕2	2	10.5
10-04/101		3⁄4	3	14
	6	1∕₂	3	16
64-QAM		2/3	4	18
04-04/101		3⁄4	4.5	20
		5/6	5	22

* IEEE Std. 802.16e-2005: Part 16: Air interface for fixed and mobile broadband wireless access systems



PHYsical access schemes

Orthogonal Frequency Division Multiplex


- OFDM is a multicarrier modulation scheme
 - transmits data over multiple tightly spaced orthogonal subcarriers
- Subcarrier organization
 - data subcarriers transport of data symbols
 - pilot subcarriers channel estimation
 - guard (null) subcarriers spectrum shaping

Time division duplex (TDD) frame

OFDM Orthogonal Frequency Division Multiplex

R. Golshan, Fixed and Mobile WiMAX Overview [Online]. Available: www.fujitsu.com/downloads/MICRO/fma/pdf/esc_wimax06.pdf

Effective PHY throughput rates

	Code Rate	5 MHz (Channel	10 MHz Channel		
Mod.		Downlink Rate, Mbps	Uplink Rate, Mbps	Downlink Rate, Mbps	Uplink Rate, Mbps	
QPSK	1/2 CTC, 6x	0.53	0.38	1.06	0.78	
	1/2 CTC, 4x	0.79	0.57	1.58	1.18	
	1/2 CTC, 2x	1.58	1.14	3.17	2.35	
	1/2 CTC, 1x	3.17	2.28	6.34	4.70	
	3/4 CTC	4.75	3.43	9.50	7.06	
16QAM	1/2 CTC	6.34	4.57	12.67	9.41	
	3/4 CTC	9.50	6.85	19.01	14.11	
64QAM	1/2 CTC	9.50	6.85	19.01	14.11	
	2/3 CTC	12.67	9.14	25.34	18.82	
	3/4 CTC	14.26	10.28	28.51	21.17	
	5/6 CTC	15.84	11.42	31.68	23.52	

QPSK Quadrature Phase Shift Keying QAM Quadrature Amplitude Modulation CTC Convolutional Turbo Code PHY Physical

WiMAX forum – Mobile WiMAX – Part I: A Technical Overview and Performance Evaluation

May 19, 2009

Roadmap

- Introduction
- Technological overview (video content, RTP, WiMAX)
- Design and implementation
- Validation
- Simulation results
- Project challenges
- Closing comments
- References

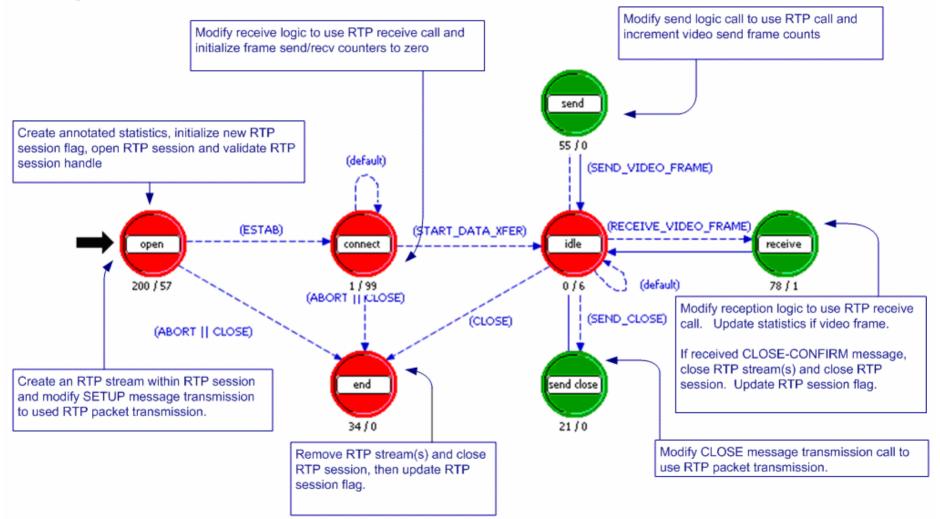
RTP analysis

• Analyzed OPNET voice application and its interface to lower layers

- comprised of two process models (client-client architecture)
- uses RTP
- uses H.323 out-of-band signaling
- Analyzed OPNET video conferencing application
 - comprised of two process models (client-client architecture)
 - video calling process model (~ 1900 lines of code)
 - video called process model (~ 1700 lines of code)
 - uses TPAL (transport adaptation layer) instead of RTP
 - uses in-band application layer handshaking instead of H.323
- Analyzed OPNET RTP module API and process models

RTP Real Time Protocol TPAL Transport Adaptation Layer API Application Programming Interface

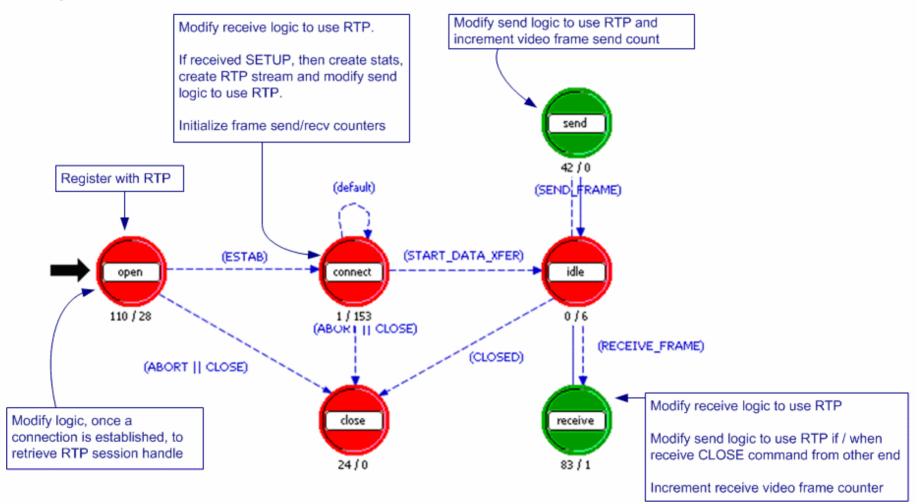
RTP design approach


- Localize changes to the OPNET video conferencing process models
- Process models define the behavior of a module by using finite state machines (FSM)
 - FSM uses states and transitions to determine appropriate action in response to a given event
 - process models comprised of ProtoC code blocks
 - state enter and exit executives
 - header, function, diagnostic, and termination blocks
- Replace existing TPAL interface with RTP

FSM Finite State Machine TPAL Transport Adaptation Layer RTP Real Time Protocol

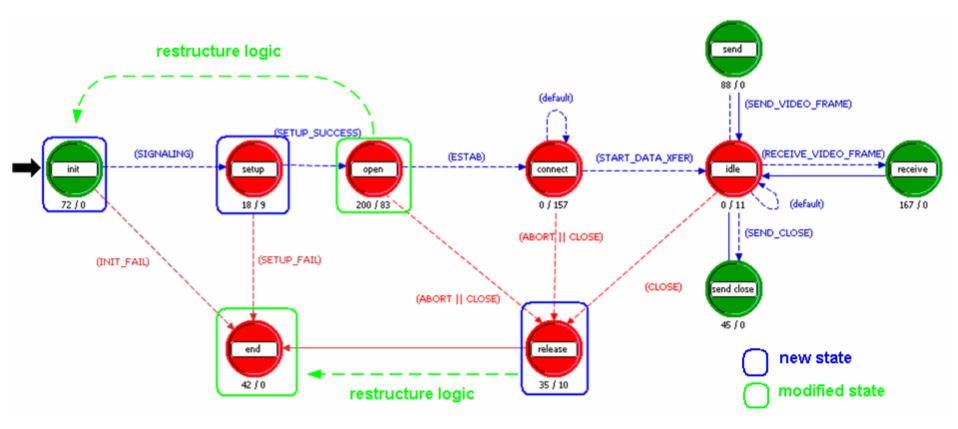
Video calling process model

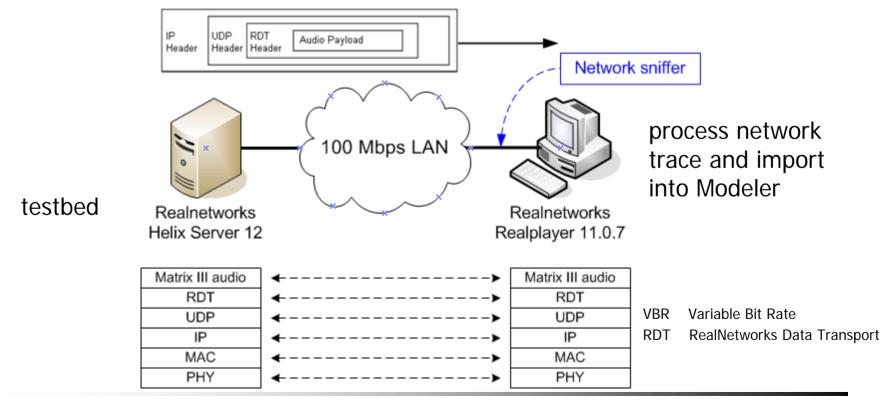
RTP Real Time Protocol



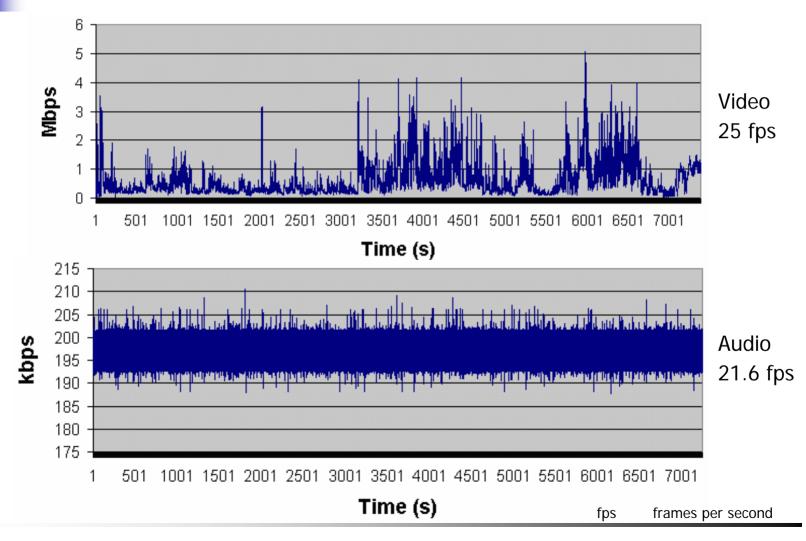
Streaming Video And Audio Content Over Mobile WiMAX Networks

Video called process model


RTP Real Time Protocol


RTP calling model design revisited

RTP Real Time Protocol



- Extract soundtrack from Matrix III into VBR format
- Stream audio to client while capturing network trace

Streaming Video And Audio Content Over Mobile WiMAX Networks

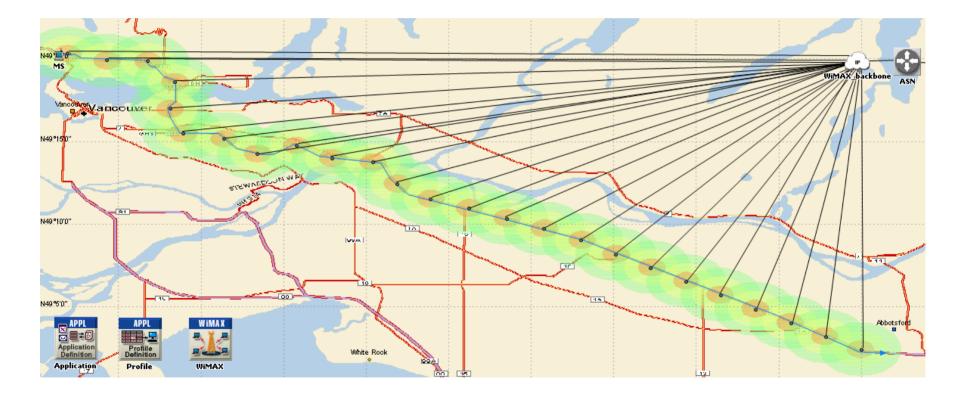
Matrix III video content traffic load

Performance metrics

Packet loss ratio: # of lost packets to total packets

- target: < 10⁻³
- Delay: average time of transit
 - processing + propagation + queuing delays
 - target: < 400 ms</p>
- Jitter: variation in packet arrival time
 - actual reception time expected reception time
 - target: < 50 ms</p>
- Throughput: minimum end-to-end peak transmission rate
 - video stream: 5.1 Mbps
 - audio stream: 0.211 Mbps

WiMAX mobility


Mobile station (MS) travels 50 km/h for 74 km trip

Delorme StreetAtlas 2007

WiMAX network topology design

Mobility design details

- Twenty five base sites (BS) located across 75 km
 - BS-BS spacing of 3.0 km
- Vehicular pathloss + multipath channel fading model
- Multiple cascading scanning interval definitions
 - scanning thresholds: 5 dB, 2 dB, 0 dB
 - as SNR degrades, scanning interval increases
- ASN architecture for L2 / L3 handover
- Frequency reuse scheme of one
 - each BS uses different subchannel to subcarrier mapping to minimize co-channel interface (CCI)

CCI Co-Channel Interference BS Base Site SNR Signal to Noise Ratio ASN Access Service Network

- Two service classes: Silver_DL / Silver_UL
 rtPS scheduler
 - min reserved data rate: 1.0 / 0.384 Mbps
 - max sustained data rate: 6.0 / 1.5 Mbps
- Streaming video traffic mapped to ToS code
 Service flows (SF) configured in each direction
 - each SF is mapped to the same ToS code
- Base station SF buffer set to 256 KB

PHY design parameters

PHYPhysicalSOFDMAScalable Orthogonal Frequency Division MultiplexTDDTime Division DuplexDLDownlinkULUplinkPUSCPartially Used Sub CarriersMSMobile StationBSBase Station

- Operating frequency: 3.5 GHz
- SOFDMA access scheme
- Time division duplex (TDD)
 - DL/UL ratio 3:1
- Distributed PUSC subchannelization scheme
- MS transmit power / antenna gain: 27 dBm / 5 dBi *

1.5 m

32 m

- MS antenna height:
- BS transmit power:
 43 dBm ** / 15 dBi
- BS antenna height:
- * RedMAX 4C RPM [Online]. Available: www.redlinecommunications.com.
- ** RedMAX 4C SC-1000 Mobile WiMAX Base Station [Online]. Available: www.redlinecommunications.com.

PHY design characterization matrix

PHYPhysicalSTCSpace Time CodingMIMOMultiple Input Multiple OutputSISOSingle Input Single OutputARQAutomatic Repeat RequestHARQHybrid ARQ

Channel Bandwidth (MHz)	Frame Duration (ms)	Advanced Antenna Systems	ARQ scheme	
	2	none (SISO)	none	
		Holle (3130)	ARQ / HARQ	
		STC 2x1 MIMO	none	
5		310 221 10000	ARQ / HARQ	
, , , , , , , , , , , , , , , , , , ,	20	none (SISO)	none	
			ARQ / HARQ	
		STC 2x1 MIMO	none	
		810 241 10000	ARQ / HARQ	
7	2	none (SISO)	none	
			ARQ / HARQ	
		STC 2x1 MIMO	none	
		810 241 141140	ARQ / HARQ	
'	20	none (SISO)	none	
			ARQ / HARQ	
		STC 2x1 MIMO	none	
		010 2 11 11110	ARQ / HARQ	
	2	none (SISO)	none	
			ARQ / HARQ	
		STC 2x1 MIMO	none	
10		010 2 11 11110	ARQ / HARQ	
	20	none (SISO)	none	
			ARQ / HARQ	
	20	STC 2x1 MIMO	none	
		010 241 11110	ARQ / HARQ	

Channel bandwidth OFDM design

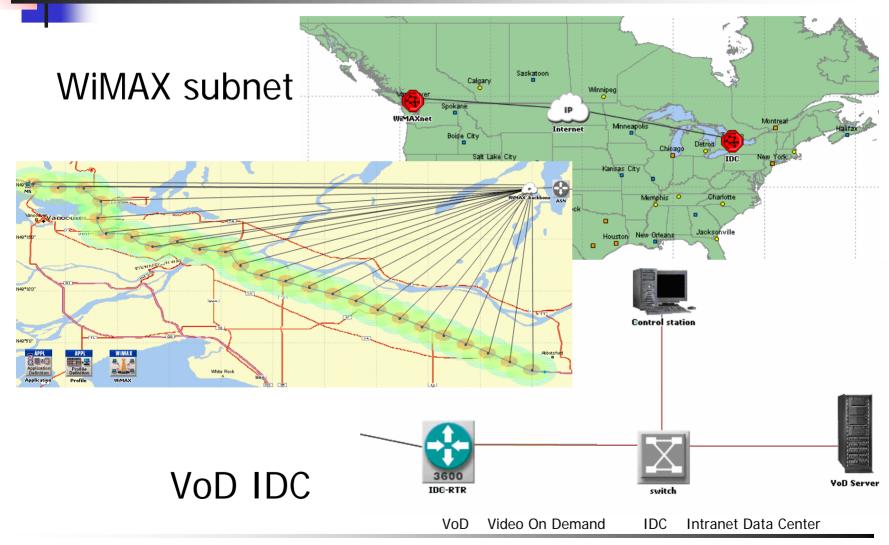
OFDM	Orthogonal Frequency Division Multiplex
DL	Downlink

OFDMA Orthogonal Frequency Division Multiple Access UL Uplink

System Parameters		Values			
System chann	el bandwidth in MHz	5	7	10	
Sampling facto	or[n]	1.12	1.14	1.12	
Sampling frequ	uency in MHz [Fs]	5.60	8.00	11.20	
Sample time (r	ns) [1 / F _s]	178.6	125.0	89.3	
FFT Size (N _{FF1}	FFT Size (N _{FFT})		1024	1024	
Sub carrier free	quency spacing (kHz)	10.94	7.81	10.94	
Useful symbol time (µs) [T _b]		91.4	128.0	91.4	
Guard time (μs) [Τ _g]		11.4	16.0	11.4	
OFDMA symbol duration (μs) [T _s]		102.9	144.0	102.9	
Frame duration (ms)		5	5	5	
Number of OFDMA symbols		48	34	48	
	Null subcarriers left	46	92	92	
	Null subcarriers right	46	92	92	
DL	Data subcarriers	360	720	720	
	Pilot subcarriers	60	120	120	
	Subchannels	15	30	30	
	Data subcarriers / subchannel	24	24	24	
UL	Null subcarriers left	52	92	92	
	Null subcarriers right	52	92	92	
	Data subcarriers	272	560	560	
	Pilot subcarriers	136	280	280	
	Subchannels	17	35	35	
	Data subcarriers / subchannel	16	16	16	

Adaptive Modulation and Coding

DL Downlink UL Uplink BER Bit Error Ratio SNR Signal to Noise Ratio


- Same configuration for UL and DL
- Entry thresholds reflect receiver SNR *
- Modulation curves approach BER of 0 for SNR

Mandatory Exit Threshold (dB)	Minimum Entry Threshold (dB)	Modulation and Coding
-20.0	5.0	QPSK 1/2
7.9	8.0	QPSK 3/4
10.4	10.5	16-QAM 1/2
13.5	14.0	16-QAM 3/4
15.9	16.0	64-QAM 1/2
17.9	18.0	64-QAM 2/3
19.9	20.0	64-QAM 3/4
21.9	22.0	64-QAM 5/6

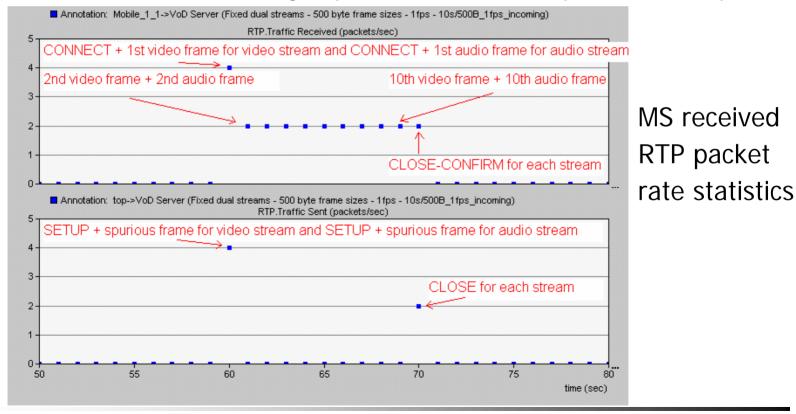
* IEEE Std. 802.16e-2005: Part 16: Air interface for fixed and mobile broadband wireless access systems

Model topology

Streaming Video And Audio Content Over Mobile WiMAX Networks

- Introduction
- Technological overview (video content, RTP, WiMAX)
- Design and implementation
- Validation
- Simulation results
- Project challenges
- Closing comments
- References

RTP - isolated streaming test


RTP Real Time Protocol

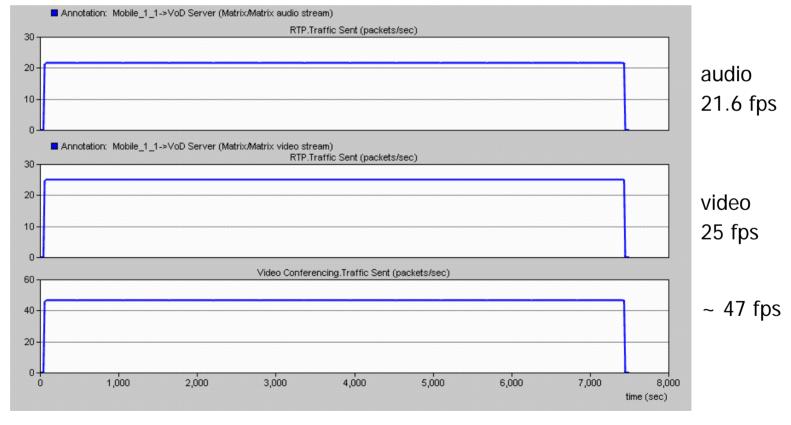
l fps

frames per second

MS Mobile Station

- Video content streamed for 10 seconds using two streams
- Each stream uses 500 byte packets at 1 frame per second (fps)

RTP - Matrix III streaming test


RTP Real Time Protocol

fps f

frames per second

MS Mobile Station

Video On Demand server – packet rate statistics over time

WiMAX mobility – handover test

Streaming Video Conferencing.Traffic Received (packets/sec) 2.5 packet rate 2 1 10. п 1.5 over time 1 0.5 0 1,000 2,000 3,000 4,000 6,000 7,000 5,000 8,000 0 time (sec) Handover WIMAX Mobility.Serving BS ID 4 between 3 four sites 2 over time 1 0 2,000 3,000 1,000 4,000 5,000 6,000 7,000 8,000 0 time (sec)

- Introduction
- Technological overview (video content, RTP, WiMAX)
- Design and implementation
- Validation
- Simulation results
- Project challenges
- Closing comments
- References

Simulation results

Channel Bandwidth (MHz)	Frame Duration (ms)	AAS	ARQ scheme	PLR	Delay (ms)	Jitter (ms)	Rank
5	5	none (SISO)	none	3.13E-02	50.9	0.0051	
			ARQ/HARQ	6.88E-04	53.9	0.0330	2
		STC 2×1 MIMO	none	5.69E-03	51.0	0.0055	
		0102211	ARQ/HARQ	6.88E-04	52.4	0.0200	1
		none (SISO)	none	3.16E-02	58.7	0.0120	
	20		ARQ/HARQ	7.44E-04	67.0	0.2650	
	20	STC 2×1 MIMO	none	5.67E-02	58.4	0.0125	
			ARQ/HARQ	7.34E-04	61.5	0.0934	3
	5	none (SISO)	none	2.64E-02	50.4	0.0030	
7			ARQ / HARQ	6.88E-04	52.7	0.0195	2
		STC 2×1 MIMO	none	2.14E-03	50.5	0.0031	
			ARQ/HARQ	6.85E-04	51.3	0.0118	1
	20	none (SISO)	none	2.67E-02	57.9	0.0100	
			ARQ / HARQ	7.36E-04	64.9	0.1750	
		STC 2×1 MIMO	none	2.15E-03	57.9	0.0090	
			ARQ / HARQ	7.23E-04	59.2	0.0480	3
	5	none (SISO)	none	4.08E-02	49.9	0.0014	
10			ARQ / HARQ	6.89E-04	52.7	0.0210	2
		STC 2×1 MIMO	none	7.68E-03	49.8	0.0014	
			ARQ / HARQ	6.82E-04	50.9	0.0112	(1)
	20	none (SISO)	none	4.19E-02	57.7	0.0105	
			ARQ/HARQ	7.46E-04	68.1	0.2580	
		STC 2×1 MIMO	none	8.07E-03	57.7	0.0095	
			ARQ / HARQ	7.28E-04	60.2	0.0770	3

Streaming Video And Audio Content Over Mobile WiMAX Networks

- Introduction
- Technological overview (video content, RTP, WiMAX)
- Design and implementation
- Validation
- Simulation details results finalized in early June
- Project challenges
- Closing comments
- References

Challenges

RTP Real Time Protocol

L2 Layer 2

L3 Layer 3

- RTP
 - no relevant internal design documentation
 - various internal modeler bugs
 - troubleshooting multiple streams issue
 - simulator internals very complex
- Mobility
 - unacceptable packet loss with MobileIP
 - ASN configuration for L2 / L3 handoff
 - MS forced disconnects from BS
- Limited technical support available for advanced Modeler modifications and configurations
 - modeler HARQ bug SPR-127241
 - upgraded again from 14.5.A to 15.0.1 bug still present

- Introduction
- Technological overview (video content, RTP, WiMAX)
- Design and implementation
- Validation
- Simulation results
- Project challenges
- Closing comments
- References

Closing comments

- To date, the project has been ...
 - rewarding
 - diversified broad range of enhancements
 - time intensive
- All enhancements were successfully completed
- Results are very encouraging
 - 50 % of the scenarios met or exceeded the specified performance measures
 - ARQ / HARQ and MIMO provided significant performance improvements

References

- OPNET Technologies, OPNETWORK2007 proceedings [Online]. Available: http://www.opnet.com/opnetwork2007.
- WiMAX forum [Online]. Available: http://www.wimaxforum.org/news/pressreleases.
- West Technology Research Solutions, Telecom application report 2008 [Online]. Available: http://www.researchandmarkets.com/reports/c81415.
- Untethered Publishing Ltd., WiMAX Subscriber Growth [Online]. Available: http://www.wimaxday.net/site/wimax-subscriber-growth.
- W. Hrudey and Lj. Trajkovic, "Streaming Video Content Over IEEE 802.16/WiMAX Broadband Access," OPNETWORK 2008, Washington, DC, Aug. 2008.
- VideoHelp forum [Online]. Available: http://www.videohelp.com/oldguides/comparison.
- Kurose and K. Ross, *Computer Networking: A Top-Down Approach*, 4/e. Boston, MA: Pearson/Addison-Wesley, 2008.
- H. Nyberg, C. Johansson, B. Olin, "A streaming video traffic model for the mobile access network," in *Proc. IEEE VTC 2001*, Rhodes, Greece, Sep. 2001, pp. 423 - 427.
- T. Ahmed, G. Buridant, and A. Mehaoua, "Encapsulation and marking of MPEG-4 video over IP differentiated services," in *Proc. IEEE ISCC 2001*, Hammamet, Tunisia, Sep. 2001, pp. 346 – 352.
- H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "Real time protocol," RFC 3550, Jul. 2003.

References

- F. Fitzek, M. Zorzi, P. Seeling, and M. Reisslein, "Video and Audio Trace Files of Preencoded Video Content for Network Performance Measurements (2004)," in *Proc. IEEE CCNC 2004*, Las Vegas, NV, Jan. 2004, pp. 245-250.
- R. Golshan, Fixed and mobile WiMAX overview [Online]. Available: www.fujitsu.com/downloads/MICRO/fma/pdf/esc_wimax06.pdf.
- S. Ahmadi, Introduction to mobile WiMAX radio access technology PHY and MAC architecture [Online]. Available: http://www.mat.ucsb.edu/~ggroup/ahmadiUCSB_slides_Dec7.pdf.
- IEEE Std. 802.16e-2005: Part 16: Air interface for fixed and mobile broadband wireless access systems [Online]. Available: http://standards.ieee.org/getieee802/802.16e???.html.
- WiMAX forum, Mobile WiMAX part I: A technical overview and performance evaluation [Online]. Available: http://www.wimaxforum.org/technology/downloads/Mobile_WiMAX_ Part1_Overview_and_Performance.pdf.
- OPNET Modeler software [Online]. Available: http://www.opnet.com/products/modeler/home.html.
- Redline Communications, RedMAX 4C RPM [Online]. Available: http://www.redlinecommunications.com/news/resourcecenter/productinfo/RPM.pdf.
- Redline Communications, RedMAX 4C SC-1000 mobile WiMAX base station [Online]. Available: http://www.redlinecommunications.com/news/ resourcecenter/productinfo/SC1000_Mar%205%202009.pdf.

Questions

