

Sathappan Kathiresan skathire@sfu.ca

M. Eng. Presentation

Communication Networks Laboratory
http://www.ensc.sfu.ca/cnl
School of Engineering Science
Simon Fraser University

Roadmap

- Introduction
- Related work
- Project objective
- Project setup and implementation
- Emulation results
- Summary and conclusion
- References

Internet users (2013-14) : 3.12 billion

Google searches (2013-14) : 1.2 trillion

Websites (2013-14) : 1 billion

Internet traffic (per sec) : 27,233 GB

Skype calls (per sec) : 1,739

You tube videos (per sec) : 100,235

Instagram photos (per sec) : 2,049

Reference: Internet Society – facts and statistics (2013-14)

Comparison of IP and MPLS Networks

IP network:

- Internet Protocol (IP)
- Each router performs an IP lookup (routing) and forwards the packet to the next hop
- Forwarding is based on IP address only

MPLS network:

- Multi-Protocol Label Switching (MPLS)
- Only the source and destination routers perform IP lookup
- Forwarding is based on IP address and label

Packet Forwarding in IP Network

Packet Forwarding in MPLS Network

- Only edge routers perform a routing lookup
- Core routers switch packets based on simple label lookups and swap labels

Definition: Transport traffic flows across a network based on the type of traffic and the availability of network resources.

Reference: Basics of Traffic Engineering, Cisco press.

Traffic Engineering in IP network

- Most traffic goes between sites A and B and only uses primary link
- Destination-based routing does not provide any mechanism for load balancing across unequal paths

Traffic Engineering in MPLS network

- Traffic may be forwarded based on other parameters: QoS, source based
- Load sharing across unequal paths may be achieved

Related work

- MATLAB simulation tool (N. Aslam, 2010)
- GNS3 simulator is used and MPLS performance is measured (Deshmukh et al., 2013)
- RSVP-TE network simulator (D. Adami et al., 2005)

Resource Reservation Protocol

- The performance is measured in a simulated environment
- Failed to consider genuine network traffic
- Data file is a not a sensitive traffic

Project Objective

- Emulate a network architecture
- Configure routers to permit background traffic
- Two scenarios:
 - with background traffic
 - without background traffic
- Generate traffic using CISCO IP SLAs
- Performance measurement:
 - Round Trip Time (RTT)
 - Latency, and Mean Opinion Score (MOS)

IP SLA: IP service level agreement

Project Setup and Implementation

- Network architecture is designed using Graphical Network Simulator (GNS3)
- Emulator that implements functions of:
 - various vendor routers
 - network interface card
- Requires an Internetwork Operating System (IOS) of the specific router to mimic its function
- Advanced IOS images are available only to vendor customers

Network Architecture

Screenshot from GNS emulator, April 14, 2015

IP Network Configuration

```
10.0.0.0/8 is variably subnetted, 15 subnets, 2 masks

10.0.10.0/24 [110/2] via 10.0.11.1, 00:00:09, FastEthernet3/0

10.0.11.0/24 is directly connected, FastEthernet3/0

10.0.14.0/24 [110/4] via 10.0.11.1, 00:00:09, FastEthernet3/0

10.0.15.0/24 [110/4] via 10.0.11.1, 00:00:09, FastEthernet3/0

10.0.12.0/24 is directly connected, FastEthernet2/0

IA 10.0.24.0/24 [110/5] via 10.0.11.1, 00:00:09, FastEthernet3/0

IA 10.0.18.0/24 [110/6] via 10.0.11.1, 00:00:09, FastEthernet3/0

IA 10.0.16.0/24 is directly connected, FastEthernet1/0
```

Screenshot from Router4, April 14, 2015

MPLS network configuration

R5#sh mpls forwarding-table					
Local	Outgoing	Prefix	Bytes tag	Outgoing	Next Hop
tag	tag or VC	or Tunnel Id	switched	interface	
16	Pop tag	10.0.23.0/24	0	Fa0/0	10.0.22.1
17	Pop tag	10.0.14.0/24	0	Fa0/0	10.0.22.1
18	16	10.0.12.0/24	0	Fa0/0	10.0.22.1
19	17	10.0.13.0/24	0	Fa0/0	10.0.22.1
20	Pop tag	10.0.15.0/24	0	Fa0/0	10.0.22.1
21	Pop tag	10.0.21.0/24	0	Fa0/0	10.0.22.1
22	19	10.0.17.0/24	0	Fa0/0	10.0.22.1

Screenshot from Router5, April 14, 2015

- CISCO IP Service Level Agreements (SLA)
- Used as a routine traffic generator within the system
- Capable of initiating different types of traffic within the network environment
- Analyzes performance
- IP SLAs are unique to each vendor

CISCO IP SLAs Parameters

- Generates Voice over Internet Protocol (VoIP) traffic:
 - Codec: G.711 A-LAW
 - Packet payload: 180 bytes
 - Number of packets: 1,000
 - Inter-packet-arrival: 20 milliseconds
 - Repeated: 1 minute
 - Operation performed between links: R7-R6, R6-R5, and R5-R7 (refer to handout)
- Generates background traffic:
 - Webserver traffic: https://www.facebook.com, https://go.sfu.ca
 - FTP traffic: ftp://username:password@domain/file

Emulation Results – IP network

Emulation Results – MPLS network

Latency

Round Trip Time

Mean Opinion Score

Summary and Conclusion

- IP network is affected by latency, RTT, and MOS value
- MPLS forwarding technique is faster than IP forwarding
- MPLS network labels the traffic at the source
- MPLS network is able to assign priorities to the different data packets based on their labels
- MPLS with TE minimizes the congestion in the network
- Cisco IP SLA technology is used to analyze the network performance
- MPLS = improved technique for traffic engineering

References

- N. Aslam, "Traffic engineering with multi-protocol label switching performance comparison with IP networks," M.Sc. Thesis, Blekinge Institute of Technology, Sweden.
- M. Bhandure, G. Deshmukh, and J.N. Varshapriya, "Comparitive Analysis of MPLS and non – MPLS networks," *International Journal of Engineering Research and Application* (IJERA), vol. 3, no. 4, pp. 71-76, Aug. 2013.
- D. O. Awduche, "MPLS and traffic engineering in IP metworks," *IEEE Communication Magazine*, vol. 37, no. 12, pp. 42-47, Dec. 1999.
- A. Ghanwani, "Traffic engineering standards in IP networks using MPLS," IEEE
 Communications Magazine, vol. 37, no. 12, pp. 49- 53, Dec. 1999.
- J. L. Marzo, E. Calle, C. Scoglio, and T. Anjali, "QoS online outing and MPLS multilevel protection: a survey," *IEEE Communication Magazine*, vol. 41, no. 10, pp. 126-132, Oct. 2003.
- J. M. Chung, "Analysis of MPLS traffic engineering," *Proceedings of the IEEE Midwest Symposium on Circuits and Systems*, USA, Aug. 2000.

References

- I. Hussain, "Overview of MPLS technology and traffic engineering applications," Internet Technologies Divisions, Cisco Systems Inc, USA.
- A Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford, "Traffic engineering for IP networks," *IEEE ACM Transactions on Networking*, vol. 9, no. 3, Jun. 2001.
- (January 10, 2015) GNS3. [Online]. Available: http://www.gns3.com.