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Internet network

 Internet network is a complex network. 

 Number of AS has increased approximately ten times over 
the last ten years.

 It is difficulty to develop representative model of the Internet 
topology.

 Power-laws and spectral analysis have been used to analyze 
the Internet topology. 

 Properties of the Internet topology are useful:

 to realistically model the Internet topology for protocols 
and algorithms evaluation and testing purposes

 to develop new protocols, algorithms, and new network 
infrastructure
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Project overview

 Analyze the properties of the Internet topology at Autonomous 
System (AS) level over the period of five years (2003-2008)

 Border Gateway Protocol (BGP) routing datasets collected by:

 Route Views 

 RIPE (Réseaux IP Européens)

 Method:

 analysis of power-laws

 spectral analysis
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Autonomous Systems (ASes)

 ASes:

 groups of networks sharing the same routing policy

 identified with Autonomous System Numbers (ASN) 

 ASN assigned by IANA

 Internet topology on AS-level:

 an arrangement of ASes and their interconnections

 Analyzing the Internet topology and finding properties of 
associated graphs rely on mining data and capturing information 
about ASes.
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IANA: Internet Assigned Number Authority

http://www.iana.org/assignments/as-numbers



Border Gateway Protocol (BGP)

 Routing table of a BGP router contains AS path information.

 The BGP router uses BGP protocol:

 inter-AS protocol

 used to exchange network reachability information among 
BGP systems

 reachability information is stored in routing tables
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Internet AS-level data

BGP routing tables are collected by:

 Route Views:

 most participating ASes reside in North America

 routing data collection process began in 1997

 RIPE:

 most participating ASes reside in Europe

 routing data collection process began in 1999

 The BGP routing tables are collected from multiple geographically 
distributed BGP Cisco routers and Zebra servers.
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http://www.routeviews.org

http://www.ripe.net/ris



Internet topology at AS-level

 AS-level datasets from Route Views and RIPE have been 
extensively used to analyze the Internet topology.
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Route Views Ripe

Faloutsos, 1999  

Chang, 2001  

Vukadinovic, 2001  

Gkantsidis, 2003  



Analyzed datasets

 We analyzed datasets collected at 00:00 am on July 31, 2003 
and 00:00 am on July 31, 2008.

 Sample datasets:

 Route Views:

TABLE_DUMP| 1050122432| B| 204.42.253.253| 267| 
3.0.0.0/8| 267 2914 174 701| IGP| 204.42.253.253| 0| 0| 
267:2914 2914:420 2914:2000 2914:3000| NAG| |

 RIPE:

TABLE_DUMP| 1041811200| B| 212.20.151.234| 13129| 
3.0.0.0/8| 13129 6461 7018 | IGP| 212.20.151.234| 0| 0| 
6461:5997 13129:3010| NAG| |
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Internet topology at AS level
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Internet topology and matrices

 Adjacency matrix  A(G):

where i and j are two nodes.

 Normalized Laplacian matrix NL(G):

where di and dj are degrees of node i and j, respectively.
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Power-laws

 Power-laws are expressed in the form of:

where y and x are the measures of interest and a is a constant.

 The Internet topology is characterized by the presence of various 
power-laws observed when considering:

 node degree vs. node rank

 frequency of node degree vs. node degree

 CCDF of node degree vs. node degree

 eigenvalues of the adjacency matrix vs. the order of the 
eigenvalues
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M. Faloutsos, P. Faloutsos, and C. Faloutsos, 1999



Power-laws: node degree vs. rank

 Node degree is the number of edges incident to a node.

 The node degree power-law implies:

where  dV is the degree of a node v, rv is the rank of the node, 
and  R is the exponent of the node degree power-law.
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Power-laws: frequency of node degree vs. 
node degree

 The frequency of a node degree is equal to the number of 
nodes having the same degree.

 The frequency of node degree power-law implies:

where  fd is the frequency of degree d, d is a node degree, and  
O is the exponent of the frequency of node degree power-law.
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Power-laws: CCDF of node degree vs. node 
degree

 The complementary cumulative distribution function CCDF is 
defined as: 

where  P(X>x) is the probability that the random variable X has 
a value greater than x. 

 The CCDF of node degree vs. node degree power-law implies:

where Dd is the CCDF of a node degree d and D is the CCDF 
power-law exponent.
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Power-laws: eigenvalue vs. index

 The power-law for the adjacency matrix implies:

where λai is an eigenvalue of the adjacency matrix associated 
with the increasing sequence of numbers i and ε is the power-law 
exponent.

 The power-law for the normalized Laplacian matrix implies:

where λLi is an eigenvalue of the normalized Laplacian matrix 
associated with the increasing sequence of numbers i and L is the 
power-law exponent.
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Spectrum of a graph

 Spectrum of a graph is:

 set of eigenvalues of a matrix

 closely related to certain graph invariants

 associated with topological characteristics of the network 
such as number of edges, connected components, presence 
of cohesive clusters

 If x is an n-dimensional real vector, then x is called the 
eigenvector of matrix A with eigenvalue λ if and only if it 
satisfies: 

where λ is a scalar quantity.
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Spectrum of a graph

 The number of times 0 appears as an eigenvalue of the Laplacian 
matrix is equal to the number of connected components in a 
graph.

 Algebraic connectivity, the second smallest eigenvalue of a 
normalized Laplacian matrix is:

 related to the connectivity characteristic of a graph

 Elements of the eigenvector corresponding to the largest 
eigenvalue of the normalized Laplacian matrix tend to be 
positioned close to each other if they correspond to AS nodes 
with similar connectivity patterns constituting clusters.
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M. Fiedler, 1973

D. Vukadinovic, P. Huang, and T. Erlebach, 2001



Spectrum of a graph

 The eigenvectors corresponding to large eigenvalues contain 
information relevant to clustering.

 Large eigenvalues and the corresponding eigenvectors provide 
information suggestive to the intracluster traffic patterns of the 
Internet topology.

 We consider both the adjacency and the normalized Laplacian 
matrices.

April 14, 2010 Power-laws and spectral analysis of the Internet topology 23

C. Gkantsidis, M. Mihail, and E. Zegura, 2003
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Power-laws and linear regression line

 The power-law exponents are calculated from the linear 
regression lines: 

with segment b and slope a and when plotted on a log-log scale.
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Observed power-laws

 Calculated and plotted on a log-log scale are:

 node degree vs. node rank

 CCDF of node degree vs. node degree

 eigenvalues vs. index

 Least square approximation is used to obtain the linear 
regression line. 

 The correlation coefficient is calculated between the regression 
line and the plotted data.
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Power laws: node degree vs. rank
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 Route Views 2003 datasets: R= –0.7325 and r= –0.9661

 Route Views 2008 datasets: R= –0.7712 and r= –0.9721

R= power-law exponent; r= correlation coefficient



Power laws: node degree vs. rank
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 RIPE 2003 datasets: R= –0.7636 and r= –0.9687

 RIPE 2008 datasets: R= –0.8439 and r= –0.9744

R= power-law exponent; r= correlation coefficient



Confidence intervals

 Six samples is randomly selected from Route Views and RIPE 
2003 and 2008 datasets.

 Each dataset is smaller than 30, with unknown standard 
deviation.

 T-distribution is used to predict the confidence interval at 95% 
confidence level:

X: sample mean

tx/2: t-distribution

s: sample standard deviation

n: number of samples

μ: population mean
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Confidence interval: node degree vs. rank
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 r> 96% for all datasets

r= correlation coefficient



Power laws: CCDF of node degree vs. node 
degree
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 Route Views 2003 datasets: D= –1.2519 and r= –0.9810

 Route Views 2008 datasets: D= –1.3696 and r= –0.9626

D= power-law exponent; r= correlation coefficient



Power laws: CCDF of node degree vs. node 
degree
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 RIPE 2003 datasets: D= –1.2830 and r= –0.9812

 RIPE 2008 datasets: D= –1.5010 and r= –0.9676

D= power-law exponent; r= correlation coefficient



Confidence interval: CCDF of node degree 
vs. rank
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 r> 90% for all datasets

r= correlation coefficient



Eigenvalues of the adjacency matrix

April 14, 2010 Power-laws and spectral analysis of the Internet topology 35

order
Route 
Views 
2003

Route 
Views 
2008

RIPE 
2003

RIPE 
2008

1 64.30 85.43 66.65 122.28

2 47.75 58.56 54.19 63.94

3 38.15 42.77 38.24 46.14

4 36.23 40.85 36.14 41.98

5 29.88 39.69 31.21 41.08

6 28.50 37.85 27.38 38.93

7 25.47 36.21 26.41 37.94

8 25.06 34.66 25.06 36.47

9 24.13 31.58 23.86 35.08

10 22.51 29.34 23.32 34.47

11 21.61 27.40 22.02 30.97

12 20.69 25.69 21.77 30.54

13 18.58 25.00 20.75 29.68

14 17.94 24.82 19.55 27.03

15 17.78 23.89 18.67 25.74

16 17.31 23.69 18.42 25.35

17 16.99 22.81 17.85 24.83

18 16.75 22.46 17.44 24.30

19 16.22 22.04 17.24 24.06

20 16.01 21.36 16.63 24.00



Power laws: eigenvalues vs. index 
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Adjacency matrix:

 Route Views 2003 datasets: ε= –0.5713 and r= –0.9990

 Route Views 2008 datasets: ε= –0.4860 and r= –0.9982
ε= power-law exponent; r= correlation coefficient



Power laws: eigenvalues vs. index
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Adjacency matrix:

 RIPE 2003 datasets: ε= –0.5232 and r= –0.9989

 RIPE 2008 datasets: ε= –0.4927 and r= –0.9970
ε= power-law exponent; r= correlation coefficient



Confidence interval: eigenvalues vs. index
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Adjacency matrix:

 r> 99% for all datasets

r= correlation coefficient



Power laws: eigenvalues vs. index
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Normalized Laplacian matrix:

 Route Views 2003 datasets: L= –0.0198 and r= –0.9564

 Route Views 2008 datasets: L= –0.0177 and r= –0.9782
L= power-law exponent; r= correlation coefficient



Power laws: eigenvalues vs. rank
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Normalized Laplacian matrix:

 RIPE 2003 datasets: L= –0.5232 and r= –0.9989

 RIPE 2008 datasets: L= –0.4927 and r= –0.9970
L= power-law exponent; r= correlation coefficient



Confidence interval: eigenvalues vs. rank
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Normalized Laplacian matrix:

 r> 95% for all datasets

r= correlation coefficient



Power-laws: summary

 A high correlation coefficient between the regression line and 
the plotted data indicates the existence of a power-law.

 Results imply that the node degree, CCDF of node degree, and 
eigenvalues follow a power-law dependency on the rank, node 
degree, and index, respectively.

 Power-laws exponents have not substantially changed over the 
years.
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Clusters of connected ASes: Route Views
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 A dot in the position (x, y) represents the connection patterns 
between AS nodes. 

 Existence of higher connectivity inside a particular cluster and 
relatively lower connectivity between clusters is visible.



Clusters of connected ASes: Route Views
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Zoomed view of Route Views 2008 datasets.



Clusters of connected ASes: RIPE
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 Similar pattern for Route Views and RIPE 2003 and 2008 
datasets
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Connectivity status: example
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 The second smallest eigenvector: 0.35, -0.35, -0.35, 0.41, 0.50, 
0.61

 N1(0.35), N2(-0.35), N3(-0.35), N4(0.41), N5(0.50), N6(0.61)

 Sort ASs by element value: N2, N3, N1, N4, N5, N6

 Except N4, all other nodes are connected



The second smallest eigenvalue: Route Views

April 14, 2010 Power-laws and spectral analysis of the Internet topology 50

The connectivity status based on the second smallest eigenvalue of 
the adjacency matrix indicates:

 the connectivity status for Route Views 2003 datasets differs 
with Route Views 2008 datasets



The second smallest eigenvalue: RIPE
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The connectivity status based on the second smallest eigenvalue of 
the adjacency matrix indicates:

 the connectivity status for RIPE 2003 datasets differs with RIPE 
2008 datasets



The largest eigenvalue: Route Views
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The connectivity status based on the largest eigenvalue of the 
adjacency matrix indicates:

 the connectivity status for Route Views 2003 differs with Route 
Views 2008 datasets



The largest eigenvalue: RIPE
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The connectivity status based on the largest eigenvalue of the 
adjacency matrix indicates:

 the connectivity status for RIPE 2003 differs with RIPE 2008
datasets
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The second smallest eigenvalue: Route Views

The connectivity status based on the second smallest eigenvalue of 
the normalized Laplacian matrix indicates:

 the connectivity status for Route Views 2003 differs with Route 
Views 2008 datasets
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The second smallest eigenvalue: RIPE

The connectivity status based on the second smallest eigenvalue of 
the normalized Laplacian matrix indicates:

 the connectivity status for RIPE 2003 differs with RIPE 2008
datasets
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The largest eigenvalue: Route Views

The connectivity status based on the largest eigenvalue of the 
normalized Laplacian matrix indicates:

 the connectivity status for Route Views 2003 differs with Route 
Views 2008 datasets
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The largest eigenvalue: RIPE

The connectivity status based on the largest eigenvalue of the 
normalized Laplacian matrix indicates:

 the connectivity status for RIPE 2003 differs RIPE 2008 datasets



Connectivity status: summary

 The second smallest and the largest eigenvalues of both the 
adjacency and the normalized Laplacian matrix revealed:

 the connectivity status is different for Route Views 2003 and 
2008 datasets

 the connectivity status is different for RIPE 2003 and 2008 
datasets

 the connectivity status is similar for Route Views and RIPE 
2003 and for Route Views and RIPE 2008 datasets

 Connectivity status based on the second smallest eigenvalue of 
the adjacency matrix is similar to the largest eigenvalue of the 
normalized Laplacian matrix, and vice versa.

 this property has its basis in the spectral properties of two 
matrices since L= D–A
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Various graphs

 Random graphs:

 nodes and edges are generated by random process

 Erdős and Rényi model

 Small world graphs:

 nodes and edges are generated such that most of the nodes 
are connected by a small number of nodes inbetween

 Watts and Strogatz model

 Scale free graphs:

 graphs whose node degree distribution follow power-law

 rich get richer

 Barabási and Albert model

April 14, 2010 Power-laws and spectral analysis of the Internet topology 60



Clusters of AS nodes: small world network

April 14, 2010 Power-laws and spectral analysis of the Internet topology 61

Small world network with 20 nodes:

 nodes having similar degrees are grouped together based on the 
element values of the eigenvector corresponding to the largest
eigenvalue of the adjacency matrix



Clusters of AS nodes: small world network
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Small world network with 20 nodes:

 nodes having similar degrees are not grouped together based on 
the element values of the eigenvector corresponding to the 
second smallest eigenvalue of the adjacency matrix



Eigenvector: the second smallest eigenvalue
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Route Views and RIPE 2003 and 2008 datasets:

 elements of the eigenvectors corresponding to the second 
smallest eigenvalue of the adjacency matrix



Clusters: Route Views
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Route Views 2003 and 2008 datasets:

 element values of the eigenvector corresponding to the second 
smallest eigenvalue of the adjacency matrix divide nodes into 
two separate clusters of connected nodes



Clusters: RIPE
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RIPE 2003 and 2008 datasets:

 element values of the eigenvector corresponding to the second 
smallest eigenvalue of the adjacency matrix divide nodes into 
two separate clusters of connected nodes



Eigenvector: the largest eigenvalue
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Route Views and RIPE 2003 and 2008 datasets:

 elements of eigenvectors corresponding to the largest eigenvalue 
of the adjacency matrix



Clusters: Route Views
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Route Views 2003 and 2008 datasets:

 element values of the eigenvector corresponding to the largest 
eigenvalue of the adjacency matrix group nodes into a cluster of 
connected nodes towards the highest end of the rank spectrum



Clusters: RIPE
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RIPE 2003 and 2008 datasets:

 element values of the eigenvector corresponding to the largest 
eigenvalue of the adjacency matrix group nodes into a cluster of 
connected nodes towards the highest end of the rank spectrum



Eigenvector: the second smallest eigenvalue
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Route Views and RIPE 2003 and 2008 datasets:

 elements of eigenvectors corresponding to the second smallest 
eigenvalue of the normalized Laplacian matrix



Clusters: Route Views
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Route Views 2003 and 2008 datasets:

 element values of the eigenvector corresponding to the second 
smallest eigenvalue of the normalized Laplacian matrix group 
nodes having similar node degrees



Clusters: RIPE
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RIPE 2003 and 2008 datasets:

 element values of the eigenvector corresponding to the second 
smallest eigenvalue of the normalized Laplacian matrix group 
nodes having similar node degrees



Clusters: RIPE

RIPE 2003: zoomed view of node degree vs. rank.
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Eigenvector: the largest eigenvalue

Route Views and RIPE 2003 and 2008 datasets:

 elements of eigenvectors corresponding to the largest eigenvalue 
of the normalized Laplacian matrix 



Clusters: Route Views
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Route Views 2003 and 2008 datasets:

 element values of the eigenvector corresponding to the largest 
eigenvalue of the normalized Laplacian matrix divide nodes into 
two clusters of connected nodes



Clusters: RIPE
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RIPE 2003 and 2008 datasets:

 element values of the eigenvector corresponding to the largest 
eigenvalue of the normalized Laplacian matrix divide nodes into 
two clusters of connected nodes



Clusters of AS nodes: summary

 The second smallest eigenvalues of the normalized Laplacian 
matrix group nodes having similar node degree:

 group of nodes having larger node degree follows nodes 
having smaller node degree

 Cluster of nodes based on the elements values of the eigenvector 
corresponding to the second smallest eigenvalue of the adjacency 
matrix is similar to the cluster based on the largest eigenvalue of 
the normalized Laplacian matrix and vice versa. 

 Clusters of small world network differ with the Internet graphs.
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Conclusions and future work

 Route Views and RIPE datasets reveal similar trends in the 
development of the Internet topology.

 Power-laws exponents have not significantly changed over the 
years:

 indicates they do not capture every property of graph and are 
only a measure used to characterize the Internet topology 

 Spectral analysis reveals new historical trends and notable 
changes in the connectivity and clustering of AS nodes over the 
years.

 Element values of the eigenvector corresponding to the second 
smallest and the largest eigenvalues provide clusters of 
connected ASes:

 indicate clusters of connected nodes have changed over time
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Conclusions and future work

 Similarity of clusters based on the second smallest eigenvalue of 
the adjacency matrix to the largest eigenvalue of the normalized 
Laplacian matrix, and vice versa indicate:

 Clusters based on the second smallest eigenvalues of the 
normalized Laplacian matrix:

 group nodes having similar node degree

 group of nodes having smaller node degree are followed by 
nodes having larger node degree

 indicates second smallest eigenvalues of the normalized 
Laplacian matrix provide node degree information



April 14, 2010 Power-laws and spectral analysis of the Internet topology 81

Conclusions and future work

Future work:

 analysis of the spectral properties of the Internet topology based 
on matrices such as Laplacian and signless Laplacian

 analysis of the effect of L= D–A in the spectral properties of the 
adjacency and the normalized Laplacian matrices

 analysis of any significant effect of the observed clusters on:

 modeling of the Internet topology

 performance evaluation of protocols and new algorithms
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