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Complexity Sciences

Please cite this map as follows:
Castellani, Brian (2018) “Map of the Complexity Sciences.” Art & Science Factory.
https://www.art-sciencefactory.com/complexity-map_feb09.html|

HOW TO READ MAP:

This map is a macroscopic, trans-disciplinary introduction to the complexity sciences.

. Moving from left to right, the map is read in a roughly historical fashion -- but not literally, as we are com-
pressing a n-dimensional intellectual space into a two-dimensional map grid.

. Also, in order to present some type of organizational structure, the history of the complexity sciences is
developed along the field’s five major intellectual traditions: dynamical systems theory (purple), systems science
(blue), complex systems theory (vellow), cybernetics (grey) and artificial intelligence (orange). Again, the fitis not
exact (and sometimes even somewhat forced); but it is sufficient to help those new to the field gain a sense of its
evolving history.

. Placed along these traditions are the key scholarly themes and methods used across the complexity sciences.
A theme's color identifies the historical tradition with which it is “best” associated, even if a theme is placed on a
different trajectory. Themes were placed roughly at the point they became a major area of study; recognizing that,
from there forward, researchers have continued to work in that area, in one way or another. For example, while
artificial intelligence (Al) gained significant momentum in the 1940s and therefore is placed near the start of the
map, it remains a major field of study, and is, circa 2018, going through a major resurgence.

. Also, themes in (brown) denote content/discipline specific topics, which illustrate how the complexity
sciences are applied to different content. Finally, double-lined themes denote the intersection of a tradition with a
new field of study, as in the case of visual complexity or agent-based modeling.

. Connected to themes are the scholars who “founded” or presently “exemplify” work in that area. In other
instances, however, “up-and-coming scholars”are listed -- mainly to draw attention to scholars early in their work.
There was also an attemt to showcase research from around the world, rather than just the global north. Also,
while some scholars (as in the case of Bar-Yam, for example ) impacted multiple areas of study, given their position
on the map only a few of these links could be visualized -- which goes to the next point: unfortunately, there is no
way to generate an educational map that has everyone and everything on it! As such, there is always someone
who should be on the map who is not!

. Also, and again, it is important to point out that the positioning of scholars relative to an area of study does
not mean they are from that time-period. It only means they are associated with that theme.

. Finally, remembering Foucault’s famous argument that most history is really a history of the present as it
looks back, who or what is considered an important theme or scholar is a function of time and place. Hence the
reason this map has gone through so many revisions -- as the complexity sciences evolves, so does it history.

urham
University
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The Internet

https://en.wikipedia.org/wiki/Complex_network+#/media/File:Internet_map_1024.jpg
By The Opte Project - Originally from the English Wikipedia
https://commons.wikimedia.org/w/index.php?curid=1538544

May 16, 2020 Centre for Advanced Studies, Lucknow, India



The Internet

« Partial map of the Internet based on the January 15, 2005
data found on opte.org.

« Each line is drawn between two nodes, representing two IP
addresses.

* The length of the lines are indicative of the delay between
those two nodes.

« This graph represents less than 30% of the Class C
networks reachable by the data collection program in early
2005.

« Lines are color-coded according to their corresponding RFC
1918 allocation as follows: Dark blue: net, ca, us; Green:
com, org; Red: mil, gov, edu; . jp, cn, tw, au, de;
Magenta: uk, it, pl, fr; Gold: br, kr, nl; White: unknown.

May 16, 2020 Centre for Advanced Studies, Lucknow, India 9
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Scale-Free Network

* An example of complex scale-free network.

« Graph represents the metadata of thousands of archive
documents, documenting the social network of hundreds of
League of Nations personals.

« M. Grandjean, "La connaissance est un réseau," Les
Cahiers du Numeérique, vol. 10, no. 3, pp. 37-54, 2014.
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Roadmap

= Introduction:

= Machine learning
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i Machine Learning

= Using machine learning techniques to detect network
intrusions is an important topic in cybersecurity.

= Machine learning algorithms have been used to
successfully classify network anomalies and intrusions.

= Supervised machine learning algorithms:
= Support vector machine: SVM
= Long short-term memory: LSTM
= Gated recurrent unit: GRU
»« Broad learning system: BLS

May 16, 2020 Centre for Advanced Studies, Lucknow, India 13



i Roadmap

= Data processing:
= BGP datasets
= NSL-KDD dataset

» CICIDS2017

» CSE-CIC-IDS2018

May 16, 2020

Centre for Advanced Studies, Lucknow, India
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i BGP and NSL-KDD Datasets

» Used to evaluate anomaly detection and intrusion
techniques

= BGP:
= Routing records from Réseaux IP Européens (RIPE)
= BCNET regular traffic
= NSL-KDD:
= an improvement of the KDD’99 dataset
= used in various intrusion detection systems (IDSs)

May 16, 2020 Centre for Advanced Studies, Lucknow, India 15



i CICIDS2017 and CSE-CIC-1DS2018

= CICIDS2017 and CSE-CIC-IDS2018:

= Testbed used to create the publicly available dataset
that includes multiple types of recent cyber attacks.

= Network traffic collected between:
Monday, 03.07.2017

= Friday, 07.07.2017
Wednesday, 14.02.2018

= Friday, 02.03.2018

May 16, 2020 Centre for Advanced Studies, Lucknow, India 16



BGP Datasets

= Anomalous data: days of the attack

= Regular data: two days prior and two days after the
attack

» 37 numerical features from BGP update messages
= Best performance: 60% for training and 40% for testing

Regular Anomaly Regular Anomaly Regular Anomaly

(min) (min) (training) (training) (test) (test)
Code Red | 6,599 600 3,678 362 2,921 239
Nimda 3,678 3,521 3,677 2,123 1 1,399
Slammer 6,330 869 3,209 531 3121 339

May 16, 2020 Centre for Advanced Studies, Lucknow, India 17



NSL-KDD Dataset

= KDDTrain+ and KDDTest+: training and test datasets

= KDDTest?": a subset of the KDDTest+ dataset that
does not include records correctly classified by 21
models

Regular DoS U2R R2L Probe Total
KDDTrain* 67,343 45,927 52 995 11,656 125,973
KDDTest* 9,711 7,458 200 2,754 2,421 22,544
KDDTest?" 2,152 4,342 200 2,754 2,402 11,850

May 16, 2020 Centre for Advanced Studies, Lucknow, India 18



CICD2017 Dataset:
Types of Intrusion Attacks

Attack Label Day Number of intrusions
Brute force FTP, SSH Tuesday 7,935; 5,897
Heartbleed Heartbleed Wednesday 11

Brute force,

Web attack XSS, SQL ey 1,507: 652: 21
o morning
Injection
Infiltration Thursday and
Infiltration ’ Friday 36; 158,930
PortScan
afternoons
Botnet Bot Friday morning 1,956
Slowloris, Hulk,
DoS GoldenEye, Wednesday 5,796; 230,124; 10,293; 5,499
SlowHTTPTest
DDos DDoS Py 128,027
afternoon

May 16, 2020 Centre for Advanced Studies, Lucknow, India



CICD2017 Dataset: Number of Flows

Day Valid flows Total

Monday 529,481 529,918
Tuesday 445,645 445,909
Wednesday 691,406 692,703
Thursday (morning) 170,231 170,366
Thursday (afternoon) 288,395 288,602
Friday (morning) 190,911 191,033
Friday (afternoon, PortScan) 286,096 286,467
Friday (afternoon, DDoS) 225,711 225,745

May 16, 2020 Centre for Advanced Studies, Lucknow, India 20



CICD2018 Dataset:
Types of Intrusion Attacks

Number of Number
Date Attack Day intrusions of benign Total
instances
14.02.2018 FTP-BF, SSH-BF  Wednesday 667626 380949 1048575
15.02.2018 D0S-GE, DoS- Thursday 52498 996077 1048575
Slowris
16.02.2018 DOS-SlowHTTPTest, o\ 601803 446772 1048575
DoS-Hulk
DDOS-LOIC-HTTP,
20.02.2018 -0 S upp | Tuesday 576191 7372557 7948748
DDOS-LOIC-UDP,
ZIDRZVIE o2 s Wednesday 687742 360833 1048575
22.02.2018 Veb-BF, XSS-BF, Thursday 362 1048213 1048575
SQL Injection
23.02.2018 Veb-BF, XSS-BF, Friday 566 1048009 1048575
SQL Injection
28.02.2018 Infiltration Wednesday 68904 544200 613104
01.03.2018 Infiltration Thursday 93088 238037 331125
02.03.2018 Bot Friday 286191 762384 1048575

May 16, 2020 Centre for Advanced Studies, Lucknow, India 21



Roadmap

= Machine learning models:
= Deep learning: multi-layer recurrent neural networks

May 16, 2020 Centre for Advanced Studies, Lucknow, India 22



i Deep Learning Neural Network

= 37 (BGP)/109 (NSL-KDD) RNNs, 80 FC,, 32 FC,, and
16 FC; fully connected (FC) hidden nodes:

— —
RNNs FC,, FC,, and FC;4
— — —
Input layer Hidden layers Output layer

May 16, 2020 Centre for Advanced Studies, Lucknow, India 23



i Long Short-Term Memory

= Repeating module for the Long Short-Term Memory
(LSTM) neural network:

iLSTM output layer]

3
~

—
—>[ LSTM cell J~
T

'
7

[LSTM input layerJ

May 16, 2020 Centre for Advanced Studies, Lucknow, India 24



i Long Short-Term Memory: LSTM

= The outputs of the forget gate f;, the input gate i;,
and the output gate o; at time t are:

fe = o(Wirxe + bis + Uprhe—q + bpy)
ir = o(Wyx + by + Upihe_q + by;)
0 = d(Wipxt + bip + Upoht—1 + bpy),
where:
o(+): logistic sigmoid function
x¢: current input vector
h._q: previous output vector
Wis, Uns, Wii, Upi, Wipand Up,: weight matrices
bis, bng, by, bn;, biy, @and by,: bias vectors

May 16, 2020 Centre for Advanced Studies, Lucknow, India 25



i Long Short-Term Memory: LSTM

= Qutput i; of the input gate decides if the information
will be stored in the cell state. The sigmoid function is
used to update the information.

= Cell state ¢;:
¢t = [t * g + i * tanh(Wicxe + bic + Upche—q + b)),
where:
= * denotes element-wise multiplications

= tanh function: used to create a vector for the next
cell state

= Output of the LSTM cell:
hy = o; * tanh(c;)

May 16, 2020 Centre for Advanced Studies, Lucknow, India 26



i Gated Recurrent Unit

= Repeating module for the Gated Recurrent Unit (GRU)
neural network:

N [GRU output layer]
[ - O— P | e T

Iy Z .
C| | O n, GRU cell ]~

h, , »@é *— [tanh h, .- ;

[ ¥ 7 [GRU input layer]
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i Gated Recurrent Unit: GRU

= The outputs of the reset gate r; and the update gate z;
at time t:

re = o(Wyxt + by + Uprhe—1 + bpy)
zt = d(Wizxt + biz + Upzhi—1 + bpyz),
where:
= o:sigmoid function
= X input, hy_4 is the previous output of the GRU cell
s Wy, Uy, Wi, and Uy, weight matrices
s bjy, bpy, by, +, @and by, : bias vectors

May 16, 2020 Centre for Advanced Studies, Lucknow, India 28



i Gated Recurrent Unit: GRU

= Output of the GRU cell:
he = (1 —zp) *ng + 2 * hy_yq,
where n;:
= Ny = tanh(Wipxy + by + 1 * (Upnhe—1 + b))
= W;, and Uy,,: weight matrices
= b;,, and b,,,: bias vectors

May 16, 2020 Centre for Advanced Studies, Lucknow, India
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Roadmap

= Machine learning models:

= Broad learning system

May 16, 2020
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Broad Learning System

= Module of the Broad Learning System (BLS) algorithm
with increments of mapped features, enhancement
nodes, and new input data:

Dynamically updated weights W

Z1 n Zn+1 Hj Hp Hm41
Mapped Mapped Mapped Enhancement nodes p additional
feature 1 feature n feature n+1 enhancement nodes

Zi =¢)(XWei+Bei)’ Zn+1= ¢(XWen+1+ Ben+1) HJ = C([Zl Zn]Whj+ th)’ Hm+1=C([Z1 Z“]Whm+l+ma+1)

i=1,2,..,n j=L2,..m m+1 enhancement nodes

N 7 and corresponding weights

May 16, 2020 Centre for Advanced Studies, Lucknow, India 31



i Original BLS

= Matrix 4, is constructed from groups of mapped
features Z™ and groups of enhancement nodes H™ as:

Ay =[Z"|H™]
= [p(xwe, + Be,) | E@EW, + Br)]
where: (i=1,2,..,nandj=1,2,...,m
= ¢ and ¢: projection mappings
= W, Whj:weights
= Be,, ﬁhj: bias parameters

Modified to include additional mapped features Z,,, 1,
enhancement nodes H,,,, and/or input nodes X,

May 16, 2020 Centre for Advanced Studies, Lucknow, India 32



i Original BLS

s Moore-Penrose pseudo inverse of matrix A, is
computed to calculate the weights of the output:

Wi = [AZ']TY

= During the training process, data labels are deduced
using the calculated weights W7, mapped features Z,,,
and enhancement nodes H,,, :

Y = AmWn
=[Z4,...,Zp|Hy, ..., H, W™

May 16, 2020 Centre for Advanced Studies, Lucknow, India 33



i RBF-BLS Extension

= The RBF function is implemented using Gaussian kernel:
£(x) = exp (_ || x —ZCIIZ)
Y
= Weight vectors of the output HW are deduced from:
W=H"H) H"Y
= H'Y,

where:
s W =|wq, wy, ..., w,]: output weights
» H=[&,¢,,...,¢&]: hidden nodes
=« H*: pseudoinverse of H

May 16, 2020 Centre for Advanced Studies, Lucknow, India 34



Cascades of Mapped Features

-

Mapped
feature n: {

Zn= (Z) (Zn—IWen+ Ben)

@.t.Q
aped A o ‘0 00 00O -0

Z1=(]5(XW61+B el)
Enhancement node 1: Enhancement node m:
H| -((Z, ... Z,\W, + Bhl) Hm=t,~(Hm-1Whm+ma)
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i Cascades of Mapped Features

= Cascade of mapped features (CFBLS):
the new group of mapped features is created by using
the previous group (kK — 1).

= Groups of mapped features are formulated as:

Zy = ¢(Zk—1wek + ﬁek)
- cpk(X;{Wei,,Bei le),for k=1,..,n

May 16, 2020 Centre for Advanced Studies, Lucknow, India 36



Cascades of Enhancement Nodes

Enhancement
node m:

H . =C(H,,., Wy, +Bs,)

Enhancement
node 1:

Hj = C(ZnWhl"LBhl)

Mapped feature 1: Mapped feature n:
Z=pXW, +P.) Z=pXW, +p)

May 16, 2020 Centre for Advanced Studies, Lucknow, India 37



i Cascades of Enhancement Nodes

= The first enhancement node in cascade of
enhancement nodes (CEBLS) is generated from
mapped features.

= [he subsequent enhancement nodes are generated
from previous enhancement nodes creating a cascade:

u
H, 2¢&4 (Z"; {Whi,ﬁhi}izl) ,foru=1,..,m,
where:
= Wy, and Bj,: randomly generated

May 16, 2020 Centre for Advanced Studies, Lucknow, India 38



Cascades with Incremental Learnlng

Wi
Mapped { coe
feature n+1 O O
Znt1
A
Mapped { ces
; feature n: Q 7 O
: n
EZn:¢(Zn-1Wen+ Ben) ° f
‘ o; ° O
73
4
Mapped { v
; feature 1:
s Z]
Z1:¢(XWe1+B o)) O,
" X
R
New input X

May 16, 2020

Dynamically updated
weights W

Enhancement
node m+1

Enhancement
node m:

H,=C(H,, W, _+B, )

Enhancement
node 1:

Hj = C(ZnWhl'l'Bhl)
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Roadmap

= EXxperimental procedure
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Intrusion Detection System

s Architecture:

[Training dataset]—>

—_

Dataset
( Datasets ) partition

—

[ Test dataset ]—>

Data processing |

Converting categorical
to numerical features

Feature selection

Normalization

Training [
—=»

Testing

ML algorithms]

'

K-fold cross-validation

Tuning parameters

!

»: ML models ]
v

:Classiﬁcation]

May 16, 2020 Centre for Advanced Studies, Lucknow, India
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i Experimental Procedure

= Step 1: Normalize training and test datasets.

= Step 2: Train the RNN models and BLS using 10-fold
validation. Tune parameters of the RNN and BLS
models.

= Step 3: Test the RNN and BLS models.
= Step 4: Evaluate models based on:

= Accuracy

= F-Score

*RNN: recurrent neural network
*BLS: broad learning system

May 16, 2020 Centre for Advanced Studies, Lucknow, India 42



Most Relevant Features

= CICIDS 2017: 16 most relevant features

0.3

0.25 -

o
N
T

Feature importance
o
o
N 3
[ [

0.05 -

0 | | | | | | | | | | I|I|mmmm
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Selected features
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Most Relevant Features

= CSE-CIC-IDS2018: 16 most relevant features
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Number of BLS Training Parameters

Parameters Code Red | Nimda Slammer NSL-KDD
Mapped features 100 500 100 100
Groups of mapped 1 1 o5 5
features

Enhancement nodes 500 700 300 100
Incremental learning 10 9 5 3
steps

Data points/step 100 200 100 3,000
Enhancement 10 10 50 60
nodes/step

May 16, 2020 Centre for Advanced Studies, Lucknow, India 45



Number of BLS Training Parameters

Parameters CICIDS2017 CSE-CIC-IDS2018
Number of features

BLS 78 64 32 78 64 32
RBF- RBF-

Model BLS BLS CEBLS CFBLS BLS CEBLS

Mapped features 20 10 10 20 20 15

Clieps ©f 30 30 10 10 10 20

mapped features

Enhancement 40 20 40 80 80 80

nodes

May 16, 2020
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Number of Incremental BLS
Training Parameters

Parameters CICIDS2017 CSE-CIC-IDS2018
Number of features

Incremental BLS 78 64 32 78 64 32

Model CFBLS CFEBLS CEBLS BLS CEBLS BLS

Mapped features 10 20 10 15 20 10

Creups eifmepped 55 20 20 30 10 20

features

Enhancement 40 20 40 20 40 20

nodes

Incremental 5 5 5 5 5 5

learning steps
Data points/step 55,680 55,680 55,680 49,320 49,320 49,320

Enhancement

20 20 20 20 20 20
nodes/step
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Roadmap

m Performance evaluation
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Training Time: RNN Models

Datasets LSTM, LSTM, LSTM, GRU, GRU, GRU,

Python (CPU)

_ BGP (Slammer) 224.52 259.91 819.78 54.12 60.76 759.82
Time (s)
NSL-KDD 4,481.73 461466 11,478.62 1,108.31 1,161.80  11,581.30
Python (GPU)
BGP (Slammer) 30.74 34.94 38.82 31.03 35.46 40.22
Time (S)
NSL-KDD 344.93 355.86 394.55 317.53 345.04 369.86

May 16, 2020 Centre for Advanced Studies, Lucknow, India 49



Training Time: BLS Models

Datasets BLS RBF-BLS CFBLS CEBLS CFEBLS
Python (CPU)
: BGP (Slammer) 21.53 18.68 18.89 32.36 32.13
Time (s)
NSL-KDD 99.47 98.27 98.13 108.23 108.14
MATLAB (CPU)
BGP (Slammer) 1.36 1.20 1.03 5.49 5.98
Time (s)
NSL-KDD 6.91 6.24 6.55 8.88 8.95

May 16, 2020
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LSTM Models: BGP Datasets

Accuracy (%)

F-Score (%)

Model [{:t';“;;? Test (r:;IEEr) (?e%ﬁg) Test
Code Red | 94.08 83.75 60.49 68.89

LSTM, Nimda 78.36 47.15 48.61 87.87
Slammer 92.98 92.99 85.97 72.42

Code Red | 88.54 79.38 58.82 55.96

LSTM, Nimda 85.57 39.10 40.28 92.22
Slammer 90.90 92.01 84.38 67.29

Code Red | 86.96 75.00 57.01 51.53

LSTM, Nimda 92.00 26.94 35.21 95.83
Slammer 92.49 92.22 86.18 70.72

May 16, 2020
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GRU Models: BGP Datasets

Accuracy (%)

F-Score (%)

Model [{:t';“;;? Test (r:;IEEr) (?e%ﬁg) Test
Code Red | 87.47 80.07 60.21 52.97
GRU; Nimda 70.71 48.96 58.26 82.83
Slammer 91.88 93.33 90.90 69.42
Code Red | 88.07 79.44 60.56 53.51
GRUs, Nimda 80.21 38.40 44.24 89.02
Slammer 91.76 95.21 90.83 68.72
Code Red | 91.84 77.50 60.07 63.87
GRU, Nimda 87.36 35.00 39.38 93.25
Slammer 92.14 92.15 90.35 70.11

May 16, 2020
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BLS Models: BGP Datasets

Accuracy (%)

F-Score (%)

Model T)r:tlgér;? Test (rfg:'ﬂir) (rBng':IEaTr) Test
Code Red | 94.97 69.79 65.21 66.38

BLS Nimda 76.57 70.69 54.93 86.73
Slammer 87.65 75.62 68.40 57.68

Code Red | 95.92 90.69 73.96 70.07

RBF-BLS Nimda 57.92 70.63 57.22 73.36
Slammer 91.21 90.55 70.76 64.57

May 16, 2020
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BLS Models: BGP Datasets

Training

Accuracy (%)
RIPE

BCNET

F-Score (%)

Model Dataset Test (regular) (regular) Test
Code Red | 95.16 69.38 61.74 71.08

CFBLS Nimda 55.71 68.06  58.26 71.56
Slammer 89.28 71.25 61.81 60.99

Code Red | 94.94 70.69 60.35 65.22

CEBLS Nimda 66.43 74.10 54.51 79.83
Slammer 91.01 87.71 82.43 66.38

Code Red | 95.66 70.07 59.51 71.75

CFEBLS Nimda 64.29 70.83 57.43 78.24
Slammer 86.36 71.11 o57.71 55.30

May 16, 2020
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RNN and BLS Models:
NSL-KDD Dataset

Accuracy (%) F-Score (%)
Model KDDTest* KDDTest?! KDDTest* KDDTest?!
LSTM, 82.78 66.74 83.34 76.21
GRUj; 82.87 65.42 83.05 74.06
CFBLS 82.20 67.47 82.23 76.29

May 16, 2020
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BLS Model:

CICIDS2017 and CSE-CIC-IDS2018 Datasets

Number of Dataset

features

BLS

78 CICIDS2017
CSE-CIC-
IDS2018

64 CICIDS2017
CSE-CIC-
IDS2018

32 CICIDS2017
CSE-CIC-
IDS2018

Accuracy
(%)

96.63

97.46
96.10
98.60
96.34

98.83

F-Score
(%)

96.87

81.46
96.35
90.49
96.62

92.26

Model

RBF-BLS

CFBLS

BLS

RBF-BLS

CEBLS

CEBLS

Training
time (s)

15.60

4.13
8.97
4.65
39.25

33.46

May 16, 2020 Centre for Advanced Studies, Lucknow, India
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Incremental BLS Model:
CICIDS2017 and CSE-CIC-IDS2018 Datasets

Number of Accuracy F-Score Training
features Dataset (%) (%) Model time (s)
Incremental BLS
78 CICIDS2017 95.12 95.44 CFBLS 3.69
CSE-CIC-
IDS2018 97.47 81.35 BLS 6.78
64 CICIDS2017 94 .44 95.38 CFBLS 7.39
CSE-CIC-
IDS2018 96.70 74.64 CEBLS 11.59
32 CICIDS2017 95.39 95.75 BLS 6.39
CSE-CIC-
IDS2018 97.08 77.89 BLS 5.65
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Performance: BLS and Incremental
BLS, CICIDS2017
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Performance: BLS and Incremental
BLS, CSE-CIC-IDS2018
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i Conclusions

» \We evaluated performance of:

= LSTM and GRU deep recurrent neural networks
with a variable number of hidden layers

= BLS models that employ radial basis function
(RBF), cascades of mapped features and
enhancement nodes, and incremental learning

s BLS and cascade combinations of mapped features
and enhancement nodes achieved comparable
performance and shorter training time because of
their wide and deep structure.
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i Conclusions

» BLS models:

» consist of a small number of hidden layers and
adjust weights using pseudoinverse instead of
back-propagation

= dynamically update weights in case of incremental
learning

= better optimized weights due to additional data
points for large datasets (NSL-KDD)

= While increasing the number of mapped features and
enhancement nodes as well as mapped groups led to
better performance, it required additional memory
and training time.
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