

# Complex Networks

---

Ljiljana Trajković

[ljilja@cs.sfu.ca](mailto:ljilja@cs.sfu.ca)

Communication Networks Laboratory

<http://www.sfu.ca/~ljilja/cnl>

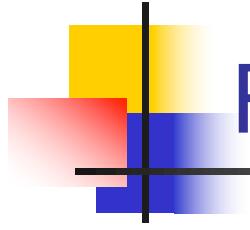
School of Engineering Science

Simon Fraser University, Vancouver,  
British Columbia, Canada

---

# Simon Fraser University Burnaby Campus

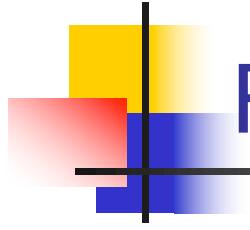




# Roadmap

---

- Introduction
- Data processing
- Machine learning models
- Experimental procedure
- Performance evaluation
- Conclusions and references

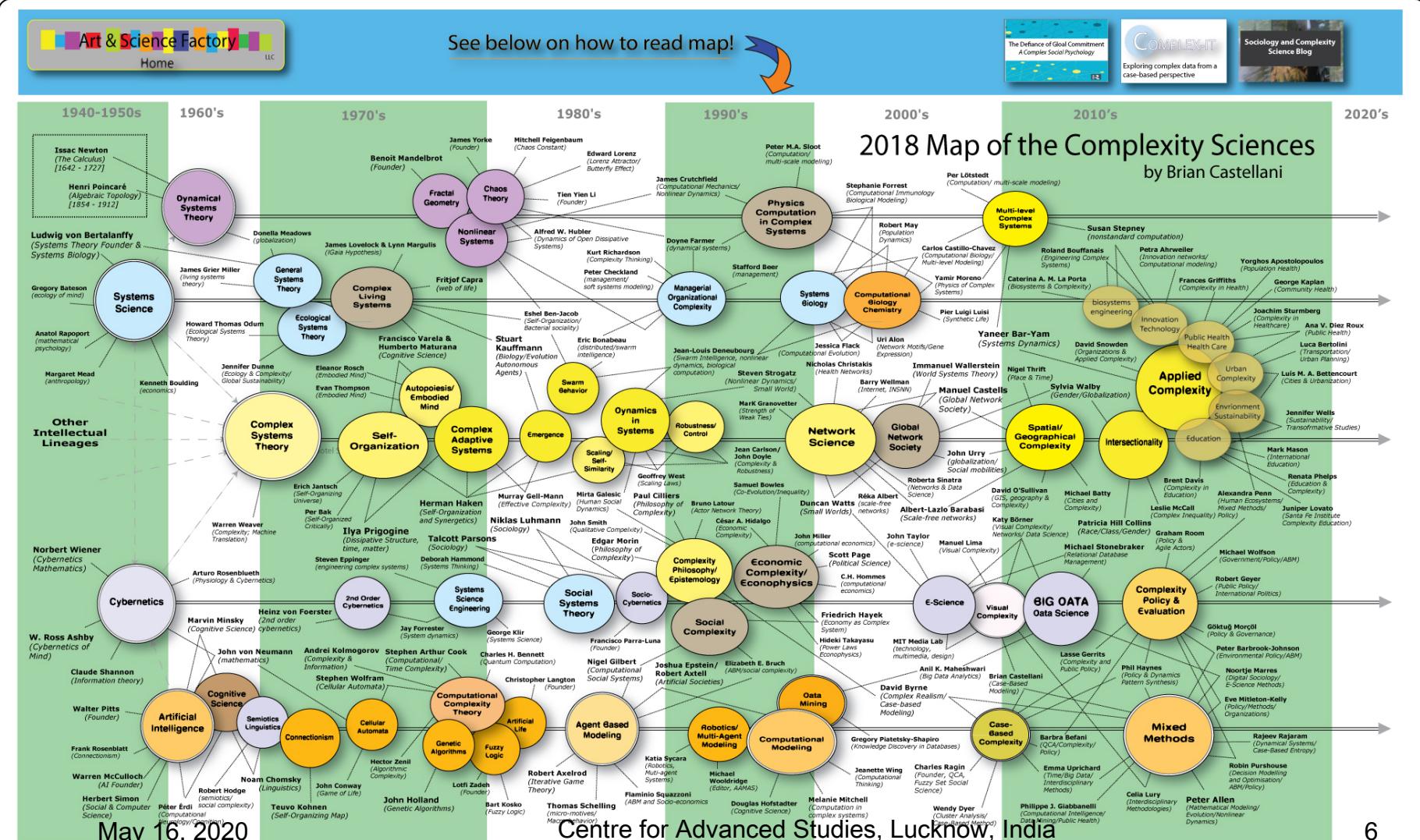


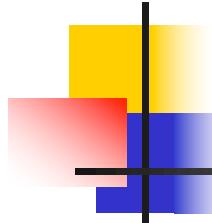
# Roadmap

---

- Introduction:
  - Complex networks
  - Machine learning
- Data processing
- Machine learning models
- Experimental procedure
- Performance evaluation
- Conclusions and references

# Complexity Sciences





# Complexity Sciences

*Please cite this map as follows:*

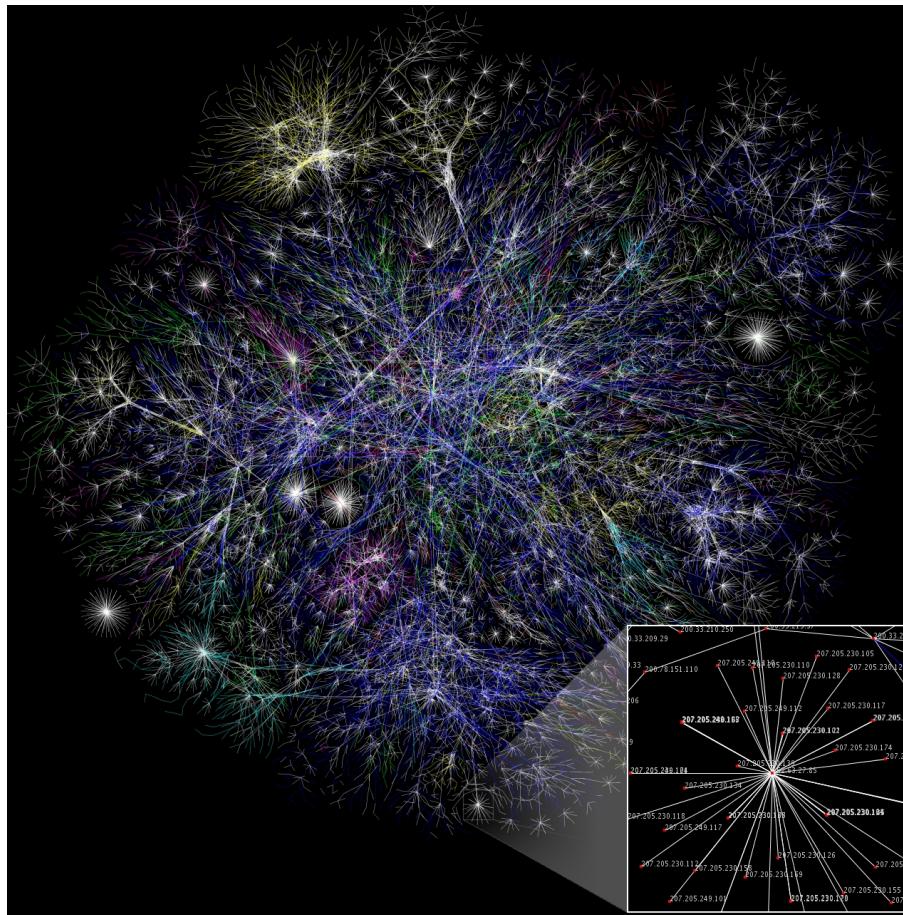
Castellani, Brian (2018) "Map of the Complexity Sciences." Art & Science Factory.  
[https://www.art-sciencfactory.com/complexity-map\\_feb09.html](https://www.art-sciencfactory.com/complexity-map_feb09.html)

**HOW TO READ MAP:**

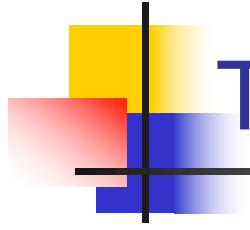
This map is a macroscopic, trans-disciplinary introduction to the complexity sciences.

- Moving from left to right, the map is read in a roughly historical fashion -- but not literally, as we are compressing a n-dimensional intellectual space into a two-dimensional map grid.
- Also, in order to present some type of organizational structure, the history of the complexity sciences is developed along the field's five major intellectual traditions: dynamical systems theory (purple), systems science (blue), complex systems theory (yellow), cybernetics (grey) and artificial intelligence (orange). Again, the fit is not exact (and sometimes even somewhat forced); but it is sufficient to help those new to the field gain a sense of its evolving history.
- Placed along these traditions are the key scholarly themes and methods used across the complexity sciences. A theme's color identifies the historical tradition with which it is "best" associated, even if a theme is placed on a different trajectory. Themes were placed roughly at the point they became a major area of study; recognizing that, from there forward, researchers have continued to work in that area, in one way or another. For example, while artificial intelligence (AI) gained significant momentum in the 1940s and therefore is placed near the start of the map, it remains a major field of study, and is, circa 2018, going through a major resurgence.
- Also, themes in (brown) denote content/discipline specific topics, which illustrate how the complexity sciences are applied to different content. Finally, double-lined themes denote the intersection of a tradition with a new field of study, as in the case of visual complexity or agent-based modeling.
- Connected to themes are the scholars who "founded" or presently "exemplify" work in that area. In other instances, however, "up-and-coming scholars" are listed -- mainly to draw attention to scholars early in their work. There was also an attempt to showcase research from around the world, rather than just the global north. Also, while some scholars (as in the case of Bar-Yam, for example) impacted multiple areas of study, given their position on the map only a few of these links could be visualized -- which goes to the next point: unfortunately, there is no way to generate an educational map that has everyone and everything on it! As such, there is always someone who should be on the map who is not!
- Also, and again, it is important to point out that the positioning of scholars relative to an area of study does not mean they are from that time-period. It only means they are associated with that theme.
- Finally, remembering Foucault's famous argument that most history is really a history of the present as it looks back, who or what is considered an important theme or scholar is a function of time and place. Hence the reason this map has gone through so many revisions -- as the complexity sciences evolves, so does its history.





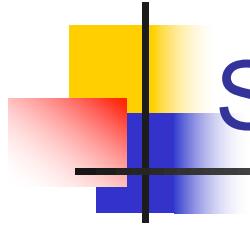
[https://en.wikipedia.org/wiki/Complex\\_network#/media/File:Internet\\_map\\_1024.jpg](https://en.wikipedia.org/wiki/Complex_network#/media/File:Internet_map_1024.jpg)  
By The Opte Project - Originally from the English Wikipedia  
<https://commons.wikimedia.org/w/index.php?curid=1538544>



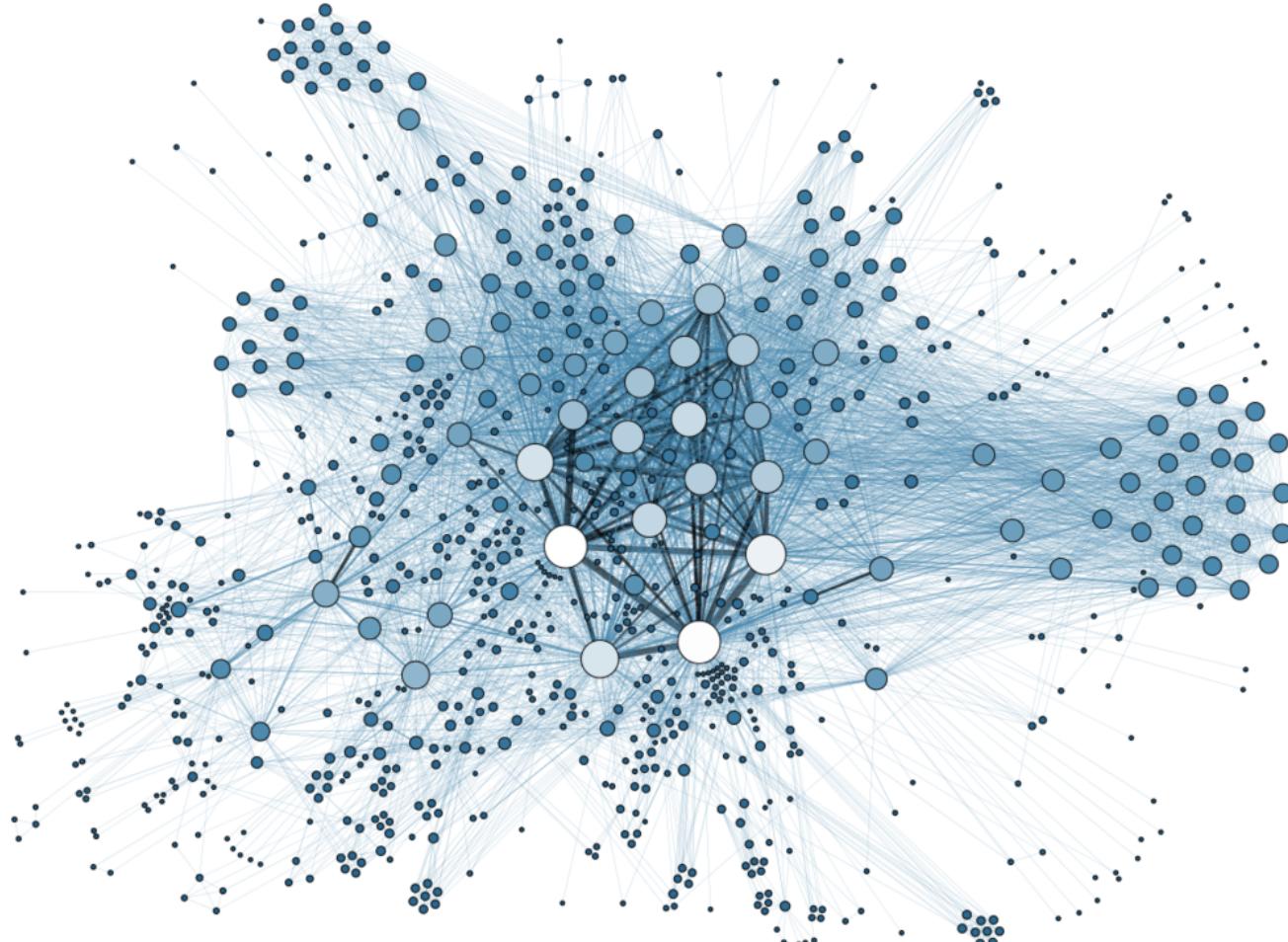
# The Internet

---

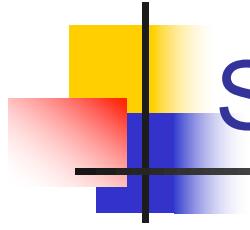
- Partial map of the Internet based on the January 15, 2005 data found on opte.org.
- Each line is drawn between two nodes, representing two IP addresses.
- The length of the lines are indicative of the delay between those two nodes.
- This graph represents less than 30% of the Class C networks reachable by the data collection program in early 2005.
- Lines are color-coded according to their corresponding RFC 1918 allocation as follows: **Dark blue**: net, ca, us; **Green**: com, org; **Red**: mil, gov, edu; **Yellow**: jp, cn, tw, au, de; **Magenta**: uk, it, pl, fr; **Gold**: br, kr, nl; **White**: unknown.



# Scale-Free Networks

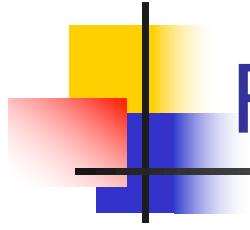


<https://commons.wikimedia.org/w/index.php?curid=29364647>



# Scale-Free Network

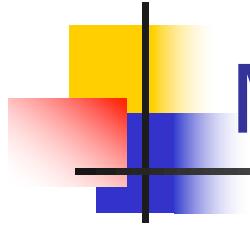
- An example of complex scale-free network.
- Graph represents the metadata of thousands of archive documents, documenting the social network of hundreds of League of Nations personals.
- M. Grandjean, "La connaissance est un réseau," *Les Cahiers du Numérique*, vol. 10, no. 3, pp. 37-54, 2014.



# Roadmap

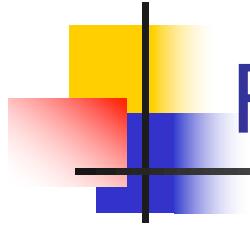
---

- Introduction:
  - Complex networks
  - **Machine learning**
- Data processing
- Machine learning models
- Experimental procedure
- Performance evaluation
- Conclusions and references



# Machine Learning

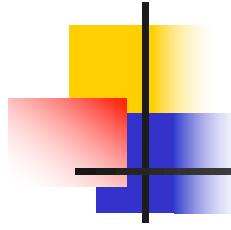
- Using machine learning techniques to detect network intrusions is an important topic in cybersecurity.
- Machine learning algorithms have been used to successfully classify network anomalies and intrusions.
- Supervised machine learning algorithms:
  - Support vector machine: SVM
  - Long short-term memory: LSTM
  - Gated recurrent unit: GRU
  - Broad learning system: BLS



# Roadmap

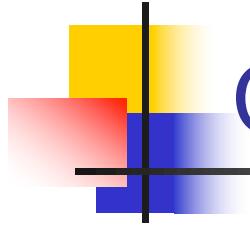
---

- Introduction
- Data processing:
  - BGP datasets
  - NSL-KDD dataset
  - CICIDS2017
  - CSE-CIC-IDS2018
- Machine learning models
- Experimental procedure
- Performance evaluation
- Conclusions and References



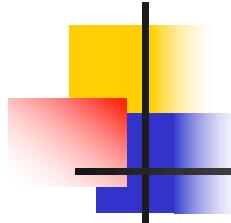
# BGP and NSL-KDD Datasets

- Used to evaluate anomaly detection and intrusion techniques
- **BGP:**
  - Routing records from Réseaux IP Européens (RIPE)
  - BCNET regular traffic
- **NSL-KDD:**
  - an improvement of the KDD'99 dataset
  - used in various intrusion detection systems (IDSs)



# CICIDS2017 and CSE-CIC-IDS2018

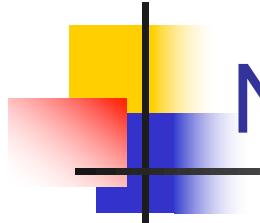
- CICIDS2017 and CSE-CIC-IDS2018:
  - Testbed used to create the publicly available dataset that includes multiple types of recent cyber attacks.
  - Network traffic collected between:
    - Monday, 03.07.2017
    - Friday, 07.07.2017
    - Wednesday, 14.02.2018
    - Friday, 02.03.2018



# BGP Datasets

- Anomalous data: days of the attack
- Regular data: two days prior and two days after the attack
- 37 numerical features from BGP update messages
- Best performance: 60% for training and 40% for testing

|            | Regular<br>(min) | Anomaly<br>(min) | Regular<br>(training) | Anomaly<br>(training) | Regular<br>(test) | Anomaly<br>(test) |
|------------|------------------|------------------|-----------------------|-----------------------|-------------------|-------------------|
| Code Red I | 6,599            | 600              | 3,678                 | 362                   | 2,921             | 239               |
| Nimda      | 3,678            | 3,521            | 3,677                 | 2,123                 | 1                 | 1,399             |
| Slammer    | 6,330            | 869              | 3,209                 | 531                   | 3121              | 339               |



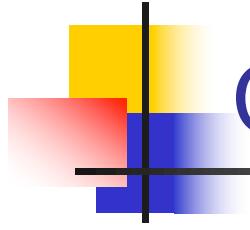
# NSL-KDD Dataset

- KDDTrain+ and KDDTest+: training and test datasets
- KDDTest<sup>21</sup>: a subset of the KDDTest+ dataset that does not include records correctly classified by 21 models

|                       | Regular | DoS    | U2R | R2L   | Probe  | Total   |
|-----------------------|---------|--------|-----|-------|--------|---------|
| KDDTrain <sup>+</sup> | 67,343  | 45,927 | 52  | 995   | 11,656 | 125,973 |
| KDDTest <sup>+</sup>  | 9,711   | 7,458  | 200 | 2,754 | 2,421  | 22,544  |
| KDDTest <sup>21</sup> | 2,152   | 4,342  | 200 | 2,754 | 2,402  | 11,850  |

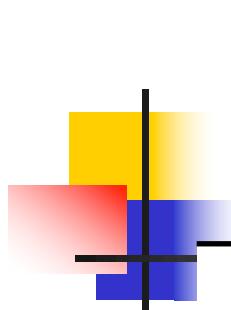
# CICD2017 Dataset: Types of Intrusion Attacks

| Attack       | Label                                    | Day                            | Number of intrusions          |
|--------------|------------------------------------------|--------------------------------|-------------------------------|
| Brute force  | FTP, SSH                                 | Tuesday                        | 7,935; 5,897                  |
| Heartbleed   | Heartbleed                               | Wednesday                      | 11                            |
| Web attack   | Brute force, XSS, SQL Injection          | Thursday morning               | 1,507; 652; 21                |
| Infiltration | Infiltration, PortScan                   | Thursday and Friday afternoons | 36; 158,930                   |
| Botnet       | Bot                                      | Friday morning                 | 1,956                         |
| DoS          | Slowloris, Hulk, GoldenEye, SlowHTTPTest | Wednesday                      | 5,796; 230,124; 10,293; 5,499 |
| DDos         | DDoS                                     | Friday afternoon               | 128,027                       |



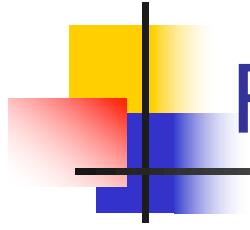
# CICD2017 Dataset: Number of Flows

| Day                          | Valid flows | Total   |
|------------------------------|-------------|---------|
| Monday                       | 529,481     | 529,918 |
| Tuesday                      | 445,645     | 445,909 |
| Wednesday                    | 691,406     | 692,703 |
| Thursday (morning)           | 170,231     | 170,366 |
| Thursday (afternoon)         | 288,395     | 288,602 |
| Friday (morning)             | 190,911     | 191,033 |
| Friday (afternoon, PortScan) | 286,096     | 286,467 |
| Friday (afternoon, DDoS)     | 225,711     | 225,745 |



# CICD2018 Dataset: Types of Intrusion Attacks

| Date       | Attack                        | Day       | Number of intrusions | Number of benign instances | Total   |
|------------|-------------------------------|-----------|----------------------|----------------------------|---------|
| 14.02.2018 | FTP-BF, SSH-BF                | Wednesday | 667626               | 380949                     | 1048575 |
| 15.02.2018 | DoS-GE, DoS-Slowris           | Thursday  | 52498                | 996077                     | 1048575 |
| 16.02.2018 | DoS-SlowHTTPTest, DoS-Hulk    | Friday    | 601803               | 446772                     | 1048575 |
| 20.02.2018 | DDOS-LOIC-HTTP, DDoS-LOIC-UDP | Tuesday   | 576191               | 7372557                    | 7948748 |
| 21.02.2018 | DDOS-LOIC-UDP, DDOS-HOIC      | Wednesday | 687742               | 360833                     | 1048575 |
| 22.02.2018 | Web-BF, XSS-BF, SQL Injection | Thursday  | 362                  | 1048213                    | 1048575 |
| 23.02.2018 | Web-BF, XSS-BF, SQL Injection | Friday    | 566                  | 1048009                    | 1048575 |
| 28.02.2018 | Infiltration                  | Wednesday | 68904                | 544200                     | 613104  |
| 01.03.2018 | Infiltration                  | Thursday  | 93088                | 238037                     | 331125  |
| 02.03.2018 | Bot                           | Friday    | 286191               | 762384                     | 1048575 |



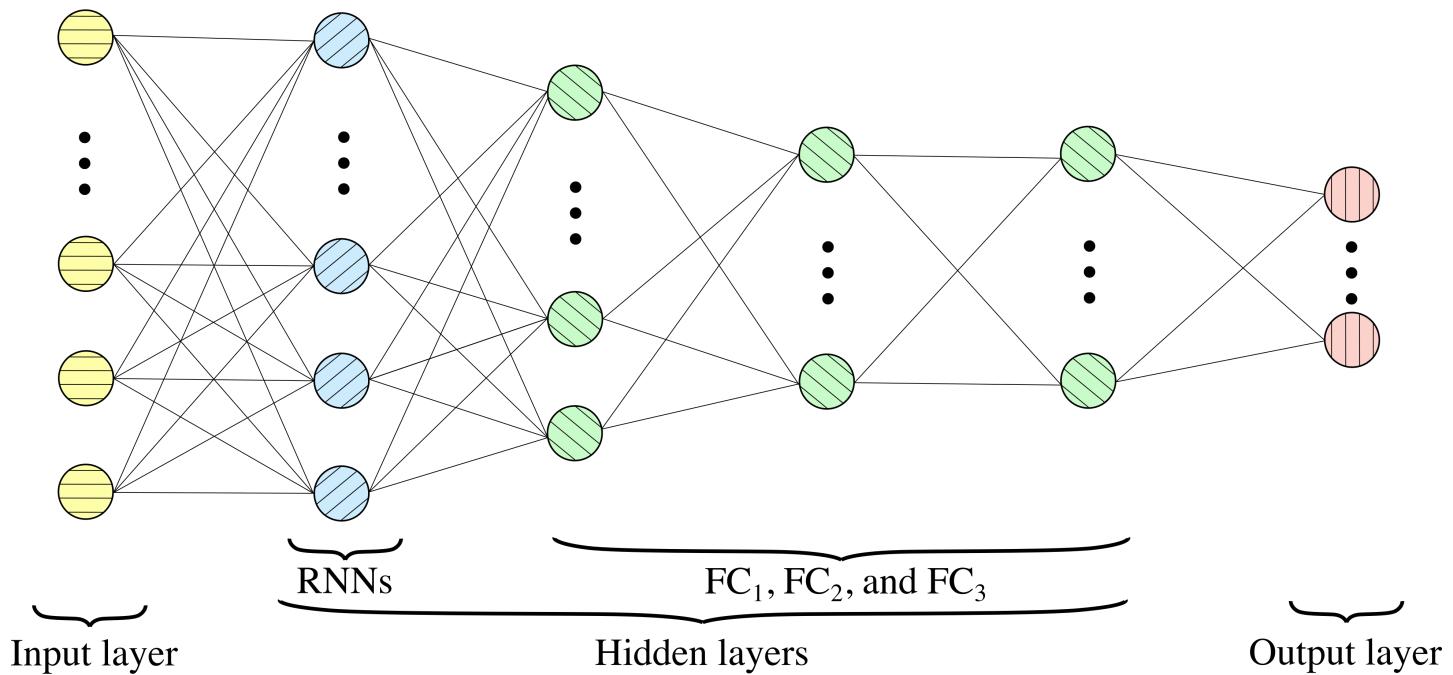
# Roadmap

---

- Introduction
- Data processing
- Machine learning models:
  - Deep learning: multi-layer recurrent neural networks
  - Broad learning system
- Experimental procedure
- Performance evaluation
- Conclusions and references

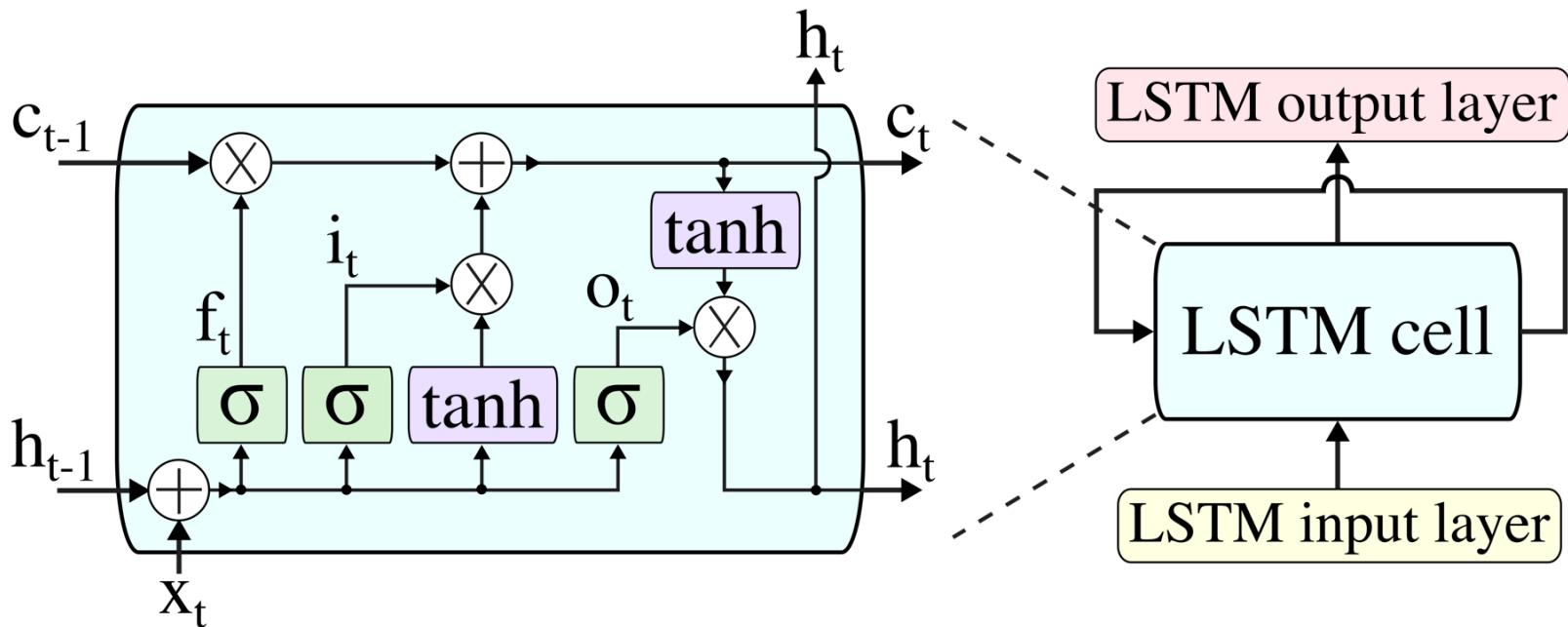
# Deep Learning Neural Network

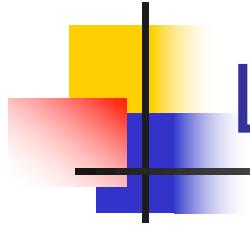
- 37 (**BGP**)/109 (**NSL-KDD**) RNNs, 80  $FC_1$ , 32  $FC_2$ , and 16  $FC_3$  fully connected (FC) hidden nodes:



# Long Short-Term Memory

- Repeating module for the Long Short-Term Memory (LSTM) neural network:





# Long Short-Term Memory: LSTM

- The outputs of the forget gate  $f_t$ , the input gate  $i_t$ , and the output gate  $o_t$  at time t are:

$$f_t = \sigma(W_{if}x_t + b_{if} + U_{hf}h_{t-1} + b_{hf})$$

$$i_t = \sigma(W_{ii}x_t + b_{ii} + U_{hi}h_{t-1} + b_{hi})$$

$$o_t = \sigma(W_{io}x_t + b_{io} + U_{ho}h_{t-1} + b_{ho}),$$

where:

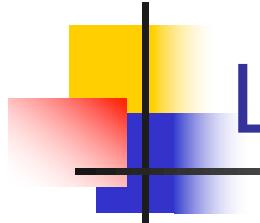
$\sigma(\cdot)$ : logistic sigmoid function

$x_t$ : current input vector

$h_{t-1}$ : previous output vector

$W_{if}$ ,  $U_{hf}$ ,  $W_{ii}$ ,  $U_{hi}$ ,  $W_{io}$  and  $U_{ho}$ : weight matrices

$b_{if}$ ,  $b_{hf}$ ,  $b_{ii}$ ,  $b_{hi}$ ,  $b_{io}$ , and  $b_{ho}$ : bias vectors



# Long Short-Term Memory: LSTM

- Output  $i_t$  of the input gate decides if the information will be stored in the cell state. The sigmoid function is used to update the information.
- Cell state  $c_t$ :

$$c_t = f_t * c_{t-1} + i_t * \tanh(W_{ic}x_t + b_{ic} + U_{hc}h_{t-1} + b_{hc}),$$

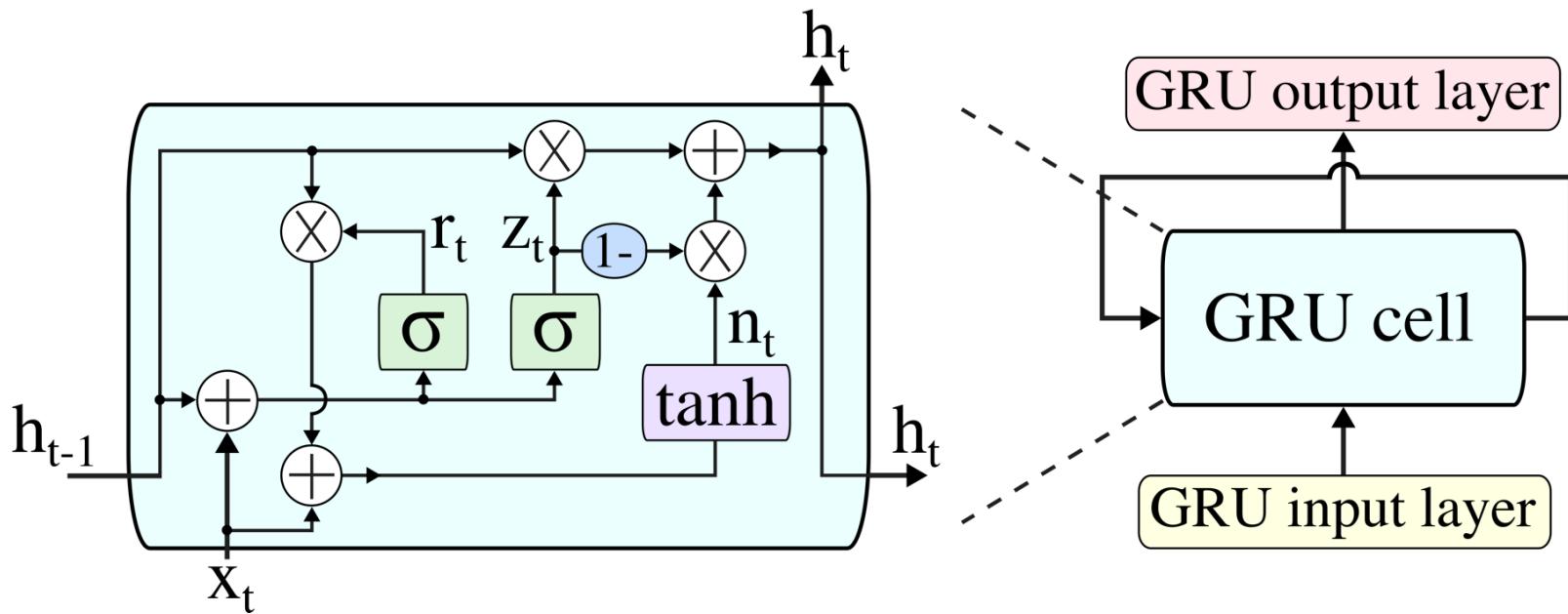
where:

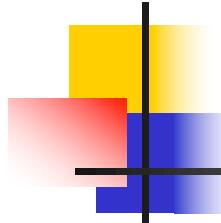
- $*$  denotes element-wise multiplications
- $\tanh$  function: used to create a vector for the next cell state
- Output of the LSTM cell:

$$h_t = o_t * \tanh(c_t)$$

# Gated Recurrent Unit

- Repeating module for the Gated Recurrent Unit (GRU) neural network:





# Gated Recurrent Unit: GRU

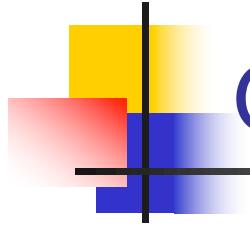
- The outputs of the reset gate  $r_t$  and the update gate  $z_t$  at time t:

$$r_t = \sigma(W_{ir}x_t + b_{ir} + U_{hr}h_{t-1} + b_{hr})$$

$$z_t = \sigma(W_{iz}x_t + b_{iz} + U_{hz}h_{t-1} + b_{hz}),$$

where:

- $\sigma$ : sigmoid function
- $x_t$ : input,  $h_{t-1}$  is the previous output of the GRU cell
- $W_{ir}$ ,  $U_{hr}$ ,  $W_{iz}$ , and  $U_{hz}$ : weight matrices
- $b_{ir}$ ,  $b_{hr}$ ,  $b_{iz}$  +, and  $b_{hz}$  : bias vectors



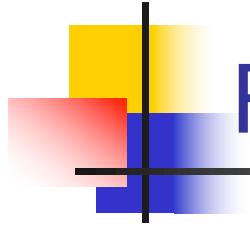
# Gated Recurrent Unit: GRU

- Output of the GRU cell:

$$h_t = (1 - z_t) * n_t + z_t * h_{t-1},$$

where  $n_t$ :

- $n_t = \tanh(W_{in}x_t + b_{in} + r_t * (U_{hn}h_{t-1} + b_{hn}))$
- $W_{in}$  and  $U_{hn}$ : weight matrices
- $b_{in}$  and  $b_{hn}$ : bias vectors



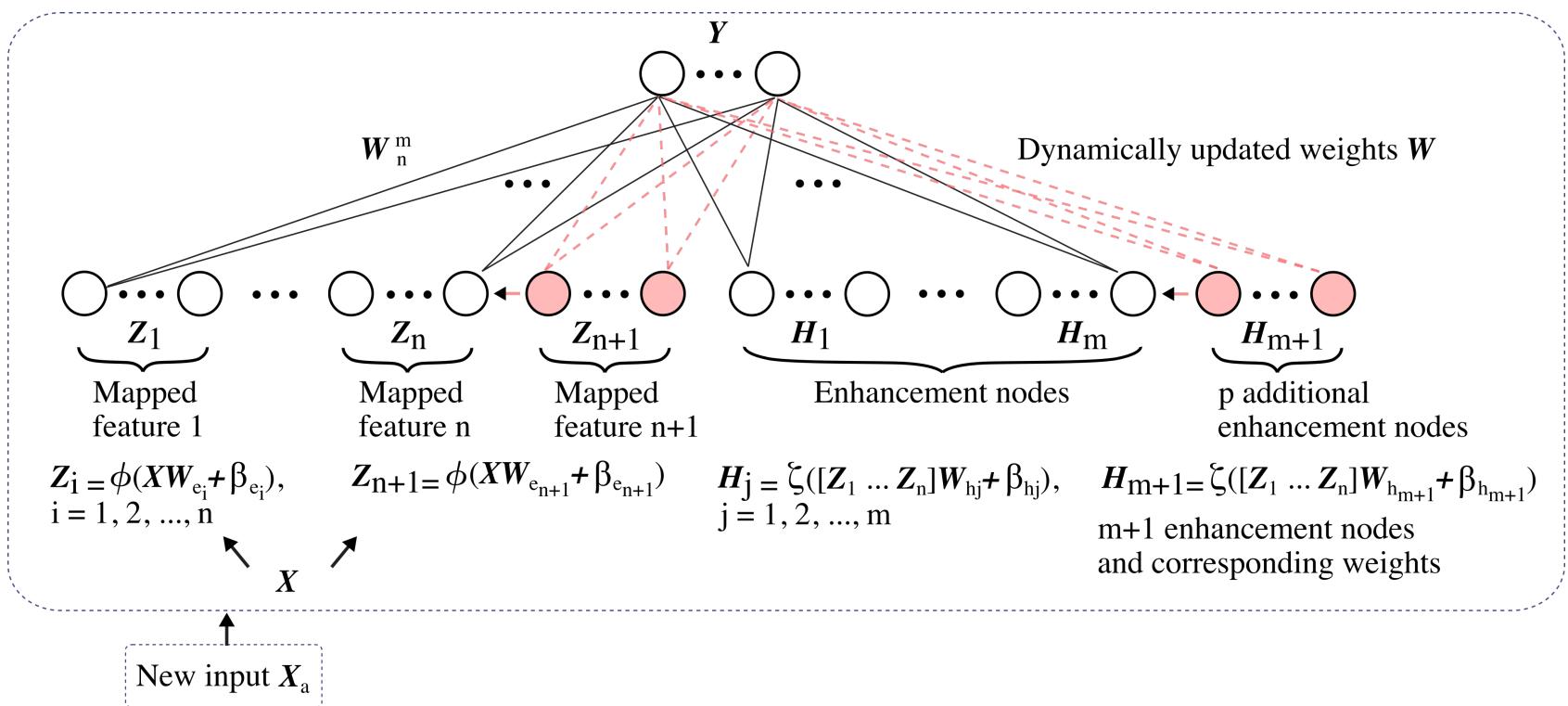
# Roadmap

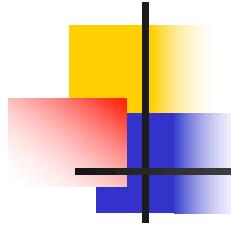
---

- Introduction
- Data processing
- Machine learning models:
  - Deep learning: multi-layer recurrent neural networks
  - Broad learning system
- Experimental procedure
- Performance evaluation
- Conclusions and references

# Broad Learning System

- Module of the Broad Learning System (BLS) algorithm with increments of mapped features, enhancement nodes, and new input data:





# Original BLS

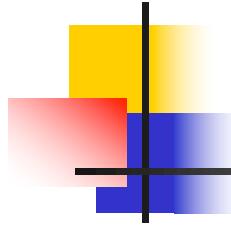
- Matrix  $\mathbf{A}_x$  is constructed from groups of mapped features  $\mathbf{Z}^n$  and groups of enhancement nodes  $\mathbf{H}^m$  as:

$$\begin{aligned}\mathbf{A}_x &= [\mathbf{Z}^n \mid \mathbf{H}^m] \\ &= \left[ \phi(\mathbf{X}\mathbf{W}_{e_i} + \beta_{e_i}) \mid \xi(\mathbf{Z}_x^n \mathbf{W}_{h_j} + \beta_{h_j}) \right],\end{aligned}$$

where:  $i = 1, 2, \dots, n$  and  $j = 1, 2, \dots, m$

- $\phi$  and  $\xi$ : projection mappings
- $\mathbf{W}_{e_i}$ ,  $\mathbf{W}_{h_j}$ : weights
- $\beta_{e_i}$ ,  $\beta_{h_j}$ : bias parameters

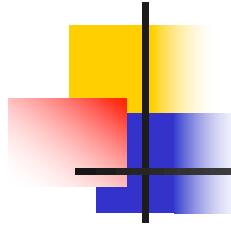
Modified to include additional mapped features  $\mathbf{Z}_{n+1}$ , enhancement nodes  $\mathbf{H}_{m+1}$ , and/or input nodes  $\mathbf{X}_a$



# Original BLS

- Moore-Penrose pseudo inverse of matrix  $\mathbf{A}_x$  is computed to calculate the weights of the output:  
$$\mathbf{W}_n^m = [\mathbf{A}_n^m]^+ \mathbf{Y}$$
- During the training process, data labels are deduced using the calculated weights  $\mathbf{W}_n^m$ , mapped features  $\mathbf{Z}_n$ , and enhancement nodes  $\mathbf{H}_m$  :

$$\begin{aligned}\mathbf{Y} &= \mathbf{A}_n^m \mathbf{W}_n^m \\ &= [\mathbf{Z}_1, \dots, \mathbf{Z}_n | \mathbf{H}_1, \dots, \mathbf{H}_m] \mathbf{W}_n^m\end{aligned}$$



# RBF-BLS Extension

- The **RBF** function is implemented using Gaussian kernel:

$$\xi(x) = \exp\left(-\frac{\|x - c\|^2}{\gamma^2}\right)$$

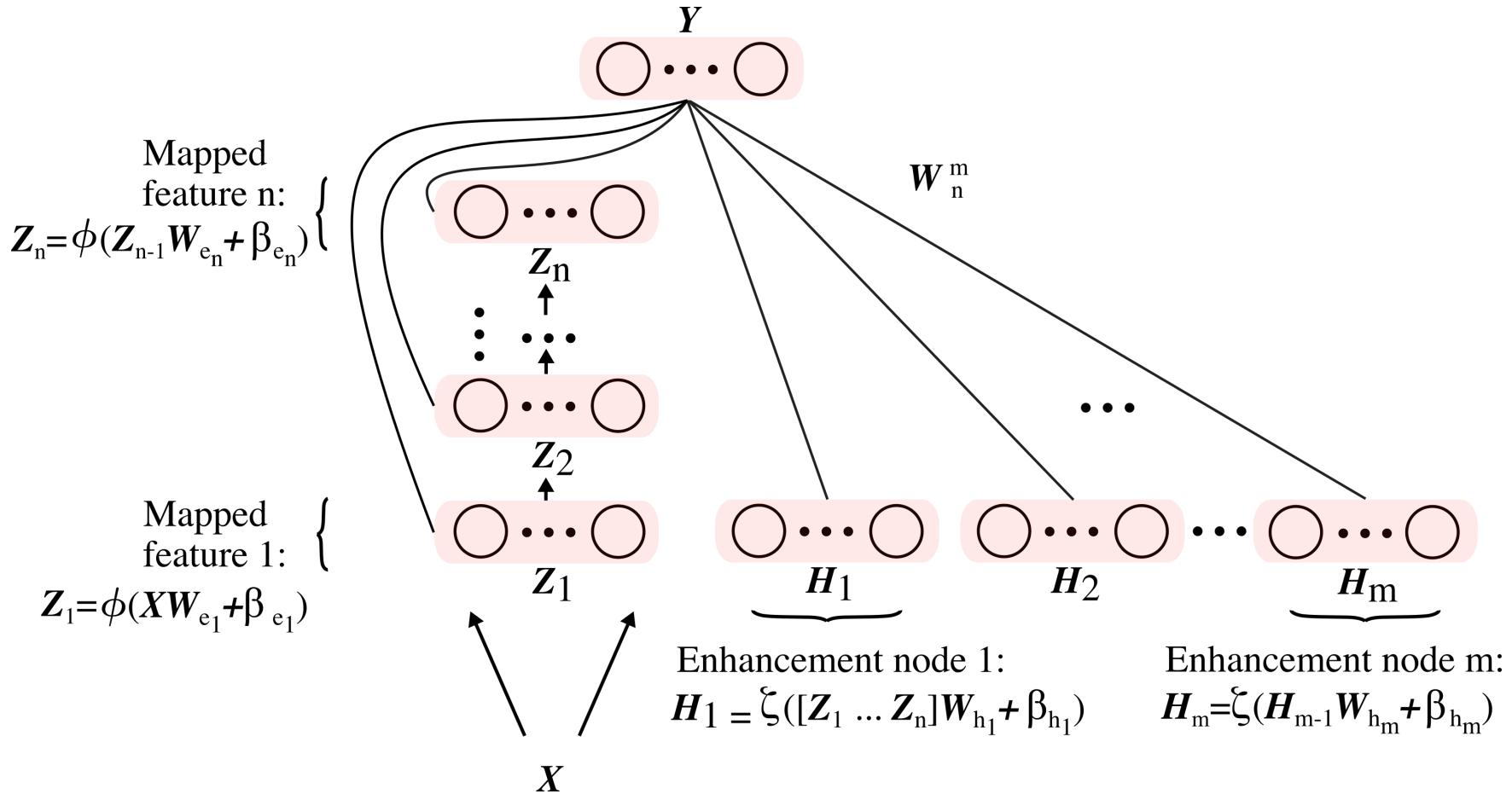
- Weight vectors of the output  $\mathbf{HW}$  are deduced from:

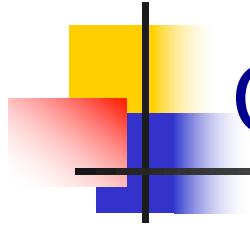
$$\begin{aligned}\mathbf{W} &= (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{Y} \\ &= \mathbf{H}^+ \mathbf{Y},\end{aligned}$$

where:

- $\mathbf{W} = [\omega_1, \omega_2, \dots, \omega_k]$ : output weights
- $\mathbf{H} = [\xi_1, \xi_2, \dots, \xi_k]$ : hidden nodes
- $\mathbf{H}^+$ : pseudoinverse of  $\mathbf{H}$

# Cascades of Mapped Features



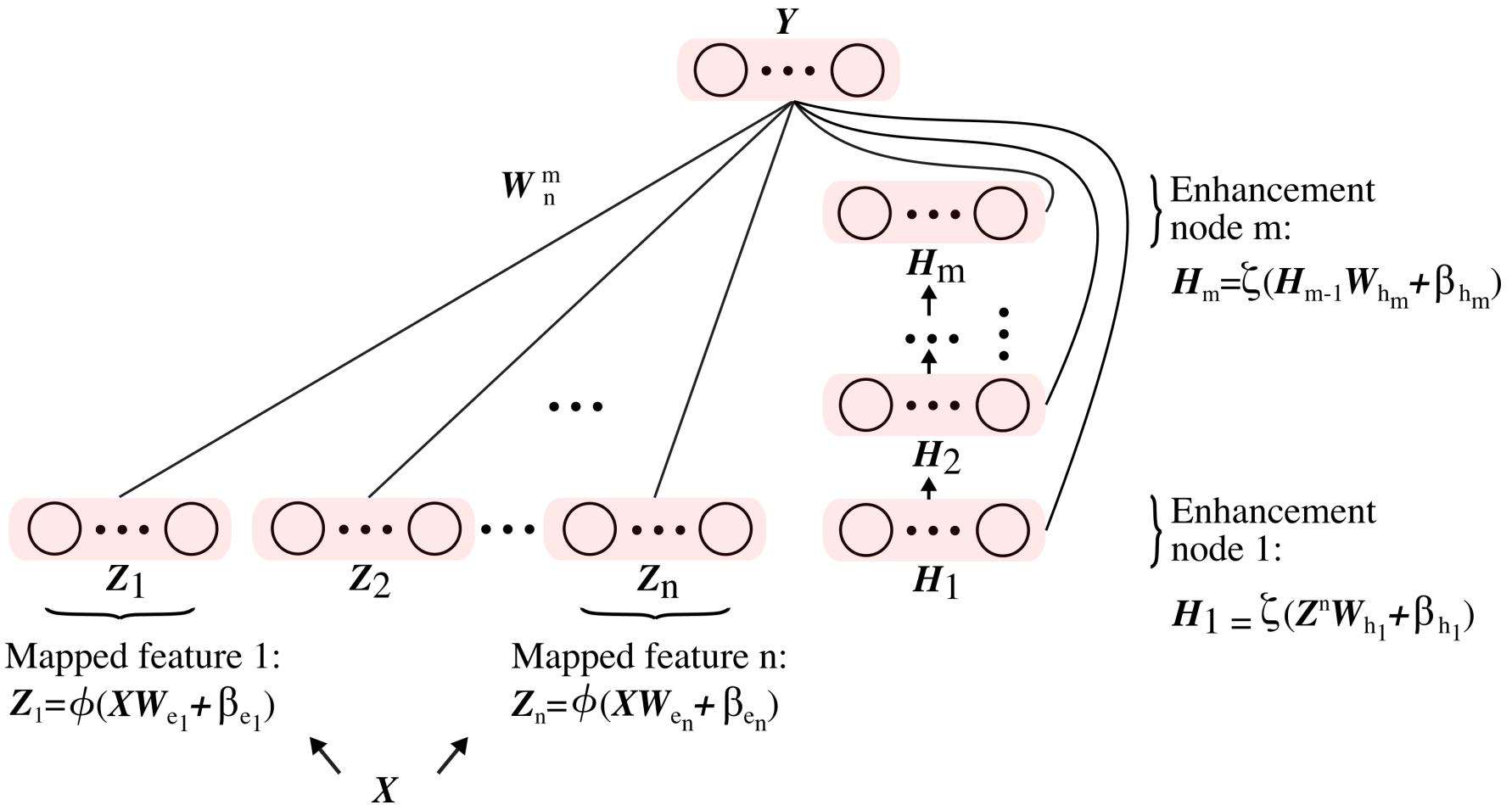


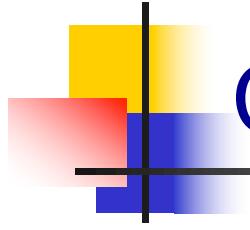
# Cascades of Mapped Features

- Cascade of mapped features (CFBLS):  
the new group of mapped features is created by using  
the previous group ( $k - 1$ ).
- Groups of mapped features are formulated as:

$$\begin{aligned}\mathbf{Z}_k &= \phi(\mathbf{Z}_{k-1} \mathbf{W}_{e_k} + \beta_{e_k}) \\ &\triangleq \phi^k(\mathbf{X} ; \{\mathbf{W}_{e_i}, \beta_{e_i}\}_{i=1}^k), \text{ for } k = 1, \dots, n\end{aligned}$$

# Cascades of Enhancement Nodes





# Cascades of Enhancement Nodes

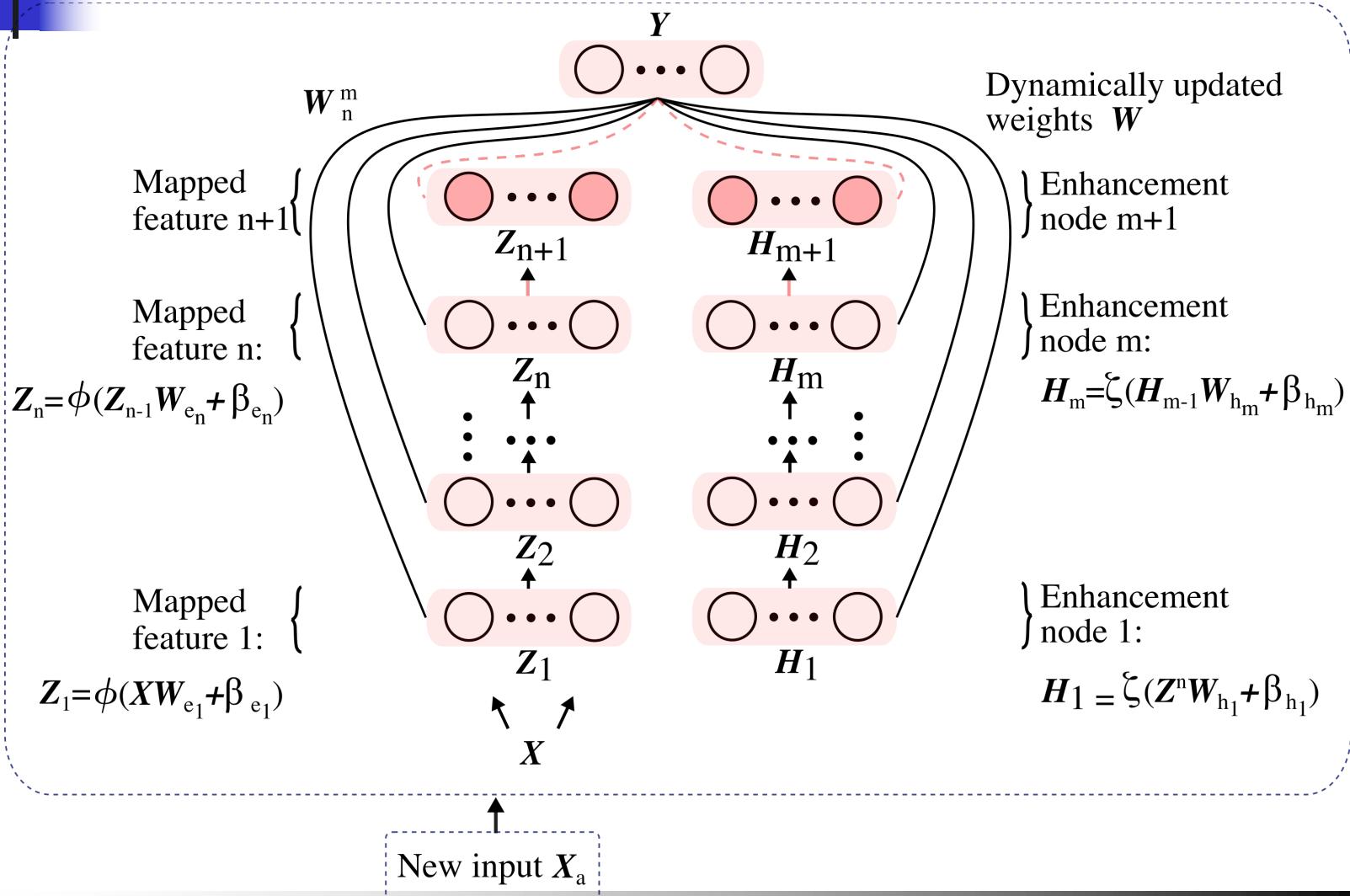
- The first enhancement node in **cascade of enhancement nodes (CEBLS)** is generated from mapped features.
- The subsequent enhancement nodes are generated from previous enhancement nodes creating a cascade:

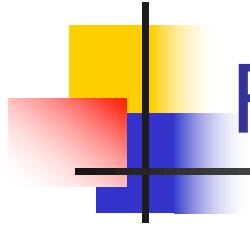
$$H_u \triangleq \xi^u \left( \mathbf{Z}^n ; \left\{ \mathbf{W}_{h_i}, \beta_{h_i} \right\}_{i=1}^u \right), \text{ for } u = 1, \dots, m,$$

where:

- $\mathbf{W}_{h_i}$  and  $\beta_{h_i}$ : randomly generated

# Cascades with Incremental Learning

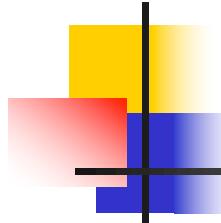




# Roadmap

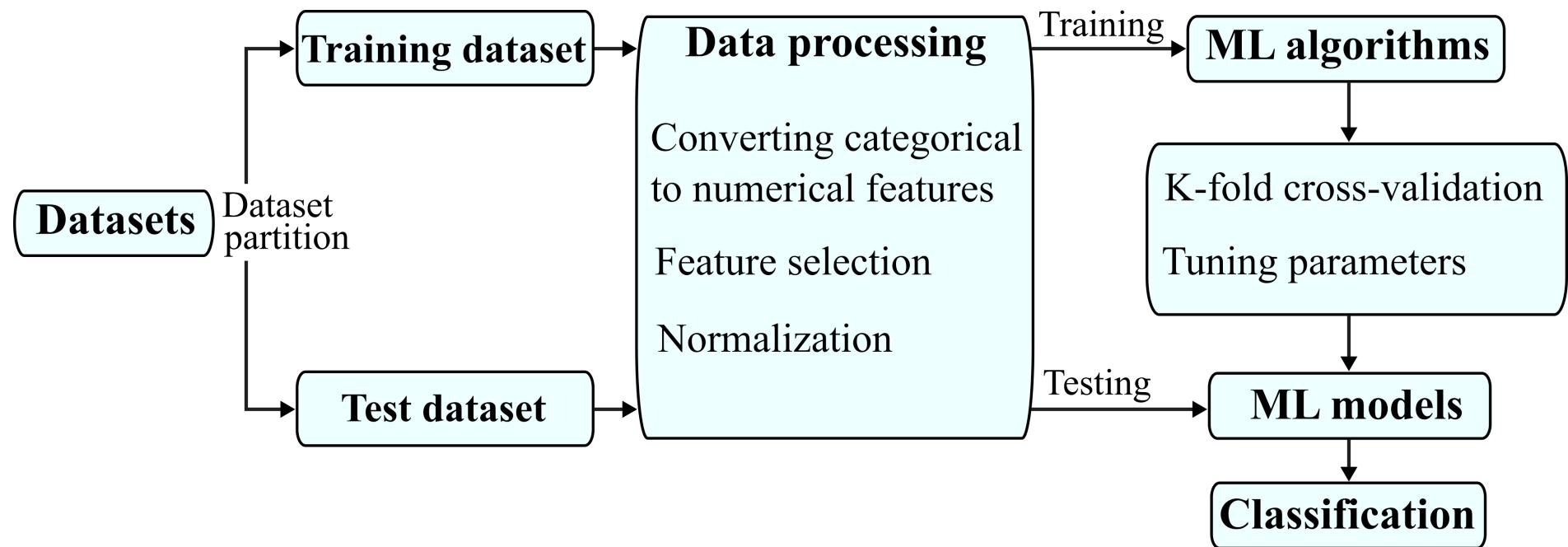
---

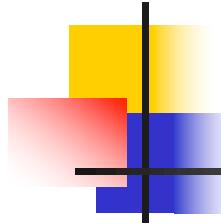
- Introduction
- Data processing:
- Machine learning models:
- **Experimental procedure**
- Performance evaluation
- Conclusions and references



# Intrusion Detection System

- Architecture:





# Experimental Procedure

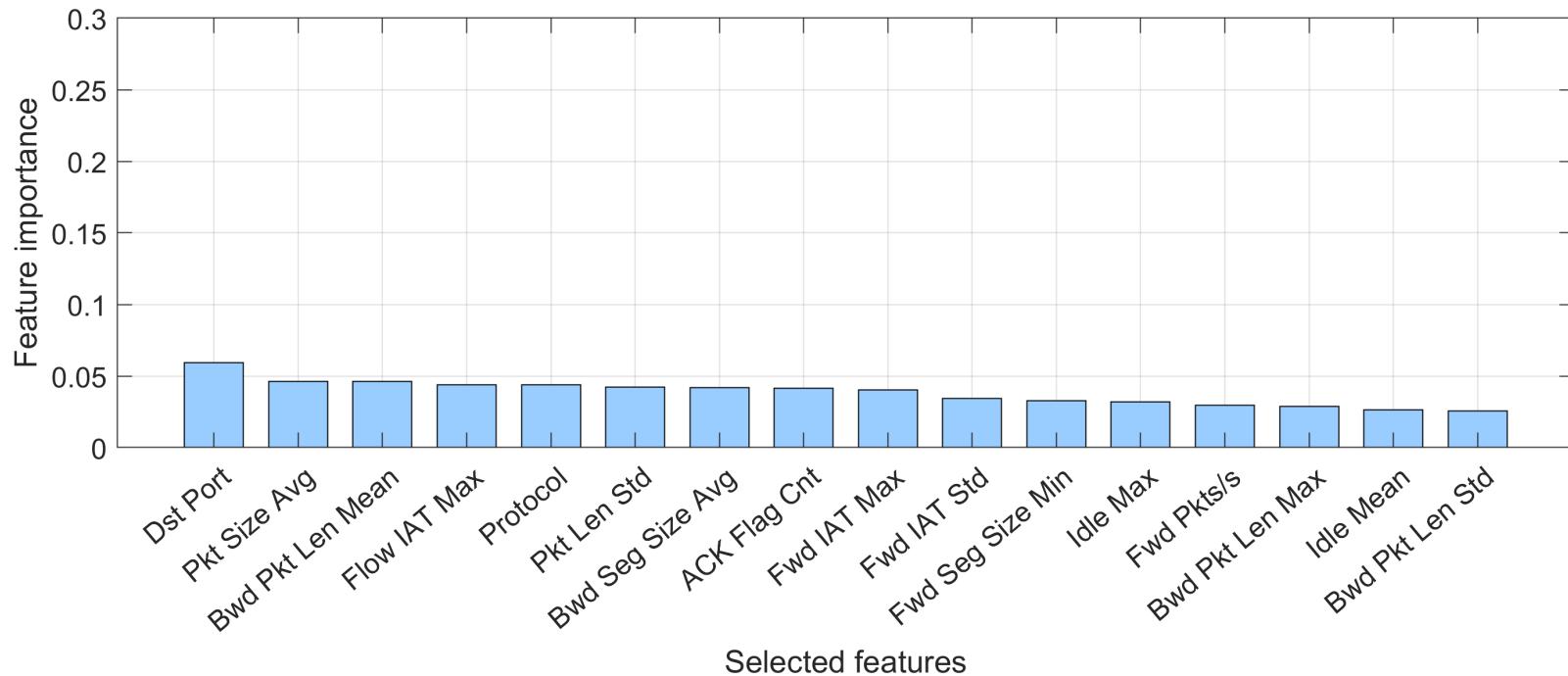
- Step 1: Normalize training and test datasets.
- Step 2: Train the **RNN** models and **BLS** using 10-fold validation. Tune parameters of the **RNN** and **BLS** models.
- Step 3: Test the **RNN** and **BLS** models.
- Step 4: Evaluate models based on:
  - Accuracy
  - F-Score

\***RNN**: recurrent neural network

\***BLS**: broad learning system

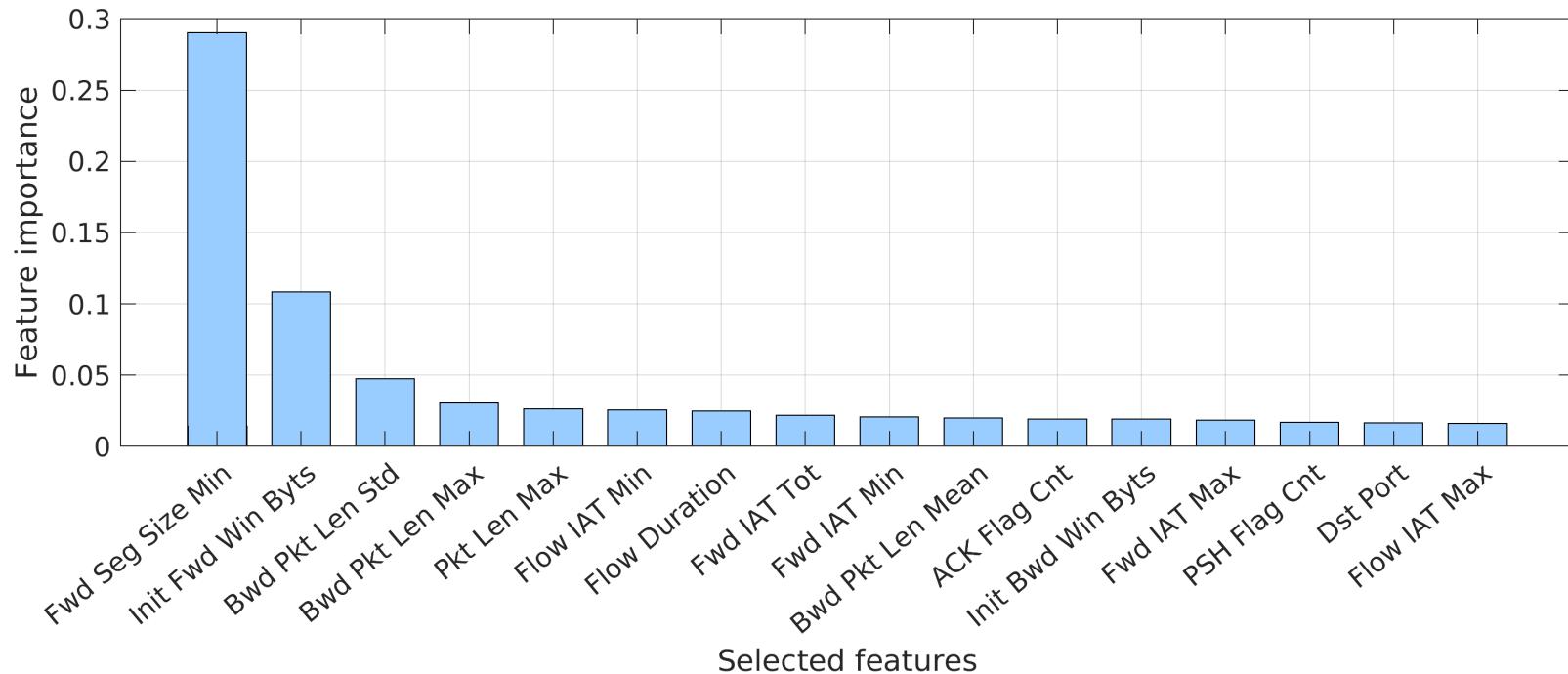
# Most Relevant Features

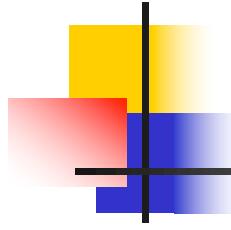
- CICIDS 2017: 16 most relevant features



# Most Relevant Features

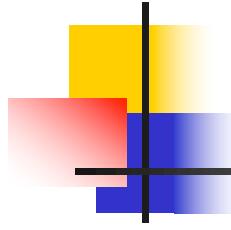
- CSE-CIC-IDS2018: 16 most relevant features





# Number of BLS Training Parameters

| Parameters                 | Code Red I | Nimda | Slammer | NSL-KDD |
|----------------------------|------------|-------|---------|---------|
| Mapped features            | 100        | 500   | 100     | 100     |
| Groups of mapped features  | 1          | 1     | 25      | 5       |
| Enhancement nodes          | 500        | 700   | 300     | 100     |
| Incremental learning steps | 10         | 9     | 2       | 3       |
| Data points/step           | 100        | 200   | 100     | 3,000   |
| Enhancement nodes/step     | 10         | 10    | 50      | 60      |

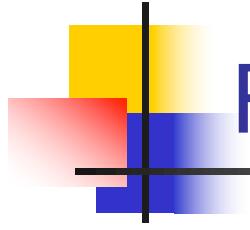


# Number of BLS Training Parameters

| Parameters                | CICIDS2017         |     |       | CSE-CIC-IDS2018 |         |       |
|---------------------------|--------------------|-----|-------|-----------------|---------|-------|
|                           | Number of features |     |       |                 |         |       |
| BLS                       | 78                 | 64  | 32    | 78              | 64      | 32    |
| Model                     | RBF-BLS            | BLS | CEBLS | CFBLS           | RBF-BLS | CEBLS |
| Mapped features           | 20                 | 10  | 10    | 20              | 20      | 15    |
| Groups of mapped features | 30                 | 30  | 10    | 10              | 10      | 20    |
| Enhancement nodes         | 40                 | 20  | 40    | 80              | 80      | 80    |

# Number of Incremental BLS Training Parameters

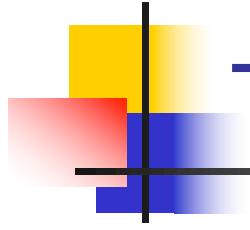
| Parameters                 | CICIDS2017         |        |        | CSE-CIC-IDS2018 |        |        |
|----------------------------|--------------------|--------|--------|-----------------|--------|--------|
|                            | Number of features |        |        |                 |        |        |
| Incremental BLS            | 78                 | 64     | 32     | 78              | 64     | 32     |
| Model                      | CFBLS              | CFEBLS | CEBLS  | BLS             | CEBLS  | BLS    |
| Mapped features            | 10                 | 20     | 10     | 15              | 20     | 10     |
| Groups of mapped features  | 20                 | 20     | 20     | 30              | 10     | 20     |
| Enhancement nodes          | 40                 | 20     | 40     | 20              | 40     | 20     |
| Incremental learning steps | 2                  | 2      | 2      | 2               | 2      | 2      |
| Data points/step           | 55,680             | 55,680 | 55,680 | 49,320          | 49,320 | 49,320 |
| Enhancement nodes/step     | 20                 | 20     | 20     | 20              | 20     | 20     |



# Roadmap

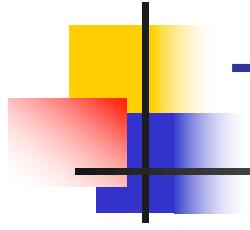
---

- Introduction
- Data processing:
  - BGP datasets
  - NSL-KDD dataset
- Machine learning models:
  - Deep learning: multi-layer recurrent neural networks
  - Broad learning system
- Experimental procedure
- **Performance evaluation**
- Conclusions and references



# Training Time: RNN Models

|          | Datasets            | LSTM <sub>2</sub> | LSTM <sub>3</sub> | LSTM <sub>4</sub> | GRU <sub>2</sub> | GRU <sub>3</sub> | GRU <sub>4</sub> |
|----------|---------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|
|          | <b>Python (CPU)</b> |                   |                   |                   |                  |                  |                  |
| Time (s) | BGP (Slammer)       | 224.52            | 259.91            | 819.78            | 54.12            | 60.76            | 759.82           |
|          | NSL-KDD             | 4,481.73          | 4,614.66          | 11,478.62         | 1,108.31         | 1,161.80         | 11,581.30        |
|          | <b>Python (GPU)</b> |                   |                   |                   |                  |                  |                  |
| Time (s) | BGP (Slammer)       | 30.74             | 34.94             | 38.82             | 31.03            | 35.46            | 40.22            |
|          | NSL-KDD             | 344.93            | 355.86            | 394.55            | 317.53           | 345.04           | 369.86           |



# Training Time: BLS Models

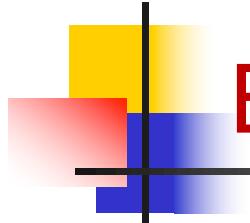
|          | Datasets            | BLS   | RBF-BLS | CFBLS | CEBLS  | CFEBLS |
|----------|---------------------|-------|---------|-------|--------|--------|
| Time (s) | <b>Python (CPU)</b> |       |         |       |        |        |
|          | BGP (Slammer)       | 21.53 | 18.68   | 18.89 | 32.36  | 32.13  |
| Time (s) | NSL-KDD             | 99.47 | 98.27   | 98.13 | 108.23 | 108.14 |
|          | <b>MATLAB (CPU)</b> |       |         |       |        |        |
| Time (s) | BGP (Slammer)       | 1.36  | 1.20    | 1.03  | 5.49   | 5.98   |
|          | NSL-KDD             | 6.91  | 6.24    | 6.55  | 8.88   | 8.95   |

# LSTM Models: BGP Datasets

| Model             | Training Dataset | Accuracy (%) |                | F-Score (%)     |       |
|-------------------|------------------|--------------|----------------|-----------------|-------|
|                   |                  | Test         | RIPE (regular) | BCNET (regular) | Test  |
| LSTM <sub>2</sub> | Code Red I       | 94.08        | 83.75          | 60.49           | 68.89 |
|                   | Nimda            | 78.36        | 47.15          | 48.61           | 87.87 |
|                   | Slammer          | 92.98        | 92.99          | 85.97           | 72.42 |
| LSTM <sub>3</sub> | Code Red I       | 88.54        | 79.38          | 58.82           | 55.96 |
|                   | Nimda            | 85.57        | 39.10          | 40.28           | 92.22 |
|                   | Slammer          | 90.90        | 92.01          | 84.38           | 67.29 |
| LSTM <sub>4</sub> | Code Red I       | 86.96        | 75.00          | 57.01           | 51.53 |
|                   | Nimda            | 92.00        | 26.94          | 35.21           | 95.83 |
|                   | Slammer          | 92.49        | 92.22          | 86.18           | 70.72 |

# GRU Models: BGP Datasets

| Model            | Training Dataset | Accuracy (%) |                | F-Score (%)     |       |
|------------------|------------------|--------------|----------------|-----------------|-------|
|                  |                  | Test         | RIPE (regular) | BCNET (regular) | Test  |
| GRU <sub>2</sub> | Code Red I       | 87.47        | 80.07          | 60.21           | 52.97 |
|                  | Nimda            | 70.71        | 48.96          | 58.26           | 82.83 |
|                  | Slammer          | 91.88        | 93.33          | 90.90           | 69.42 |
| GRU <sub>3</sub> | Code Red I       | 88.07        | 79.44          | 60.56           | 53.51 |
|                  | Nimda            | 80.21        | 38.40          | 44.24           | 89.02 |
|                  | Slammer          | 91.76        | 95.21          | 90.83           | 68.72 |
| GRU <sub>4</sub> | Code Red I       | 91.84        | 77.50          | 60.07           | 63.87 |
|                  | Nimda            | 87.36        | 35.00          | 39.38           | 93.25 |
|                  | Slammer          | 92.14        | 92.15          | 90.35           | 70.11 |



# BLS Models: BGP Datasets

| Model   | Training Dataset | Accuracy (%) |                | F-Score (%)     |       |
|---------|------------------|--------------|----------------|-----------------|-------|
|         |                  | Test         | RIPE (regular) | BCNET (regular) | Test  |
| BLS     | Code Red I       | 94.97        | 69.79          | 65.21           | 66.38 |
|         | Nimda            | 76.57        | 70.69          | 54.93           | 86.73 |
|         | Slammer          | 87.65        | 75.62          | 68.40           | 57.68 |
| RBF-BLS | Code Red I       | 95.92        | 90.69          | 73.96           | 70.07 |
|         | Nimda            | 57.92        | 70.63          | 57.22           | 73.36 |
|         | Slammer          | 91.21        | 90.55          | 70.76           | 64.57 |

# BLS Models: BGP Datasets

| Model  | Training Dataset | Accuracy (%) |                | F-Score (%)     |       |
|--------|------------------|--------------|----------------|-----------------|-------|
|        |                  | Test         | RIPE (regular) | BCNET (regular) | Test  |
| CFBLS  | Code Red I       | 95.16        | 69.38          | 61.74           | 71.08 |
|        | Nimda            | 55.71        | 68.06          | 58.26           | 71.56 |
|        | Slammer          | 89.28        | 71.25          | 61.81           | 60.99 |
| CEBLS  | Code Red I       | 94.94        | 70.69          | 60.35           | 65.22 |
|        | Nimda            | 66.43        | 74.10          | 54.51           | 79.83 |
|        | Slammer          | 91.01        | 87.71          | 82.43           | 66.38 |
| CFEBLS | Code Red I       | 95.66        | 70.07          | 59.51           | 71.75 |
|        | Nimda            | 64.29        | 70.83          | 57.43           | 78.24 |
|        | Slammer          | 86.36        | 71.11          | 57.71           | 55.30 |

# RNN and BLS Models: NSL-KDD Dataset

| Model             | Accuracy (%)         |                        | F-Score (%)          |                        |
|-------------------|----------------------|------------------------|----------------------|------------------------|
|                   | KDDTest <sup>+</sup> | KDDTest <sup>-21</sup> | KDDTest <sup>+</sup> | KDDTest <sup>-21</sup> |
| LSTM <sub>4</sub> | 82.78                | 66.74                  | 83.34                | 76.21                  |
| GRU <sub>3</sub>  | 82.87                | 65.42                  | 83.05                | 74.06                  |
| CFBLS             | 82.20                | 67.47                  | 82.23                | 76.29                  |

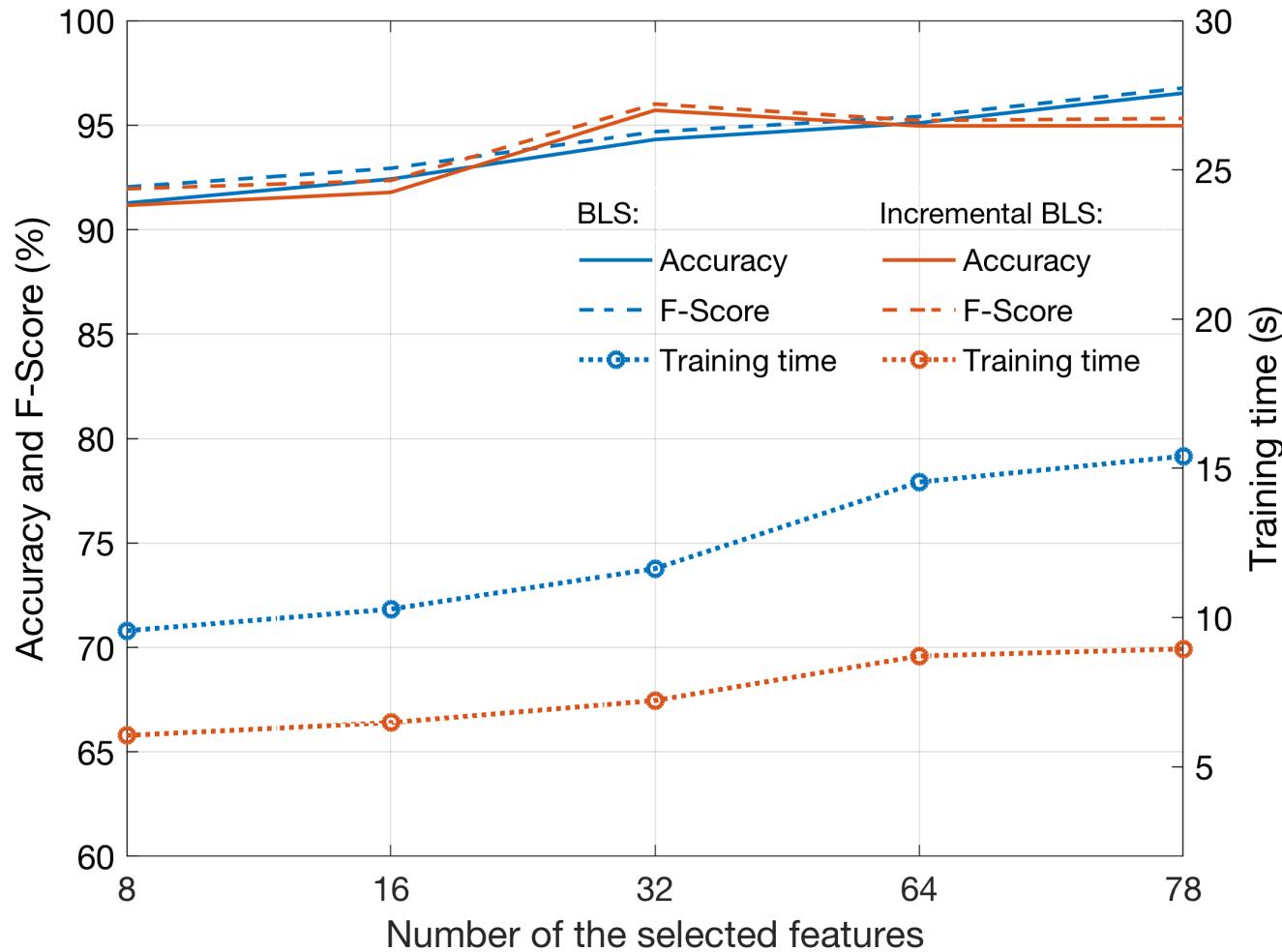
# BLS Model: CICIDS2017 and CSE-CIC-IDS2018 Datasets

| Number of features | Dataset         | Accuracy (%) | F-Score (%) | Model   | Training time (s) |
|--------------------|-----------------|--------------|-------------|---------|-------------------|
| <b>BLS</b>         |                 |              |             |         |                   |
| 78                 | CICIDS2017      | 96.63        | 96.87       | RBF-BLS | 15.60             |
|                    | CSE-CIC-IDS2018 | 97.46        | 81.46       | CFBLS   | 4.13              |
| 64                 | CICIDS2017      | 96.10        | 96.35       | BLS     | 8.97              |
|                    | CSE-CIC-IDS2018 | 98.60        | 90.49       | RBF-BLS | 4.65              |
| 32                 | CICIDS2017      | 96.34        | 96.62       | CEBLS   | 39.25             |
|                    | CSE-CIC-IDS2018 | 98.83        | 92.26       | CEBLS   | 33.46             |

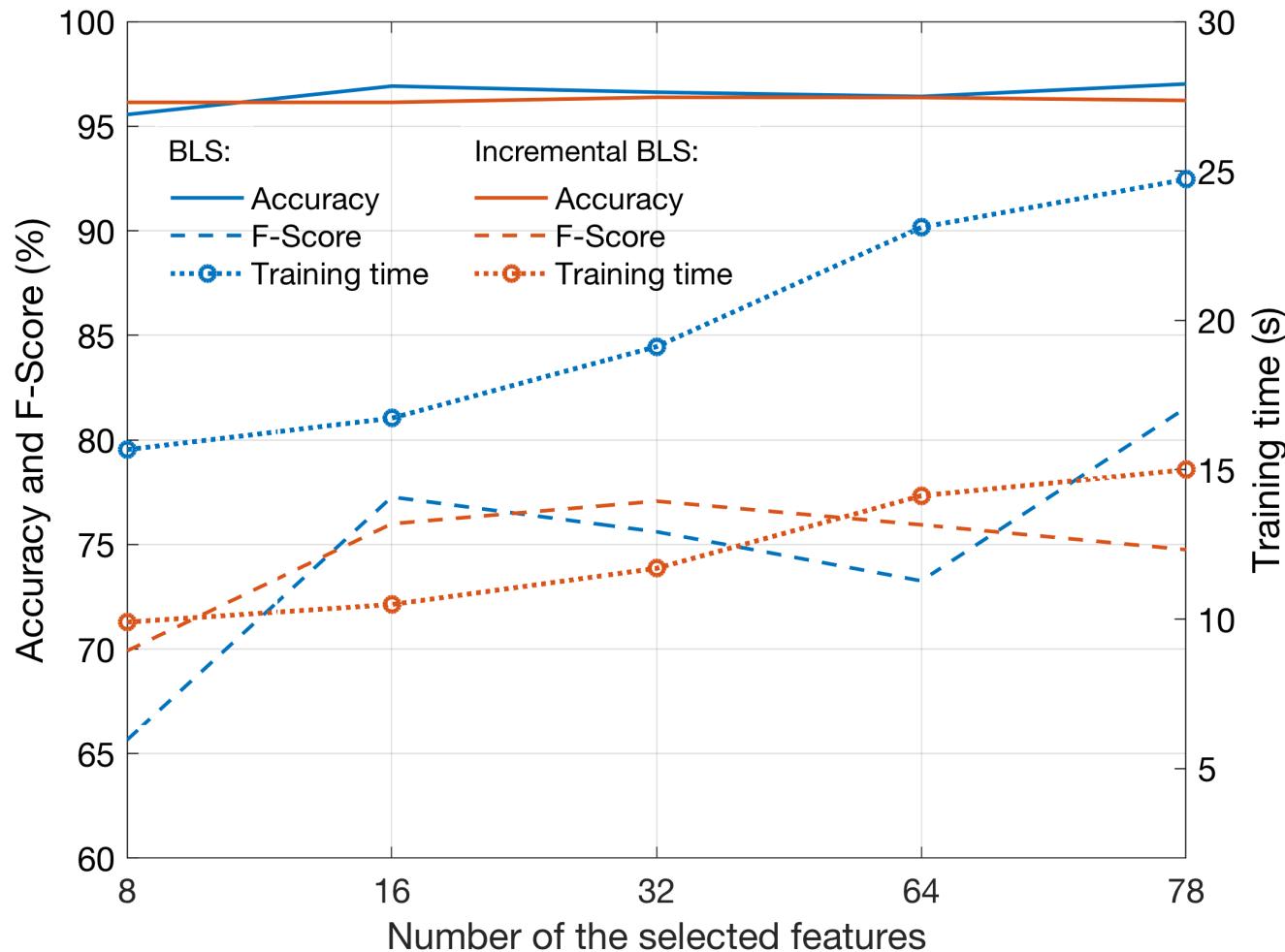
# Incremental BLS Model: CICIDS2017 and CSE-CIC-IDS2018 Datasets

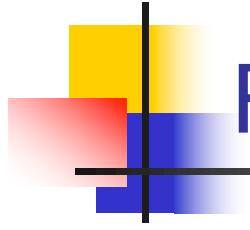
| <b>Incremental BLS</b> |                 |              |             |       |                   |
|------------------------|-----------------|--------------|-------------|-------|-------------------|
| Number of features     | Dataset         | Accuracy (%) | F-Score (%) | Model | Training time (s) |
| 78                     | CICIDS2017      | 95.12        | 95.44       | CFBLS | 3.69              |
|                        | CSE-CIC-IDS2018 | 97.47        | 81.35       | BLS   | 6.78              |
| 64                     | CICIDS2017      | 94.44        | 95.38       | CFBLS | 7.39              |
|                        | CSE-CIC-IDS2018 | 96.70        | 74.64       | CEBLS | 11.59             |
| 32                     | CICIDS2017      | 95.39        | 95.75       | BLS   | 6.39              |
|                        | CSE-CIC-IDS2018 | 97.08        | 77.89       | BLS   | 5.65              |

# Performance: BLS and Incremental BLS, CICIDS2017



# Performance: BLS and Incremental BLS, CSE-CIC-IDS2018

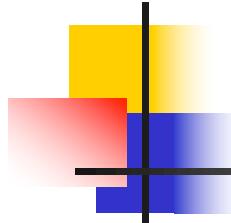




# Roadmap

---

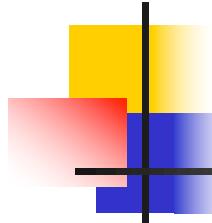
- Introduction
- Data processing:
- Machine learning models:
- Experimental procedure
- Performance evaluation
- **Conclusions** and references



# Conclusions

---

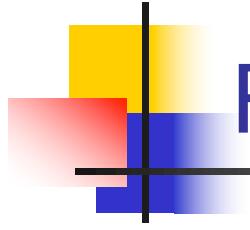
- We evaluated performance of:
  - **LSTM** and **GRU** deep recurrent neural networks with a variable number of hidden layers
  - **BLS** models that employ radial basis function (RBF), cascades of mapped features and enhancement nodes, and incremental learning
- **BLS** and **cascade combinations of mapped features** and **enhancement nodes** achieved comparable performance and shorter training time because of their wide and deep structure.



# Conclusions

---

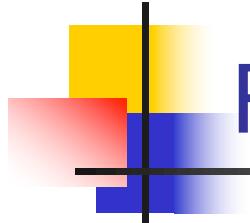
- **BLS** models:
  - consist of a small number of hidden layers and adjust weights using pseudoinverse instead of back-propagation
  - dynamically update weights in case of incremental learning
  - better optimized weights due to additional data points for large datasets (NSL-KDD)
- While increasing the number of mapped features and enhancement nodes as well as mapped groups led to better performance, it required additional memory and training time.



# Roadmap

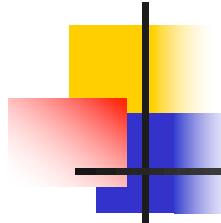
---

- Introduction
- Data processing:
- Machine learning algorithms:
- Experimental procedure
- Performance evaluation
- Conclusions and **references**



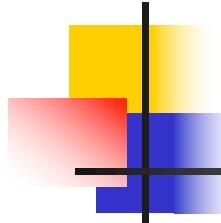
# References: Datasets

- BCNET :  
<http://www.bc.net/>
- RIPE RIS raw data:  
<https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris>
- NSL-KDD dataset:  
<https://www.unb.ca/cic/datasets/nsl.html>
- CICIDS2017 dataset:  
<https://www.unb.ca/cic/datasets/ids-2017.html>
- CSE-CIC-IDS2018 dataset:  
<https://www.unb.ca/cic/datasets/ids-2018.html>



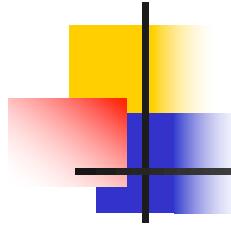
# References: Intrusion Detection

- Python:
  - Pandas: <https://pandas.pydata.org/>
  - PyTorch: <https://pytorch.org/docs/stable/nn.html>
- BLS:
  - Broadlearning: <http://www.broadlearning.ai/>
- V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: a survey,” *ACM Comput. Surv.*, vol. 41, no. 3, pp. 15:1–15:58, July 2009.
- M. C. Libicki, L. Ablon, and T. Webb, The Defenders Dilemma: Charting a Course Toward Cybersecurity. Santa Monica, CA, USA: RAND Corporation, 2015.
- N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to network intrusion detection,” *IEEE Trans. Emerg. Topics Comput. Intell.*, vol. 2, no. 1, pp. 41–50, Feb. 2018.



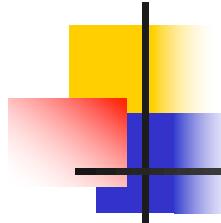
# References: Deep Learning

- S. Hochreiter and J. Schmidhuber, “Long short-term memory,” *Neural Comput.*, vol. 9, no. 8, pp. 1735–1780, Oct. 1997.
- G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” *Computing Research Repository (CoRR)*, abs/1207.0580, pp. 1–18, Jul. 2012.
- K. Cho, B. van Merriënboer, C. Gülcöhre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN encoder–decoder for statistical machine translations,” in *Proc. 2014 Conf. Empirical Methods Natural Lang. Process.*, Doha, Qatar, Oct. 2014, pp. 1724–1734.
- D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in *Proc. 3rd Int. Conf. Learn. Representations*, San Diego, CA, USA, May 2015, pp. 1–15.
- K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber, “LSTM: a search space odyssey,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 28, no. 10, pp. 2222–2232, Oct. 2017.
- I. Goodfellow, Y. Bengio ,and A. Courville, Deep Learning. Cambridge, MA, USA: The MIT Press, 2016.



# References: Broad Learning System

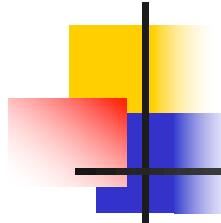
- Z. Liu and C. L. P. Chen, “Broad learning system: structural extensions on single-layer and multi-layer neural networks,” in *Proc. 2017 Int. Conf. Secur., Pattern Anal., Cybern.*, Shenzhen, China, Dec. 2017, pp. 136–141.
- C. L. P. Chen and Z. Liu, “Broad learning system: an effective and efficient incremental learning system without the need for deep architecture,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. 1, pp. 10–24, Jan. 2018.
- C. L. P. Chen, Z. Liu, and S. Feng, “Universal approximation capability of broad learning system and its structural variations,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 30, no. 4, pp. 1191–1204, Apr. 2019.



# Publications: <http://www.sfu.ca/~ljilja>

## Book chapters:

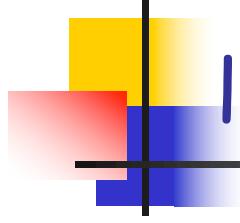
- Q. Ding, Z. Li, S. Haeri, and Lj. Trajković, “Application of machine learning techniques to detecting anomalies in communication networks: Datasets and Feature Selection Algorithms” in *Cyber Threat Intelligence*, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, pp. 47-70, 2018.
- Z. Li, Q. Ding, S. Haeri, and Lj. Trajković, “Application of machine learning techniques to detecting anomalies in communication networks: Classification Algorithms” in *Cyber Threat Intelligence*, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, pp. 71-92, 2018.



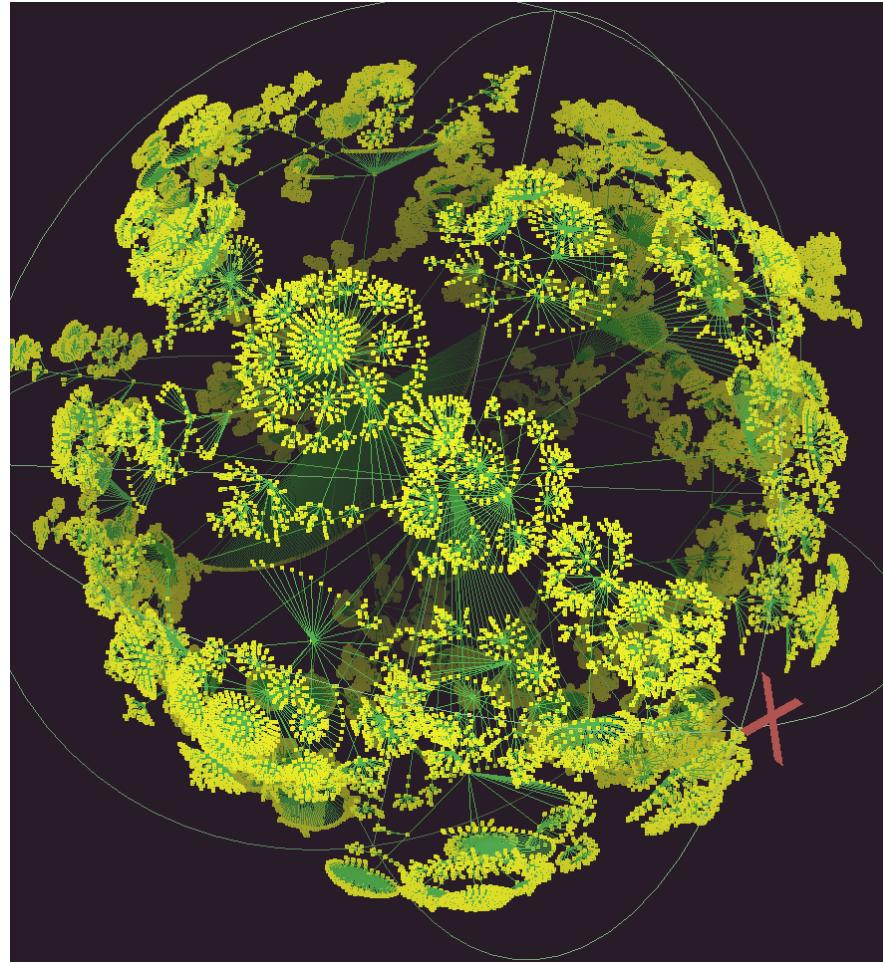
# Publications: <http://www.sfu.ca/~ljilja>

## Recent conference publications:

- Z. Li, A. L. Gonzalez Rios, G. Xu, and Lj. Trajkovic, "Machine learning techniques for classifying network anomalies and intrusions," in *Proc. IEEE Int. Symp. Circuits and Systems*, Sapporo, Japan, May 2019.
- A. L. Gonzalez Rios, Z. Li, G. Xu, A. Dias Alonso, and Lj. Trajković, "Detecting Network Anomalies and Intrusions in Communication Networks," in *Proc. 23rd IEEE International Conference on Intelligent Engineering Systems 2019*, Gödöllő, Hungary, Apr. 2019, pp. 29-34.
- Z. Li, P. Batta, and Lj. Trajković, "Comparison of machine learning algorithms for detection of network intrusions," in *Proc. IEEE Int. Conf. Syst., Man, Cybern.*, Miyazaki, Japan, Oct. 2018, pp. 4248–4253.
- P. Batta, M. Singh, Z. Li, Q. Ding, and Lj. Trajković, "Evaluation of support vector machine kernels for detecting network anomalies," in *Proc. IEEE Int. Symp. Circuits and Systems*, Florence, Italy, May 2018, pp. 1-4.
- Q. Ding, Z. Li, P. Batta, and Lj. Trajković, "Detecting BGP anomalies using machine learning techniques," in *Proc. IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016)*, Budapest, Hungary, Oct. 2016, pp. 3352-3355.



Ihr: 535,102 nodes and 601,678 links



<http://www.caida.org/home/>