
Complex Networks
Ljiljana Trajković
ljilja@cs.sfu.ca

Communication Networks Laboratory
http://www.sfu.ca/~ljilja/cnl

School of Engineering Science
Simon Fraser University, Vancouver, 

British Columbia, Canada



Simon Fraser University
Burnaby Campus

Centre for Advanced Studies, Lucknow, IndiaMay 16, 2020 2



Roadmap

n Introduction
n Data processing
n Machine learning models
n Experimental procedure 
n Performance evaluation
n Conclusions and references

Centre for Advanced Studies, Lucknow, IndiaMay 16, 2020 3



Roadmap

n Introduction:
n Complex networks
n Machine learning

n Data processing
n Machine learning models
n Experimental procedure 
n Performance evaluation
n Conclusions and references

Centre for Advanced Studies, Lucknow, IndiaMay 16, 2020 4



Complexity Sciences

Centre for Advanced Studies, Lucknow, IndiaMay 16, 2020 6



Complexity Sciences

Centre for Advanced Studies, Lucknow, IndiaMay 16, 2020 7



The Internet

https://en.wikipedia.org/wiki/Complex_network#/media/File:Internet_map_1024.jpg
By The Opte Project - Originally from the English Wikipedia 
https://commons.wikimedia.org/w/index.php?curid=1538544
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The Internet

• Partial map of the Internet based on the January 15, 2005 
data found on opte.org. 

• Each line is drawn between two nodes, representing two IP 
addresses. 

• The length of the lines are indicative of the delay between 
those two nodes. 

• This graph represents less than 30% of the Class C 
networks reachable by the data collection program in early 
2005. 

• Lines are color-coded according to their corresponding RFC 
1918 allocation as follows: Dark blue: net, ca, us; Green: 
com, org; Red: mil, gov, edu; Yellow: jp, cn, tw, au, de; 
Magenta: uk, it, pl, fr; Gold: br, kr, nl; White: unknown.
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Scale-Free Networks

https://commons.wikimedia.org/w/index.php?curid=29364647
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Scale-Free Network

• An example of complex scale-free network. 
• Graph represents the metadata of thousands of archive 

documents, documenting the social network of hundreds of 
League of Nations personals. 

• M. Grandjean, "La connaissance est un réseau," Les 
Cahiers du Numérique, vol. 10, no. 3, pp. 37-54, 2014. 
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Machine Learning

n Using machine learning techniques to detect network 
intrusions is an important topic in cybersecurity.

n Machine learning algorithms have been used to 
successfully classify network anomalies and intrusions. 

n Supervised machine learning algorithms:
n Support vector machine: SVM
n Long short-term memory: LSTM
n Gated recurrent unit: GRU
n Broad learning system: BLS
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BGP and NSL-KDD Datasets

§ Used to evaluate anomaly detection and intrusion 
techniques

§ BGP: 
§ Routing records from Réseaux IP Européens (RIPE)
§ BCNET regular traffic

§ NSL-KDD: 
§ an improvement of the KDD’99 dataset
§ used in various intrusion detection systems (IDSs)
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CICIDS2017 and CSE-CIC-IDS2018

§ CICIDS2017 and CSE-CIC-IDS2018: 
§ Testbed used to create the publicly available dataset 

that includes multiple types of recent cyber attacks. 
§ Network traffic collected between:

§ Monday, 03.07.2017
§ Friday, 07.07.2017
§ Wednesday, 14.02.2018
§ Friday, 02.03.2018
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BGP Datasets

Regular
(min)

Anomaly
(min)

Regular
(training)

Anomaly
(training)

Regular
(test)

Anomaly
(test)

Code Red I 6,599 600 3,678 362 2,921 239

Nimda 3,678 3,521 3,677 2,123 1 1,399

Slammer 6,330 869 3,209 531 3121 339

§ Anomalous data: days of the attack
§ Regular data: two days prior and two days after the 

attack
§ 37 numerical features from BGP update messages
§ Best performance: 60% for training and 40% for testing
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NSL-KDD Dataset

§ KDDTrain+ and KDDTest+: training and test datasets
§ KDDTest-21: a subset of the KDDTest+ dataset that 

does not include records correctly classified by 21 
models

Regular DoS U2R R2L Probe Total
KDDTrain+ 67,343 45,927 52 995 11,656 125,973

KDDTest+ 9,711 7,458 200 2,754 2,421 22,544

KDDTest-21 2,152 4,342 200 2,754 2,402 11,850
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CICD2017 Dataset: 
Types of Intrusion Attacks

Attack Label Day Number of intrusions

Brute force FTP, SSH Tuesday 7,935; 5,897
Heartbleed Heartbleed Wednesday 11

Web attack
Brute force, 
XSS, SQL 
Injection

Thursday 
morning 1,507; 652; 21

Infiltration Infiltration, 
PortScan

Thursday and 
Friday 
afternoons

36; 158,930

Botnet Bot Friday morning 1,956

DoS
Slowloris, Hulk, 
GoldenEye, 
SlowHTTPTest

Wednesday 5,796; 230,124; 10,293; 5,499

DDos DDoS Friday 
afternoon 128,027
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CICD2017 Dataset: Number of Flows

Day Valid flows Total
Monday 529,481 529,918

Tuesday 445,645 445,909

Wednesday 691,406 692,703

Thursday (morning) 170,231 170,366

Thursday (afternoon) 288,395 288,602

Friday (morning) 190,911 191,033

Friday (afternoon, PortScan) 286,096 286,467

Friday (afternoon, DDoS) 225,711 225,745
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CICD2018 Dataset: 
Types of Intrusion Attacks

Date Attack Day Number of 
intrusions

Number 
of benign 
instances

Total

14.02.2018 FTP-BF, SSH-BF Wednesday 667626 380949 1048575

15.02.2018 DoS-GE, DoS-
Slowris Thursday 52498 996077 1048575

16.02.2018 DoS-SlowHTTPTest, 
DoS-Hulk Friday 601803 446772 1048575

20.02.2018 DDOS-LOIC-HTTP, 
DDoS-LOIC-UDP Tuesday 576191 7372557 7948748

21.02.2018 DDOS-LOIC-UDP, 
DDOS-HOIC Wednesday 687742 360833 1048575

22.02.2018 Web-BF, XSS-BF, 
SQL Injection Thursday 362 1048213 1048575

23.02.2018 Web-BF, XSS-BF, 
SQL Injection Friday 566 1048009 1048575

28.02.2018 Infiltration Wednesday 68904 544200 613104
01.03.2018 Infiltration Thursday 93088 238037 331125
02.03.2018 Bot Friday 286191 762384 1048575
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Deep Learning Neural Network

n 37 (BGP)/109 (NSL-KDD) RNNs, 80 FC1, 32 FC2, and 
16 FC3 fully connected (FC) hidden nodes:
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Long Short-Term Memory

n Repeating module for the Long Short-Term Memory 
(LSTM) neural network:
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Long Short-Term Memory: LSTM

n The outputs of the forget gate 𝑓!, the input gate 𝑖!, 
and the output gate 𝑜! at time t are:

𝑓! = 𝜎 𝑊"#𝑥! + 𝑏"# + 𝑈$#ℎ!%& + 𝑏$#
𝑖! = 𝜎 𝑊""𝑥! + 𝑏"" + 𝑈$"ℎ!%& + 𝑏$"
𝑜! = 𝜎(𝑊"'𝑥! + 𝑏"' + 𝑈$'ℎ!%& + 𝑏$'),

where:
𝜎 . : logistic sigmoid function
𝑥!: current input vector
ℎ!%&: previous output vector
𝑊"#, 𝑈$#, 𝑊"", 𝑈$", 𝑊"'and 𝑈$': weight matrices
𝑏"#, 𝑏$#, 𝑏"", 𝑏$", 𝑏"', and 𝑏$': bias vectors
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Long Short-Term Memory: LSTM

n Output 𝑖! of the input gate decides if the information 
will be stored in the cell state. The sigmoid function is 
used to update the information.

n Cell state 𝑐!:
𝑐! = 𝑓! ∗ 𝑐!%& + 𝑖! ∗ 𝑡𝑎𝑛ℎ 𝑊"(𝑥! + 𝑏"( + 𝑈$(ℎ!%& + 𝑏$( ,

where:
n ∗ denotes element-wise multiplications
n 𝑡𝑎𝑛ℎ function: used to create a vector for the next 

cell state
n Output of the LSTM cell:

ℎ! = 𝑜! ∗ 𝑡𝑎𝑛ℎ(𝑐!)
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Gated Recurrent Unit

n Repeating module for the Gated Recurrent Unit (GRU) 
neural network:
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Gated Recurrent Unit: GRU

n The outputs of the reset gate 𝑟! and the update gate 𝑧!
at time t:

𝑟! = 𝜎 𝑊")𝑥! + 𝑏") + 𝑈$)ℎ!%& + 𝑏$)
𝑧! = 𝜎(𝑊"*𝑥! + 𝑏"* + 𝑈$*ℎ!%& + 𝑏$*),

where:
n 𝜎: sigmoid function
n 𝑥!: input, ℎ!%& is the previous output of the GRU cell
n 𝑊"), 𝑈$), 𝑊"*, and 𝑈$*: weight matrices
n 𝑏"), 𝑏$), 𝑏"* +, and 𝑏$* : bias vectors
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Gated Recurrent Unit: GRU

n Output of the GRU cell: 
ℎ! = 1 − 𝑧! ∗ 𝑛! + 𝑧! ∗ ℎ!%&,

where 𝑛!:
n 𝑛! = 𝑡𝑎𝑛ℎ(𝑊"+𝑥! + 𝑏"+ + 𝑟! ∗ (𝑈$+ℎ!%& + 𝑏$+))
n 𝑊"+ and 𝑈$+: weight matrices 
n 𝑏"+ and 𝑏$+: bias vectors
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Broad Learning System

n Module of the Broad Learning System (BLS) algorithm 
with increments of mapped features, enhancement 
nodes, and new input data:
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Original BLS

n Matrix 𝑨, is constructed from groups of mapped 
features 𝒁+ and groups of enhancement nodes 𝑯- as:

where:
n 𝜙 and 𝜉: projection mappings 
n 𝑾.!, 𝑾$": weights
n 𝛽.!, 𝛽$": bias parameters

Modified to include additional mapped features 𝒁+/&, 
enhancement nodes 𝑯-/&, and/or input nodes 𝑿0

𝐴! = 𝒁" 𝑯#]
= 𝜙 𝑿𝑾$! + 𝛽$! | 𝜉(𝒁!"𝑾%" + 𝛽%") ,
𝑖 = 1, 2, … , 𝑛 and 𝑗 = 1, 2, … ,𝑚
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Original BLS

n Moore-Penrose pseudo inverse of matrix 𝑨, is 
computed to calculate the weights of the output:

n During the training process, data labels are deduced 
using the calculated weights 𝑾+

-, mapped features 𝒁+, 
and enhancement nodes 𝑯- :

𝑾"
# = [𝑨"#]&𝒀

𝒀 = 𝑨"#𝑾"
#

= 𝒁𝟏, … , 𝒁" 𝑯(, … ,𝑯#]𝑾"
#
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RBF-BLS Extension

n The RBF function is implemented using Gaussian kernel: 

n Weight vectors of the output 𝑯𝑾 are deduced from:

𝑾 = (𝑯1𝑯)%&𝑯1𝒀
= 𝑯/𝒀,

where:
n 𝑾 = 𝜔&, 𝜔2 , … , 𝜔3 : output weights 
n 𝑯 = 𝜉&, 𝜉2, … , 𝜉3 : hidden nodes
n 𝑯/: pseudoinverse of 𝑯

𝜉 𝑥 = 𝑒𝑥𝑝 −
||𝑥 − 𝑐||2

𝛾2
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Cascades of Mapped Features
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Cascades of Mapped Features

n Cascade of mapped features (CFBLS): 
the new group of mapped features is created by using 
the previous group (𝑘 − 1). 

n Groups of mapped features are formulated as: 
𝒁3 = 𝜙(𝒁3%&𝑾.# + 𝛽.#)

≜ 𝜙3 𝑿 ; {𝑾.! , 𝛽.!}"4&
3 , 𝑓𝑜𝑟 𝑘 = 1,… , 𝑛
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Cascades of Enhancement Nodes
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Cascades of Enhancement Nodes

n The first enhancement node in cascade of 
enhancement nodes (CEBLS) is generated from 
mapped features. 

n The subsequent enhancement nodes are generated 
from previous enhancement nodes creating a cascade:

where:
n 𝑾$! and 𝛽$!: randomly generated

𝐻5 ≜ 𝜉5 𝒁+ ; 𝑾$! , 𝛽$! "4&
5 , 𝑓𝑜𝑟 𝑢 = 1,… ,𝑚,
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Cascades with Incremental Learning
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Intrusion Detection System

n Architecture:
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Experimental Procedure

§ Step 1: Normalize training and test datasets.
§ Step 2: Train the RNN models and BLS using 10-fold 

validation. Tune parameters of the RNN and BLS
models.

§ Step 3: Test the RNN and BLS models.
§ Step 4: Evaluate models based on:

§ Accuracy
§ F-Score

*RNN: recurrent neural network
*BLS: broad learning system
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Most Relevant Features

§ CICIDS 2017: 16 most relevant features
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Most Relevant Features

§ CSE-CIC-IDS2018: 16 most relevant features
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Number of BLS Training Parameters

Parameters Code Red I Nimda Slammer NSL-KDD

Mapped features 100 500 100 100
Groups of mapped 
features 1 1 25 5

Enhancement nodes 500 700 300 100

Incremental learning 
steps 10 9 2 3

Data points/step 100 200 100 3,000

Enhancement 
nodes/step 10 10 50 60
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Number of BLS Training Parameters

Parameters CICIDS2017 CSE-CIC-IDS2018
Number of features

BLS 78 64 32 78 64 32

Model RBF-
BLS BLS CEBLS CFBLS RBF-

BLS CEBLS

Mapped features 20 10 10 20 20 15
Groups of 
mapped features 30 30 10 10 10 20

Enhancement 
nodes 40 20 40 80 80 80
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Number of Incremental BLS
Training Parameters

Parameters CICIDS2017 CSE-CIC-IDS2018
Number of features

Incremental BLS 78 64 32 78 64 32
Model CFBLS CFEBLS CEBLS BLS CEBLS BLS
Mapped features 10 20 10 15 20 10
Groups of mapped 
features 20 20 20 30 10 20

Enhancement 
nodes 40 20 40 20 40 20

Incremental 
learning steps 2 2 2 2 2 2

Data points/step 55,680 55,680 55,680 49,320 49,320 49,320

Enhancement 
nodes/step 20 20 20 20 20 20
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Training Time: RNN Models

Datasets LSTM2 LSTM3 LSTM4 GRU2 GRU3 GRU4

Python (CPU)

Time (s)
BGP (Slammer) 224.52 259.91 819.78 54.12 60.76 759.82

NSL-KDD 4,481.73 4,614.66 11,478.62 1,108.31 1,161.80 11,581.30

Python (GPU)

Time (s)
BGP (Slammer) 30.74 34.94 38.82 31.03 35.46 40.22

NSL-KDD 344.93 355.86 394.55 317.53 345.04 369.86
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Training Time: BLS Models

Datasets BLS RBF-BLS CFBLS CEBLS CFEBLS

Python (CPU)

Time (s) BGP (Slammer) 21.53 18.68 18.89 32.36 32.13

NSL-KDD 99.47 98.27 98.13 108.23 108.14

MATLAB (CPU)

Time (s)
BGP (Slammer) 1.36 1.20 1.03 5.49 5.98

NSL-KDD 6.91 6.24 6.55 8.88 8.95
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LSTM Models: BGP Datasets
Accuracy (%) F-Score (%)

Model Training 
Dataset Test RIPE 

(regular)
BCNET

(regular) Test

LSTM2

Code Red I 94.08 83.75 60.49 68.89

Nimda 78.36 47.15 48.61 87.87

Slammer 92.98 92.99 85.97 72.42

LSTM3

Code Red I 88.54 79.38 58.82 55.96

Nimda 85.57 39.10 40.28 92.22

Slammer 90.90 92.01 84.38 67.29

LSTM4

Code Red I 86.96 75.00 57.01 51.53

Nimda 92.00 26.94 35.21 95.83

Slammer 92.49 92.22 86.18 70.72
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GRU Models: BGP Datasets
Accuracy (%) F-Score (%)

Model Training 
Dataset Test RIPE 

(regular)
BCNET

(regular) Test

GRU2

Code Red I 87.47 80.07 60.21 52.97

Nimda 70.71 48.96 58.26 82.83

Slammer 91.88 93.33 90.90 69.42

GRU3

Code Red I 88.07 79.44 60.56 53.51

Nimda 80.21 38.40 44.24 89.02

Slammer 91.76 95.21 90.83 68.72

GRU4

Code Red I 91.84 77.50 60.07 63.87

Nimda 87.36 35.00 39.38 93.25

Slammer 92.14 92.15 90.35 70.11
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BLS Models: BGP Datasets

Accuracy (%) F-Score (%)

Model Training 
Dataset Test RIPE 

(regular)
BCNET

(regular) Test

BLS
Code Red I 94.97 69.79 65.21 66.38

Nimda 76.57 70.69 54.93 86.73

Slammer 87.65 75.62 68.40 57.68

RBF-BLS

Code Red I 95.92 90.69 73.96 70.07

Nimda 57.92 70.63 57.22 73.36

Slammer 91.21 90.55 70.76 64.57
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BLS Models: BGP Datasets
Accuracy (%) F-Score (%)

Model Training 
Dataset Test RIPE 

(regular)
BCNET

(regular) Test

CFBLS
Code Red I 95.16 69.38 61.74 71.08

Nimda 55.71 68.06 58.26 71.56

Slammer 89.28 71.25 61.81 60.99

CEBLS

Code Red I 94.94 70.69 60.35 65.22

Nimda 66.43 74.10 54.51 79.83

Slammer 91.01 87.71 82.43 66.38

CFEBLS

Code Red I 95.66 70.07 59.51 71.75

Nimda 64.29 70.83 57.43 78.24

Slammer 86.36 71.11 57.71 55.30
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RNN and BLS Models: 
NSL-KDD Dataset

Accuracy (%) F-Score (%)

Model KDDTest+ KDDTest-21 KDDTest+ KDDTest-21

LSTM4 82.78 66.74 83.34 76.21

GRU3 82.87 65.42 83.05 74.06

CFBLS 82.20 67.47 82.23 76.29
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BLS Model: 
CICIDS2017 and CSE-CIC-IDS2018 Datasets

Number of 
features Dataset Accuracy 

(%)
F-Score 

(%) Model Training 
time (s)

BLS

78 CICIDS2017 96.63 96.87 RBF-BLS 15.60

CSE-CIC-
IDS2018 97.46 81.46 CFBLS 4.13

64 CICIDS2017 96.10 96.35 BLS 8.97

CSE-CIC-
IDS2018 98.60 90.49 RBF-BLS 4.65

32 CICIDS2017 96.34 96.62 CEBLS 39.25

CSE-CIC-
IDS2018 98.83 92.26 CEBLS 33.46
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Incremental BLS Model: 
CICIDS2017 and CSE-CIC-IDS2018 Datasets

Number of 
features Dataset Accuracy 

(%)
F-Score 

(%) Model Training 
time (s)

Incremental BLS

78 CICIDS2017 95.12 95.44 CFBLS 3.69

CSE-CIC-
IDS2018 97.47 81.35 BLS 6.78

64 CICIDS2017 94.44 95.38 CFBLS 7.39

CSE-CIC-
IDS2018 96.70 74.64 CEBLS 11.59

32 CICIDS2017 95.39 95.75 BLS 6.39

CSE-CIC-
IDS2018 97.08 77.89 BLS 5.65
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Performance: BLS and Incremental 
BLS, CICIDS2017
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Performance: BLS and Incremental 
BLS, CSE-CIC-IDS2018
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Conclusions
n We evaluated performance of:

n LSTM and GRU deep recurrent neural networks 
with a variable number of hidden layers

n BLS models that employ radial basis function 
(RBF), cascades of mapped features and 
enhancement nodes, and incremental learning

n BLS and cascade combinations of mapped features 
and enhancement nodes achieved comparable 
performance and shorter training time because of 
their wide and deep structure. 
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Conclusions
n BLS models:

n consist of a small number of hidden layers and 
adjust weights using pseudoinverse instead of 
back-propagation

n dynamically update weights in case of incremental 
learning

n better optimized weights due to additional data 
points for large datasets (NSL-KDD)

n While increasing the number of mapped features and 
enhancement nodes as well as mapped groups led to 
better performance, it required additional memory 
and training time.
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