

# Complex Networks

Ljiljana Trajković ljilja@cs.sfu.ca

Communication Networks Laboratory
http://www.sfu.ca/~ljilja/cnl
School of Engineering Science
Simon Fraser University, Vancouver,
British Columbia, Canada

# Simon Fraser University Burnaby Campus





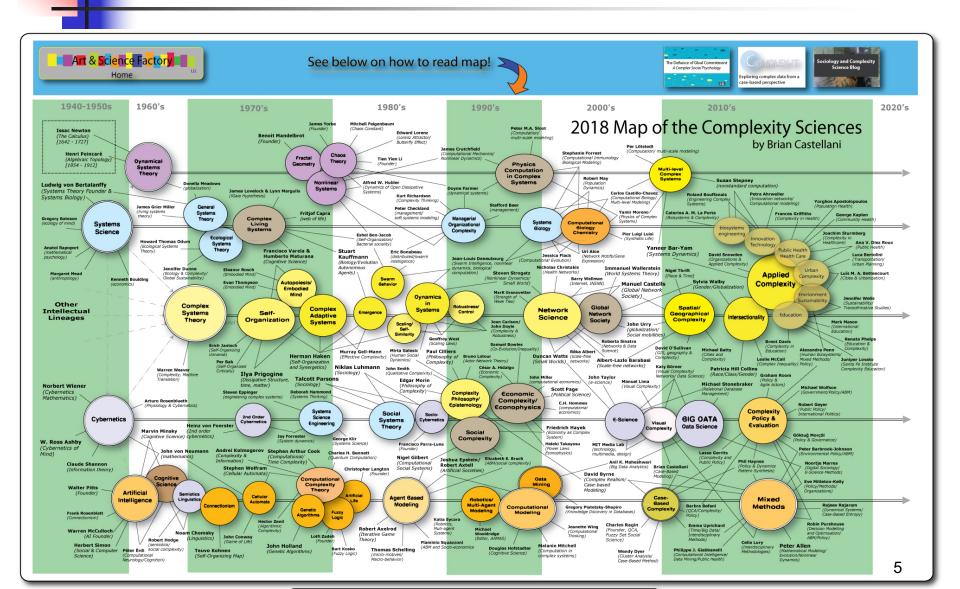


- Introduction
- Data processing
- Machine learning models
- Experimental procedure
- Performance evaluation
- Conclusion and References



- Introduction:
  - Complex networks
  - Machine learning
- Data processing
- Machine learning models
- Experimental procedure
- Performance evaluation
- Conclusion and References

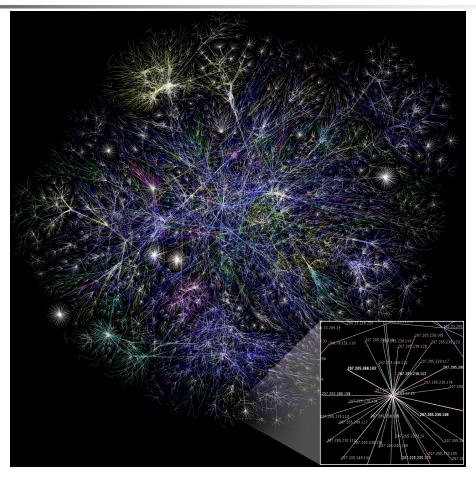
# **Complexity Sciences**



# Complex Networks



## The Internet



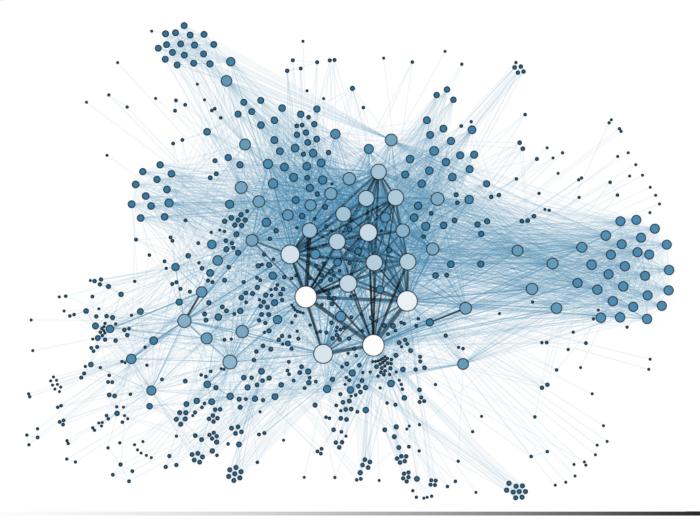
https://en.wikipedia.org/wiki/Complex\_network#/media/File:Internet\_map\_1024.jpg By The Opte Project - Originally from the English Wikipedia https://commons.wikimedia.org/w/index.php?curid=1538544



### The Internet

- Partial map of the Internet based on the January 15, 2005 data found on opte.org.
- Each line is drawn between two nodes, representing two IP addresses.
- The length of the lines are indicative of the delay between those two nodes.
- This graph represents less than 30% of the Class C networks reachable by the data collection program in early 2005.
- Lines are color-coded according to their corresponding RFC 1918 allocation as follows: Dark blue: net, ca, us Green: com, org Red: mil, gov, edu Yellow: jp, cn, tw, au, de Magenta: uk, it, pl, fr Gold: br, kr, nl White: unknown

# Scale-Free Networks

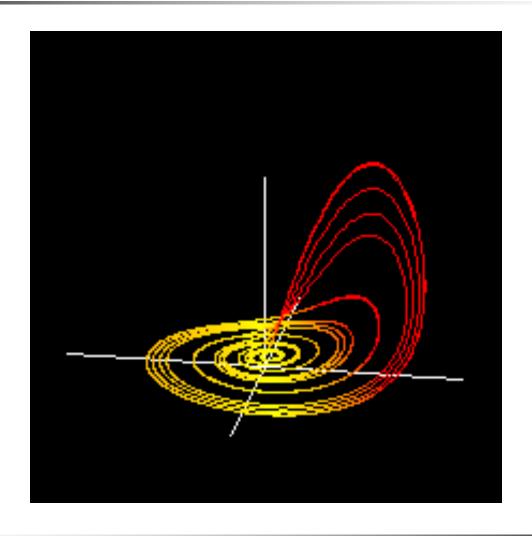




### Scale-Free Network

- An example of complex scale-free network.
- Graph represents the metadata of thousands of archive documents, documenting the social network of hundreds of League of Nations personals.
- M. Grandjean, "La connaissance est un réseau," *Les Cahiers du Numérique,* vol. 10, no. 3, pp. 37-54.

# **Dynamical Systems**





## **Dynamical Systems**

 The Rössler attractor is a chaotic attractor solution to the system:

$$x' = -y-z$$
  
 $y' = x+ay$   
 $z' = b+z(x-c)$ 

- Proposed by Rössler in 1976
- Often called Rössler system
- Here,  $(x, y, z) \in \mathbb{R}^3$  are dynamical variables defining the phase space and  $(a, b, c) \in \mathbb{R}^3$  are parameters

# Roadmap

- Introduction:
  - Complex networks
  - Machine learning
- Data processing
- Machine learning models
- Experimental procedure
- Performance evaluation
- Conclusion and References



## **Machine Learning**

- Using machine learning techniques to detect network intrusions is an important topic in cybersecurity.
- Machine learning algorithms have been used to successfully classify network anomalies and intrusions.
- Supervised machine learning algorithms:
  - Support vector machine: SVM
  - Long short-term memory: LSTM
  - Gated recurrent unit: GRU
  - Broad learning system: BLS

# Roadmap

- Introduction
- Data processing:
  - BGP datasets
  - NSL-KDD dataset
- Machine learning models
- Experimental procedure
- Performance evaluation
- Conclusion and References



### **BGP and NSL-KDD Datasets**

- Used to evaluate anomaly detection and intrusion techniques
- BGP:
  - Routing records from Réseaux IP Européens (RIPE)
  - BCNET regular traffic
- NSL-KDD:
  - an improvement of the KDD'99 dataset
  - used in various intrusion detection systems (IDSs)



### **BGP Datasets**

- Anomalous data: days of the attack
- Regular data: two days prior and two days after the attack
- 37 numerical features from BGP update messages
- Best performance: 60% for training and 40% for testing

|            | Regular<br>(min) | Anomaly (min) | Regular<br>(training) | Anomaly (training) | Regular<br>(test) | Anomaly (test) |
|------------|------------------|---------------|-----------------------|--------------------|-------------------|----------------|
| Code Red I | 6,599            | 600           | 3,678                 | 362                | 2,921             | 239            |
| Nimda      | 3,678            | 3,521         | 3,677                 | 2,123              | 1                 | 1,399          |
| Slammer    | 6,330            | 869           | 3,209                 | 531                | 3121              | 339            |



## **NSL-KDD Dataset**

- KDDTrain+ and KDDTest+: training and test datasets
- KDDTes<sup>-21:</sup> a subset of the KDDTest+ dataset that does not include records correctly classified by 21 models

|                        | Regular | DoS    | U2R | R2L   | Probe  | Total   |
|------------------------|---------|--------|-----|-------|--------|---------|
| KDDTrain <sup>+</sup>  | 67,343  | 45,927 | 52  | 995   | 11,656 | 125,973 |
| KDDTest+               | 9,711   | 7,458  | 200 | 2,754 | 2,421  | 22,544  |
| KDDTest <sup>-21</sup> | 2,152   | 4,342  | 200 | 2,754 | 2,402  | 11,850  |

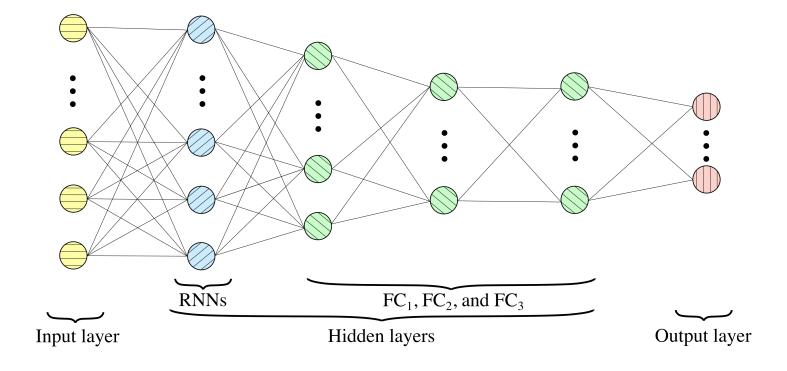


- Introduction
- Data processing
- Machine learning models:
  - Deep learning: multi-layer recurrent neural networks
  - Broad learning system
- Experimental procedure
- Performance evaluation
- Conclusion and References



## Deep Learning Neural Network

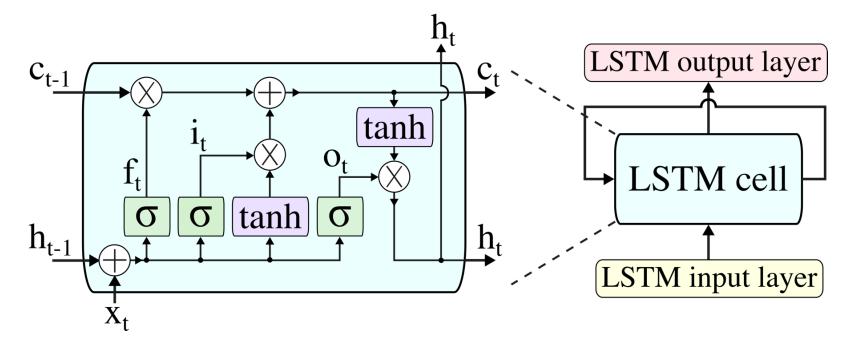
■ 37 (BGP)/109 (NSL-KDD) RNNs, 80 FC<sub>1</sub>, 32 FC<sub>2</sub>, and 16 FC<sub>3</sub> fully connected (FC) hidden nodes:





# Long Short-Term Memory: LSTM

Repeating module for the Long Short-Term Memory (LSTM) neural network:





# Long Short-Term Memory: LSTM

■ The outputs of the forget gate  $f_t$ , the input gate  $i_t$ , and the output gate  $o_t$  at time t are:

$$f_{t} = \sigma(W_{if}x_{t} + b_{if} + U_{hf}h_{t-1} + b_{hf})$$

$$i_{t} = \sigma(W_{ii}x_{t} + b_{ii} + U_{hi}h_{t-1} + b_{hi})$$

$$o_{t} = \sigma(W_{io}x_{t} + b_{io} + U_{ho}h_{t-1} + b_{ho}),$$

#### where:

 $\sigma(\cdot)$ : logistic sigmoid function

 $x_t$ : current input vector

 $h_{t-1}$ : previous output vector

 $W_{if}$ ,  $U_{hf}$ ,  $W_{ii}$ ,  $U_{hi}$ ,  $W_{io}$  and  $U_{ho}$ : weight matrices

 $b_{if}$ ,  $b_{hf}$ ,  $b_{ii}$ ,  $b_{hi}$ ,  $b_{io}$ , and  $b_{ho}$ : bias vectors



# Long Short-Term Memory: LSTM

- Output i<sub>t</sub> of the input gate decides if the information will be stored in the cell state. The sigmoid function is used to update the information.
- Cell state  $c_t$ :

$$c_t = f_t * c_{t-1} + i_t * tanh(W_{ic}x_t + b_{ic} + U_{hc}h_{t-1} + b_{hc}),$$

#### where:

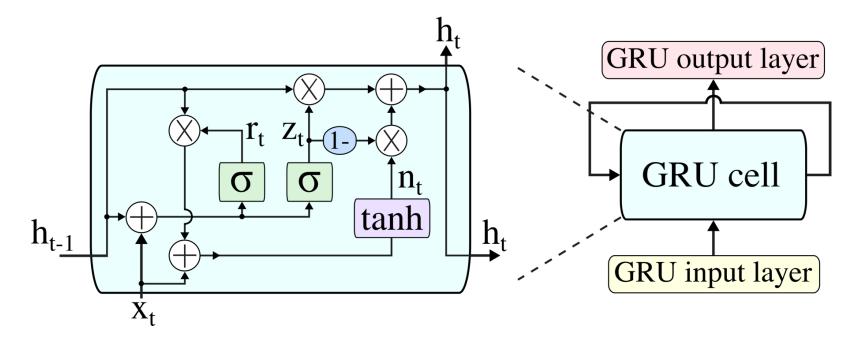
- \* denotes element-wise multiplications
- tanh function: used to create a vector for the next cell state
- Output of the LSTM cell:

$$h_t = o_t * tanh(c_t)$$



## Gated Recurrent Unit: GRU

Repeating module for the Gated Recurrent Unit (GRU) neural network:





# Gated Recurrent Unit: GRU

• The outputs of the reset gate  $r_t$  and the update gate  $z_t$  at time t are:

$$r_{t} = \sigma(W_{ir}x_{t} + b_{ir} + U_{hr}h_{t-1} + b_{hr})$$
  

$$z_{t} = \sigma(W_{iz}x_{t} + b_{iz} + U_{hz}h_{t-1} + b_{hz}),$$

#### where:

- $\sigma$ : sigmoid function
- $x_t$ : input,  $h_{t-1}$  is the previous output of the GRU cell
- $W_{ir}$ ,  $U_{hr}$ ,  $W_{iz}$ , and  $U_{hz}$ : weight matrices
- $b_{ir}$ ,  $b_{hr}$ ,  $b_{iz}$  +, and  $b_{hz}$ : bias vectors



# Gated Recurrent Unit: GRU

Output of the GRU cell:

$$h_t = (1 - z_t) * n_t + z_t * h_{t-1},$$

#### where $n_t$ :

- $n_t = tanh(W_{in}x_t + b_{in} + r_t * (U_{hn}h_{t-1} + b_{hn}))$
- $W_{in}$  and  $U_{hn}$ : weight matrices
- $b_{in}$  and  $b_{hn}$ : bias vectors

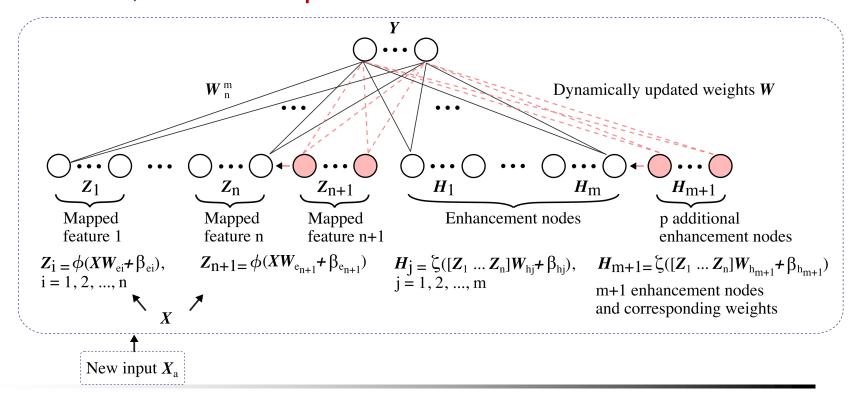


- Introduction
- Data processing
- Machine learning models:
  - Deep learning: multi-layer recurrent neural networks
  - Broad learning system
- Experimental procedure
- Performance evaluation
- Conclusion and References



# Broad Learning System: BLS

 Module of the Broad Learning System (BLS) algorithm with increments of mapped features, enhancement nodes, and new input data:





## **Original BLS**

• Matrix  $A_x$  is constructed from groups of mapped features  $Z^n$  and groups of enhancement nodes  $H^m$  as:

$$A_x = [\mathbf{Z}^n \mid \mathbf{H}^m]$$
  
=  $[\phi(\mathbf{X}\mathbf{W}_{ei} + \beta_{ei}) \mid \xi(\mathbf{Z}_x^n \mathbf{W}_{hj} + \beta_{hj})],$   
where:  $i = 1, 2, ..., n \text{ and } j = 1, 2, ..., m$ 

- $\phi$  and  $\xi$ : projection mappings
- $W_{ei}$ ,  $W_{hj}$ : weights
- $\beta_{ei}$ ,  $\beta_{hj}$ : bias parameters

Modified to include additional mapped features  $Z_{n+1}$ , enhancement nodes  $H_{m+1}$ , and/or input nodes  $X_a$ 



## **RBF-BLS Extension**

The RBF function is implemented using Gaussian kernel:

$$\xi(x) = exp\left(-\frac{||x - c||^2}{\gamma^2}\right)$$

Weight vectors of the output HW are deduced from:

$$W = (H^T H)^{-1} H^T Y$$
$$= H^+ Y,$$

#### where:

- $W = [\omega_1, \omega_2, ..., \omega_k]$ : output weights
- $\mathbf{H} = [\xi_1, \xi_2, \dots, \xi_k]$ : hidden nodes
- *H*<sup>+</sup>: pseudoinverse of *H*



## Cascades of Mapped Features

- Cascade of mapped features (CFBLS): the new group of mapped features is created by using the previous group (k-1).
- Groups of mapped features are formulated as:

$$Z_k = \phi(Z_{k-1}W_{ek} + \beta_{ek})$$

$$\triangleq \phi^k(X; \{W_{ei}, \beta_{ei}\}_{i=1}^k), for k = 1, ..., n$$



## Cascades of Enhancement Nodes

- The first enhancement node in cascade of enhancement nodes (CEBLS) is generated form mapped features.
- The subsequent enhancement nodes are generated from previous enhancement nodes creating a cascade:

$$H_u \triangleq \xi^u(\mathbf{Z}^n ; \{\mathbf{W}_{hi}, \beta_{hi}\}_{i=1}^u), for u = 1, ..., m,$$
 where:

•  $W_{hi}$  and  $\beta_{hi}$ : randomly generated



- Introduction
- Data processing:
- Machine learning models:
- Experimental procedure
- Performance evaluation
- Conclusion and References



## **Experimental Procedure**

- Step 1: Normalize training and test datasets.
- Step 2: Train the RNN models and BLS using 10-fold validation. Tune parameters of the RNN and BLS models.
- Step 3: Test the RNN and BLS models.
- Step 4: Evaluate models based on:
  - Accuracy
  - F-Score

RNN: recurrent neural network

BNN: board learning system



# Number of BLS Training Parameters

| Parameters                 | Code Red I | Nimda | Slammer | NSL-KDD |
|----------------------------|------------|-------|---------|---------|
| Mapped features            | 100        | 500   | 100     | 100     |
| Groups of mapped features  | 1          | 1     | 25      | 5       |
| Enhancement nodes          | 500        | 700   | 300     | 100     |
| Incremental learning steps | 10         | 9     | 2       | 3       |
| Data points/step           | 100        | 200   | 100     | 3,000   |
| Enhancement nodes/step     | 10         | 10    | 50      | 60      |

# Roadmap

- Introduction
- Data processing:
  - BGP datasets
  - NSL-KDD dataset
- Machine learning models:
  - Deep learning: multi-layer recurrent neural networks
  - Broad learning system
- Experimental procedure
- Performance evaluation
- Conclusion and References



## Training Time: RNN Models

|          | Datasets      | LSTM <sub>2</sub> | LSTM <sub>3</sub> | LSTM <sub>4</sub> | GRU <sub>2</sub> | GRU₃     | GRU₄      |
|----------|---------------|-------------------|-------------------|-------------------|------------------|----------|-----------|
|          |               |                   |                   | Python            | (CPU)            |          |           |
| Time (s) | BGP (Slammer) | 224.52            | 259.91            | 819.78            | 54.12            | 60.76    | 759.82    |
| (5)      | NSL-KDD       | 4,481.73          | 4,614.66          | 11,478.62         | 1,108.31         | 1,161.80 | 11,581.30 |
|          |               |                   |                   | Python            | (GPU)            |          |           |
| T: ( )   | BGP (Slammer) | 30.74             | 34.94             | 38.82             | 31.03            | 35.46    | 40.22     |
| Time (s) | NSL-KDD       | 344.93            | 355.86            | 394.55            | 317.53           | 345.04   | 369.86    |



## Training Time: BLS Models

|          | Datasets      | BLS   | RBF-BLS | CFBLS      | CEBLS  | CFEBLS |
|----------|---------------|-------|---------|------------|--------|--------|
|          |               |       | P       | ython (CPl | J)     |        |
| Time (s) | BGP (Slammer) | 21.53 | 18.68   | 18.89      | 32.36  | 32.13  |
|          | NSL-KDD       | 99.47 | 98.27   | 98.13      | 108.23 | 108.14 |
|          |               |       | MA      | ATLAB (CP  | U)     |        |
| Time (s) | BGP (Slammer) | 1.36  | 1.20    | 1.03       | 5.49   | 5.98   |
|          | NSL-KDD       | 6.91  | 6.24    | 6.55       | 8.88   | 8.95   |

## LSTM Models: BGP Datasets (Python)

| _                 |                     | Accuracy (%) |                   |                    | F-Score (%) |
|-------------------|---------------------|--------------|-------------------|--------------------|-------------|
| Model             | Training<br>Dataset | Test         | RIPE<br>(regular) | BCNET<br>(regular) | Test        |
|                   | Code Red I          | 94.08        | 83.75             | 60.49              | 68.89       |
| LSTM <sub>2</sub> | Nimda               | 78.36        | 47.15             | 48.61              | 87.87       |
|                   | Slammer             | 92.98        | 92.99             | 85.97              | 72.42       |
|                   | Code Red I          | 88.54        | 79.38             | 58.82              | 55.96       |
| LSTM <sub>3</sub> | Nimda               | 85.57        | 39.10             | 40.28              | 92.22       |
|                   | Slammer             | 90.90        | 92.01             | 84.38              | 67.29       |
|                   | Code Red I          | 86.96        | 75.00             | 57.01              | 51.53       |
| LSTM <sub>4</sub> | Nimda               | 92.00        | 26.94             | 35.21              | 95.83       |
|                   | Slammer             | 92.49        | 92.22             | 86.18              | 70.72       |

## GRU Models: BGP Datasets (Python)

|                  |                     | Accuracy (%) |                   |                    | F-Score (%) |
|------------------|---------------------|--------------|-------------------|--------------------|-------------|
| Model            | Training<br>Dataset | Test         | RIPE<br>(regular) | BCNET<br>(regular) | Test        |
|                  | Code Red I          | 87.47        | 80.07             | 60.21              | 52.97       |
| GRU <sub>2</sub> | Nimda               | 70.71        | 48.96             | 58.26              | 82.83       |
|                  | Slammer             | 91.88        | 93.33             | 90.90              | 69.42       |
|                  | Code Red I          | 88.07        | 79.44             | 60.56              | 53.51       |
| GRU <sub>3</sub> | Nimda               | 80.21        | 38.40             | 44.24              | 89.02       |
|                  | Slammer             | 91.76        | 95.21             | 90.83              | 68.72       |
|                  | Code Red I          | 91.84        | 77.50             | 60.07              | 63.87       |
| $GRU_4$          | Nimda               | 87.36        | 35.00             | 39.38              | 93.25       |
|                  | Slammer             | 92.14        | 92.15             | 90.35              | 70.11       |



## **BLS** Models: BGP Datasets (Python)

|         |                     | Accuracy (%) |                   |                 | F-Score (%) |
|---------|---------------------|--------------|-------------------|-----------------|-------------|
| Model   | Training<br>Dataset | Test         | RIPE<br>(regular) | BCNET (regular) | Test        |
|         | Code Red I          | 94.97        | 69.79             | 65.21           | 66.38       |
| BLS     | Nimda               | 76.57        | 70.69             | 54.93           | 86.73       |
|         | Slammer             | 87.65        | 75.62             | 68.40           | 57.68       |
|         | Code Red I          | 95.92        | 90.69             | 73.96           | 70.07       |
| RBF-BLS | Nimda               | 57.92        | 70.63             | 57.22           | 73.36       |
|         | Slammer             | 91.21        | 90.55             | 70.76           | 64.57       |

## **BLS** Models: BGP Datasets (Python)

|        |                     | Accuracy (%) |                   |                    | F-Score (%) |
|--------|---------------------|--------------|-------------------|--------------------|-------------|
| Model  | Training<br>Dataset | Test         | RIPE<br>(regular) | BCNET<br>(regular) | Test        |
|        | Code Red I          | 95.16        | 69.38             | 61.74              | 71.08       |
| CFBLS  | Nimda               | 55.71        | 68.06             | 58.26              | 71.56       |
|        | Slammer             | 89.28        | 71.25             | 61.81              | 60.99       |
|        | Code Red I          | 94.94        | 70.69             | 60.35              | 65.22       |
| CEBLS  | Nimda               | 66.43        | 74.10             | 54.51              | 79.83       |
|        | Slammer             | 91.01        | 87.71             | 82.43              | 66.38       |
| CFEBLS | Code Red I          | 95.66        | 70.07             | 59.51              | 71.75       |
|        | Nimda               | 64.29        | 70.83             | 57.43              | 78.24       |
|        | Slammer             | 86.36        | 71.11             | 57.71              | 55.30       |



# RNN and BLS Models: NSL-KDD Dataset (Python)

|                   | Accur    | Accuracy (%)           |          | ore (%)                |
|-------------------|----------|------------------------|----------|------------------------|
| Model             | KDDTest+ | KDDTest <sup>-21</sup> | KDDTest+ | KDDTest <sup>-21</sup> |
| LSTM <sub>4</sub> | 82.78    | 66.74                  | 83.34    | 76.21                  |
| GRU <sub>3</sub>  | 82.87    | 65.42                  | 83.05    | 74.06                  |
| CFBLS             | 82.20    | 67.47                  | 82.23    | 76.29                  |



# Incremental BLS Model: BGP and NSL-KDD Datasets (MATLAB)

| Test                   | Accuracy (%) | F-Score (%) | Time (s) |
|------------------------|--------------|-------------|----------|
| Code Red I             | 94.37        | 65.10       | 0.926    |
| Nimda                  | 91.64        | 95.64       | 2.757    |
| Slammer                | 89.31        | 63.07       | 2.805    |
| KDDTest <sup>+</sup>   | 81.34        | 81.99       | 32.99    |
| KDDTest <sup>-21</sup> | 78.70        | 88.06       | 29.71    |



- Introduction
- Data processing:
- Machine learning models:
- Experimental procedure
- Performance evaluation
- Conclusion and References



- We evaluated performance of:
  - LSTM and GRU deep recurrent neural networks with a variable number of hidden layers
  - BLS models that employ radial basis function (RBF), cascades of mapped features and enhancement nodes, and incremental learning
- BLS and cascade combinations of mapped features and enhancement nodes achieved comparable performance and shorter training time because of their wide and deep structure.



### Conclusion

- BLS models:
  - consist of a small number of hidden layers and adjust weights using pseudoinverse instead of back-propagation
  - dynamically update weights in case of incremental learning
  - better optimized weights due to additional data points for large datasets (NSL-KDD)
- While increasing the number of mapped features and enhancement nodes as well as mapped groups led to better performance, it required additional memory and training time.



- Introduction
- Data processing:
- Machine learning algorithms:
- Experimental procedure
- Performance evaluation
- Conclusion and References



#### References: Datasets

- BCNET: http://www.bc.net/
- RIPE RIS raw data: https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
- NSL-KDD dataset: https://www.unb.ca/cic/datasets/nsl.html
- M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A detailed analysis of the KDD CUP 99 data set," in *Proc. IEEE Symp. Comput. Intell. in Security and Defense Appl. (CISDA)*, Ottawa, ON, Canada, July 2009, pp. 1–6.



### References: Intrusion Detection

- Pandas: https://pandas.pydata.org/
- PyTorch: https://pytorch.org/docs/stable/nn.html
- Broadlearning: http://www.broadlearning.ai/
- C. M. Bishop, Pattern Recognition and Machine Learning. Secaucus, NJ, USA: Springer-Verlag, 2006.
- V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: a survey,"
   ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, July 2009.
- T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, "Deep learning approach for network intrusion detection in software defined networking," in *Proc. Wireless Netw. Mobile Commun. (WINCOM)*, Fez, Morocco, Oct. 2016, pp. 258–263.
- N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, "A deep learning approach to network intrusion detection," *IEEE Trans. Emerg. Topics Comput. Intell.*, vol. 2, no. 1, pp. 41–50, Feb. 2018.



## References: Deep Learning

- R. J. Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning," *Mach. Learn.*, vol. 8, no. 3, pp. 229–256, May 1992.
- S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735–1780, Oct. 1997.
- G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," *Computing Research Repository (CoRR)*, abs/1207.0580, pp. 1–18, Jul. 2012.
- K. Cho, B. van Merriënboer, C. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder–decoder for statistical machine translations," in *Proc. 2014 Conf. Empirical Methods Natural Lang. Process.*, Doha, Qatar, Oct. 2014, pp. 1724–1734.
- D. P. Kingma and J. Ba, "Adam: a method for stochastic optimization," in *Proc. 3rd Int. Conf. Learn. Representations*, San Diego, CA, USA, May 2015, pp. 1–15.
- K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber, "LSTM: a search space odyssey," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 28, no. 10, pp. 2222–2232, Oct. 2017.
- C. Yin, Y. Zhu, J. Fei, and X. He, "A deep learning approach for intrusion detection using recurrent neural networks," *IEEE Access*, vol. 5, pp. 21954–21961, Nov. 2017.



## References: Broad Learning System

- Z. Liu and C. L. P. Chen, "Broad learning system: structural extensions on single-layer and multi-layer neural networks," in *Proc. 2017 Int. Conf. Secur., Pattern Anal., Cybern.*, Shenzhen, China, Dec. 2017, pp. 136–141.
- C. L. P. Chen and Z. Liu, "Broad learning system: an effective and efficient incremental learning system without the need for deep architecture," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. 1, pp. 10–24, Jan. 2018.
- C. L. P. Chen, Z. Liu, and S. Feng, "Universal approximation capability of broad learning system and its structural variations," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 30, no. 4, pp. 1191–1204, Apr. 2019.

## IWCSN: 2004 - 2019

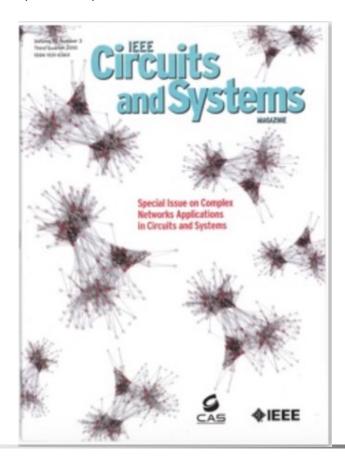
 International Workshop on Complex Systems and Networks (IWCSN): http://iwcsn.eie.polyu.edu.hk/





### **Publications**

■ *IEEE CAS Magazine* Special Issue on Applications of Complex Networks, vol. 10, no. 3, 2010.





## Publications: http://www.sfu.ca/~ljilja

#### Book chapters:

- Q. Ding, Z. Li, S. Haeri, and Lj. Trajković, "Application of machine learning techniques to detecting anomalies in communication networks: Datasets and Feature Selection Algorithms" in Cyber Threat Intelligence, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, pp. 47-70, 2018.
- Z. Li, Q. Ding, S. Haeri, and Lj. Trajković, "Application of machine learning techniques to detecting anomalies in communication networks: Classification Algorithms" in *Cyber Threat Intelligence*, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, pp. 71-92, 2018.

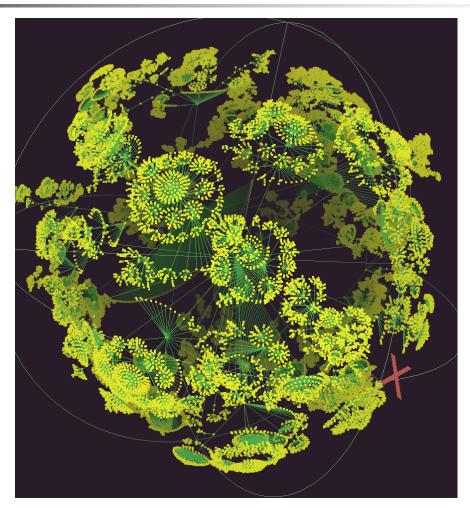


## Publications: http://www.sfu.ca/~ljilja

#### Recent conference publications:

- Z. Li, A. L. Gonzalez Rios, G. Xu, and Lj. Trajkovic, "Machine learning techniques for classifying network anomalies and intrusions," in *Proc. IEEE Int. Symp. Circuits and Systems*, Sapporo, Japan, May 2019.
- A. L. Gonzalez Rios, Z. Li, G. Xu, A. Dias Alonso, and Lj. Trajković, "Detecting Network Anomalies and Intrusions in Communication Networks," in *Proc. 23rd IEEE International Conference on Intelligent Engineering Systems 2019*, Gödöllő, Hungary, Apr. 2019, pp. 29-34.
- Z. Li, P. Batta, and Lj. Trajkovic´, "Comparison of machine learning algorithms for detection of network intrusions," in *Proc. IEEE Int. Conf. Syst., Man, Cybern.*, Miyazaki, Japan, Oct. 2018, pp. 4248–4253.
- P. Batta, M. Singh, Z. Li, Q. Ding, and Lj. Trajković, "Evaluation of support vector machine kernels for detecting network anomalies," in *Proc. IEEE Int. Symp. Circuits and Systems*, Florence, Italy, May 2018, pp. 1-4.
- Q. Ding, Z. Li, P. Batta, and Lj. Trajković, "Detecting BGP anomalies using machine learning techniques," in *Proc. IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016)*, Budapest, Hungary, Oct. 2016, pp. 3352-3355.

## Ihr: 535,102 nodes and 601,678 links



http://www.caida.org/home/