Application of Machine Learning Techniques for Detecting Anomalies in Communication Networks

Qingye Ding qingyed@sfu.ca

Communication Networks Laboratory
http://www.ensc.sfu.ca/~ljilja/
School of Engineering Science
Simon Fraser University

Roadmap

- Introduction
- Border Gateway Protocol datasets
- Extraction of features from BGP update messages
- Performance metrics
- Long Short-Term Memory
- Comparison of classification algorithms
- Discussion
- Future work and conclusion
- References

Roadmap

- Introduction
- Border Gateway Protocol datasets
- Extraction of features from BGP update messages
- Performance metrics
- Long Short-Term Memory
- Comparison of classification algorithms
- Discussion
- Future work and conclusion
- References

Motivation

- The Internet is a critical asset of information and it contains multiple Autonomous Systems (ASes)
- An AS is a collection of Internet Protocol (IP) routing prefixes administrated by a single domain
- Border Gateway Protocol (BGP) plays an essential role in routing data between ASes
- Cyber attacks and threats significantly impact the Internet performance

Border Gateway Protocol

- Forwards IP traffic between Autonomous Systems (ASes)
- BGP 4: a standard for exchanging information among the Internet Service Providers (ISPs)
- Relies on the Transport Control Protocol (TCP) to establish a connection between routers
- Exchange the update message to advertise routing information:
 - an available route
 - withdraw multiple unavailable routes

Sample of BGP update message

Field	Value
TIME	2003 1 24 00:39:53
TYPE	BGP4MP/BGP4MP_MESSAGE AFI_IP
FROM	192.65.184.3
ТО	193.0.4.28
BGP PACKET TYPE	UPDATE
ORIGIN	IGP
AS-PATH	513 3320 7176 15570 7246 7246
NEXT-HOP	192.65.184.3
ANNOUNCED NLRI PREFIX	198.155.189.0/24
ANNOUNCED NLRI PREFIX	198.1550/24

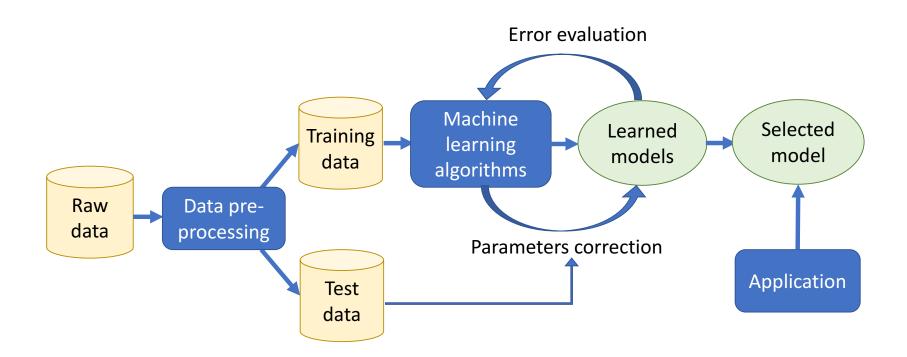
IGP: Interior Gateway Protocol

NLRI: Network Layer Reachability Information

Machine learning techniques

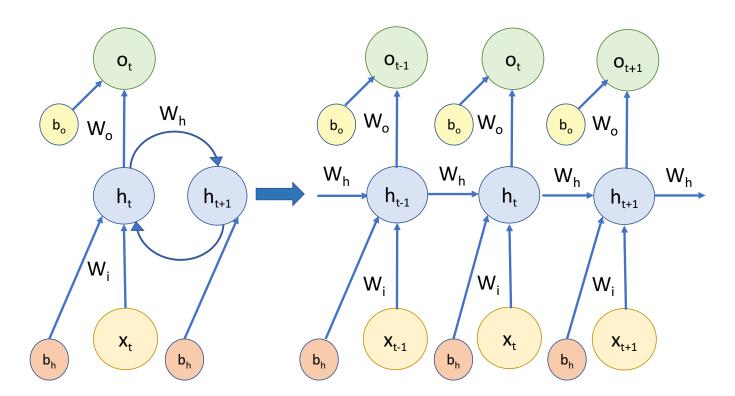
- Unsupervised learning:
 - aims to learn a function that represents the underlying structure from "unlabeled" data
 - motivation: labeled data is difficult to obtain
 - data clustering
- Supervised learning:
 - trains data based on the observation to predict labels for new events
 - Long Short-Term Memory, Support Vector Machine, Naïve Bayes, Decision Tree, and Extreme Learning Machine

Typical procedure for machine learning



Recurrent Neural Network: RNN

 Used for sequence recognition, pattern classification, and temporal prediction tasks



Research contributions

- View detection of BGP anomalies as a classification problem
- Apply Long Short-Term Memory algorithm to develop classification models
- Extract BGP features based on the attributes of BGP update messages
- Create balanced datasets by randomly reducing a subset of regular data points
- Improve classification results emanating from previous studies
- Show feasibility of LSTM for detecting BGP anomalies

Roadmap

- Introduction
- Border Gateway Protocol datasets
- Extraction of features from BGP update messages
- Performance metrics
- Long Short-Term Memory
- Comparison of classification algorithms
- Discussion
- Future work and conclusion
- References

BGP anomaly: Slammer

- Attacked Microsoft SQL servers on January 25, 2003
- Generated random IP addresses and replicated itself
- The number of infected machines doubled approximately every 9 seconds
- The update messages consumed most of the routers' bandwidth causing routers to:
 - slow down
 - crash

BGP anomaly: Nimda

- Released on September 18, 2001
- Exploited vulnerabilities in the Microsoft Internet Information Services web servers for the Internet Explorer 5
- Three methods of propagation:
 - email messages
 - web browsers
 - file systems

BGP anomaly: Code Red I

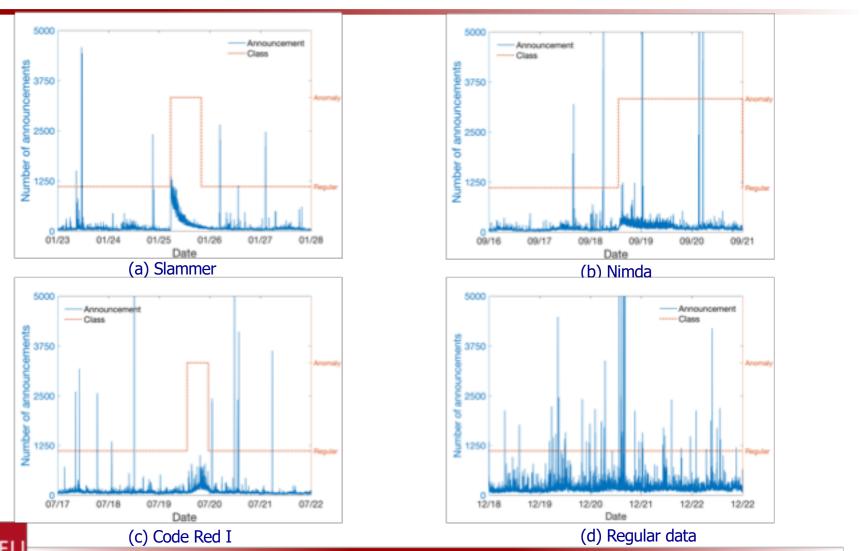
- Attacked web servers on July 19, 2001
- Affected approximately 500,000 IP addresses a day
- Searched for vulnerable servers and replicated itself
- Rate of infection was doubling every 37 minutes

BGP anomalies

Dataset	Class	Date		Duration
		Beginning of the event	End of the event	(min)
Slammer	Anomaly	25.01.2003 at 5:31 GMT	25.01.2003 at 19:59 GMT	869
Nimda	Anomaly	18.09.2001 at 13:19 GMT	20.09.2001 at 23:59 GMT	3,521
Code Red I	Anomaly	19.07.2001 at 13:20 GMT	19.07.2001 at 23:19 GMT	600

GMT: Greenwich Mean Time

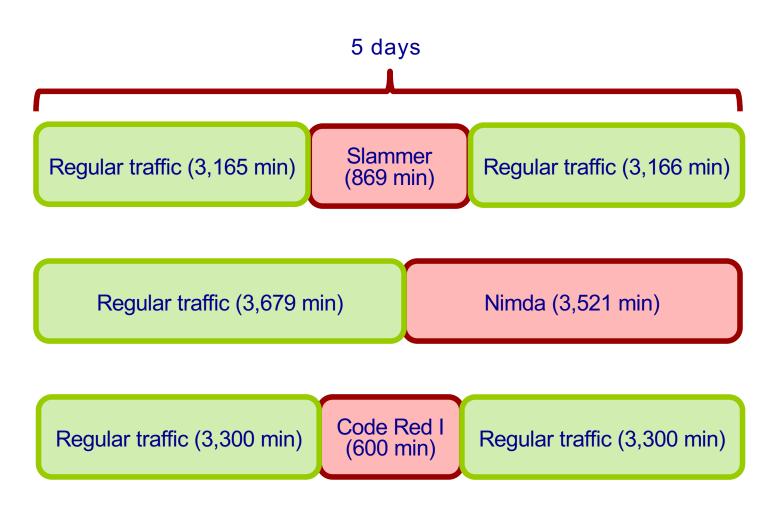
Number of announcements



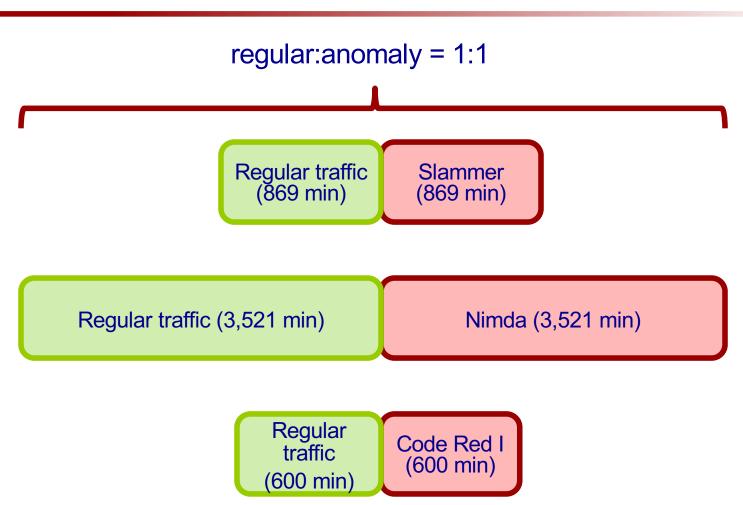
BGP datasets

- Réseaux IP Européens (RIPE) Network Coordination Centre:
 - Regional Internet Registry for Europe, Middle East, and parts of Central Asia
 - collects BGP update messages by the remote route collectors (rrc)
 - multi-threaded routing toolkit (MRT) binary format
 - AS 513 (rrc04, CIXP, Geneva, Switzerland)
- **BCNET**
 - Regular BCNET dataset
 - BCNET location in Vancouver, British Columbia, Canada

Collected data: unbalanced datasets



Collected data: balanced datasets



Pre-processing of the collected data

	Training dataset	Test dataset
1	Slammer and Nimda	Code Red I
2	Slammer and Code Red I	Nimda
3	Nimda and Code Red I	Slammer

Datasets are concatenated to increase the size of training datasets

Roadmap

- Introduction
- Border Gateway Protocol datasets
- Extraction of features from BGP update messages
- Performance metrics
- Long Short-Term Memory
- Comparison of classification algorithms
- Discussion
- Future work and conclusion
- References

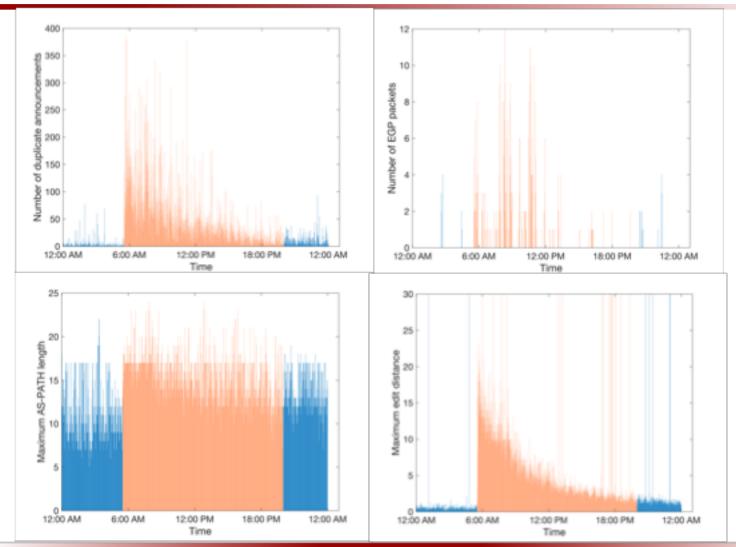
Feature extraction method

- Converted BGP update messages from MRT into American Standard Code for Information Interchange (ASCII) format
- Used LibBGPdump library on a Linux platform
- C# tool was used to extract features:
 - volume
 - AS-path

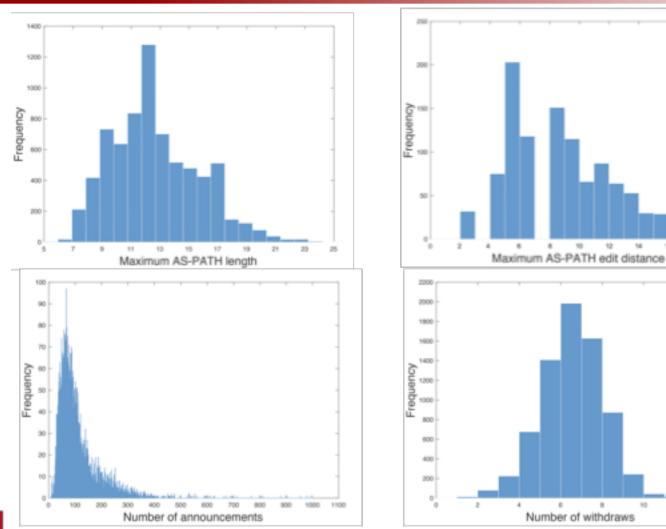
Extracted features

Feature	Name	Category
1	Number of announcements	volume
2	Number of withdrawals	volume
3	Number of announced NLRI prefixes	volume
4	Number of withdrawn NLRI prefixes	volume
5	Average AS-path length	AS-path
6	Maximum AS-path length	AS-path
7	Average unique AS-path length	AS-path
8	Number of duplicate announcements	volume
9	Number of duplicate withdrawals	volume
10	Number of implicit withdrawals	volume
11	Average edit distance	AS-path
12	Maximum edit distance	AS-path
13	Inter-arrival time	volume
14-24	Maximum edit distance = n ,	AS-path
	where $n = (7,, 17)$	
25-33	Maximum AS -path length = n ,	AS-path
	where $n = (7,, 15)$	-
34	Number of Interior Gateway Protocol (IGP) packets	volume
35	Number of Exterior Gateway Protocol (EGP) packets	volume
36	Number of incomplete packets	volume
37	Packet size (B)	volume

Volume and AS-path features: Slammer worm



Distribution of features: Slammer worm



Roadmap

- Introduction
- Border Gateway Protocol datasets
- Extraction of features from BGP update messages
- Performance metrics
- Long Short-Term Memory
- Comparison of classification algorithms
- Discussion
- Future work and conclusion
- References

Performance metrics

Confusion matrix:

Predicted class		
Actual class	Anomaly (positive)	Regular (negative)
Anomaly (positive)	TP	FN
Regular (negative)	FP	TN

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$
F-Score =
$$2 \times \frac{precision \times sensitivity}{precision + sensitivity}$$

$$precision = \frac{TP}{TP + FP}$$

sensitivity (recall) =
$$\frac{TP}{TP + FN}$$

Roadmap

- Introduction
- Border Gateway Protocol datasets
- Extraction of features from BGP update messages
- Performance metrics
- Long Short-Term Memory
- Comparison of classification algorithms
- Discussion
- Future work and conclusion
- References

Long Short-term Memory: LSTM

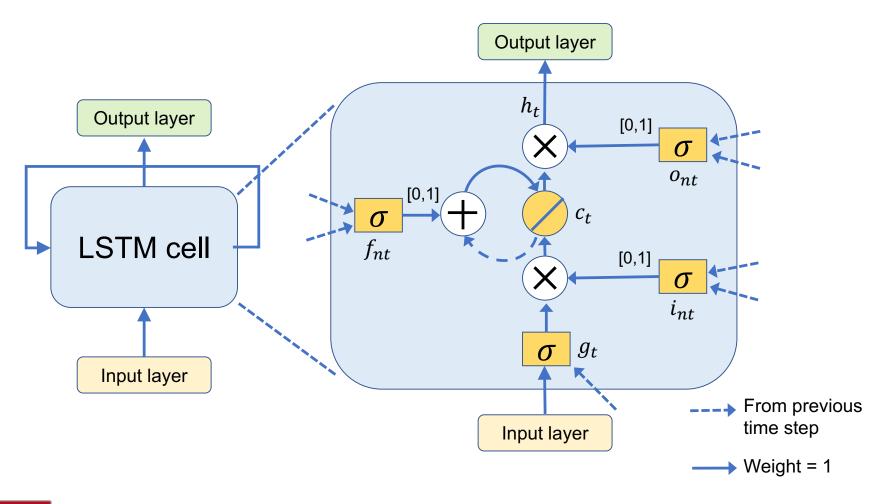
- A special form of the recurrent neural networks (RNNs):
 - LSTM cell (memory block)
- Connects time intervals (short-term memories) to form a continuous memory
- Overcomes long-term dependency
- Prevents vanishing gradient problems

LSTM cell: components

- Input node g_{nt} :
 - contains input information
- Input gate i_{nt}:
 - controls the information to be updated in the LSTM cell
- Internal state c_t:
 - stores the cell's memory
- Forget gate f_{nt} :
 - determines whether to remember or discard the memories
- Output gate o_{nt}:
 - filters and clears irrelevant memories

n: The n th LSTM cell

LSTM repeating module



LSTM components

Input node:
$$g_{nt} = tanh(U_{gn}h_{t-1} + W_gx_t + b_{gn})$$

Input gate:
$$i_{nt} = \sigma(U_{in}h_{t-1} + W_ix_t + b_{in})$$

Forget gate:
$$f_{nt} = \sigma(U_{fn}h_{t-1} + W_fx_t + b_{fn})$$

Output gate:
$$o_{nt} = \sigma(U_{on}h_{t-1} + W_ox_t + b_{on})$$

Internal state:
$$c_t = f_{nt} * c_{t-1} + i_{nt} * tanh(U_c h_{t-1} + W_c x_t + b_c)$$

Output node:
$$h_t = o_{nt} * ReLU(c_t)$$

LSTM components

- tanh: tangent activation function
- U_* and W_* : weight parameters
- h_{t-1} : hidden layer at the previous time step
- x_t: input at the current time step
- b_{*n} : bias of the *n*th LSTM cell
- σ: sigmoid activation function

Internal state: actions

Input gate	Forget gate	Actions
0	1	Keep the memory from the previous time step
1	1	Add the current information to the memory
0	0	Discard both current and past information
1	0	Overwrite the memory by current information

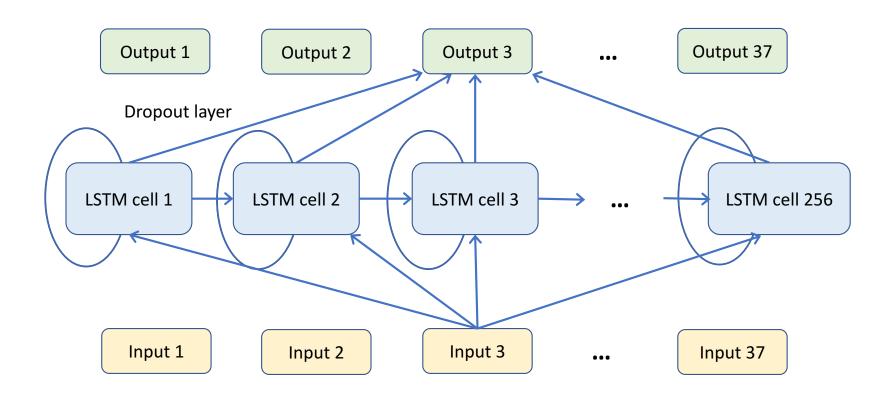
LSTM classification procedure

- Keras:
 - open source neural networks Application Program Interface (API) written in Python
 - enables fast experimentation with deep neural networks
 - runs on top of TensorFlow
- Import sequential model from Keras
- Normalize data points and scale their values within the range [0, 1]
- Replace anomaly labels by 0
- Length of time sequence: 20
 - Keras: Deep Learning library for Theano and TensorFlow.
 [Online]. Available: https://keras.io/[Mar. 2018].
 - TensorFlow. [Online]. Available: https://www.tensorflow.org [Mar. 2018].

LSTM classification procedure

- Adam optimizer
- Learning rate: 0.001
- Random seed: 77
- Batch size: 32
- Validation dataset: 20% of the original training dataset
- Epochs: 30

LSTM model: implementation



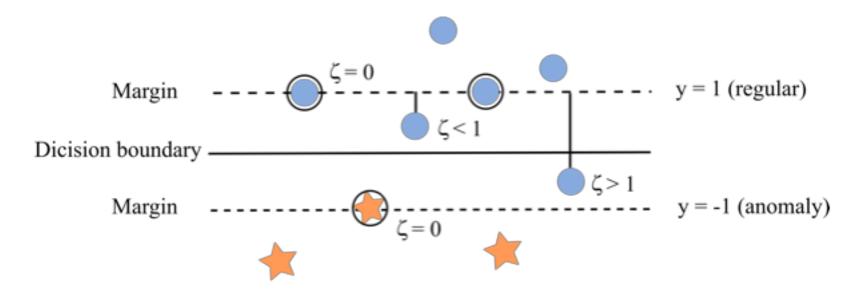
Roadmap

- Introduction
- Border Gateway Protocol datasets
- Extraction of features from BGP update messages
- Performance metrics
- Long Short-Term Memory
- Comparison of classification algorithms
- Discussion
- Future work and conclusion
- References

Support Vector Machine: SVM

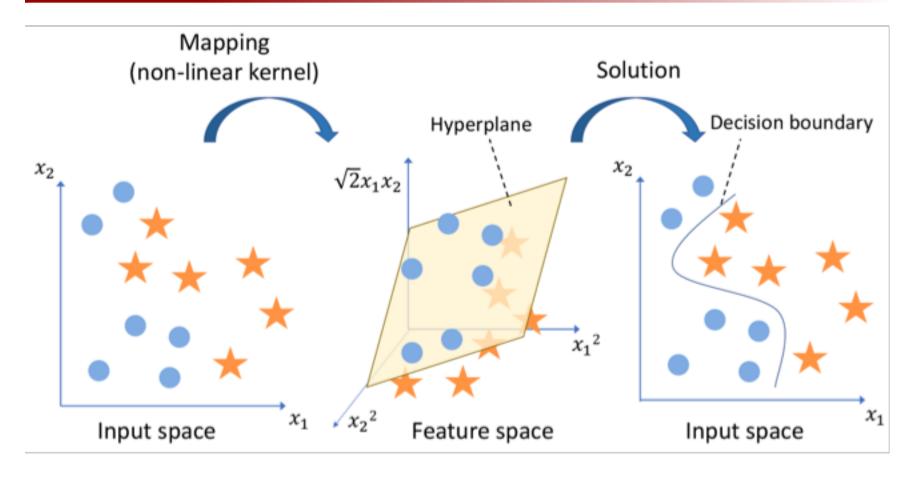
- Supervised learning algorithm used for classification and regression tasks
- Used as a binary classifier for detecting BGP anomalies
- Two types of SVM models:
 - hard-margin SVMs require each data point to be correctly classified
 - soft-margin SVMs allow some data points to be misclassified

Soft-Margin SVM



- Aims to find the maximum margin between both classes
- Support vectors determine the position of the decision boundary

Soft-Margin SVM: kernel function



Kernel function: $k(x_n, x_m) = \Phi(x_n)^T \Phi(x_m)$

Naïve Bayes

- Used as supervised classifiers
- One of the most efficient machine learning classification techniques
- Assumes that features are conditionally independent for a given class
- Low complexity
- Trained effectively with smaller datasets
- Suitable for online real time detection of anomalies

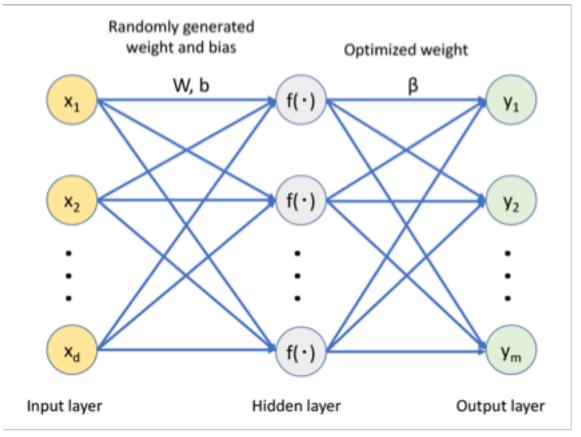
Decision Tree

- Used in data mining to predict the class labels
- A tree is "learned" by splitting the input dataset into subsets based on appropriate features:
 - root: source dataset
 - internal (non-leaf) node: input feature
 - tree branches: prediction outcomes
 - leaf node: class or class probability distribution
- Advantages:
 - does not require feature selection
 - does not require linear datasets
- Software tool: C5.0

Extreme learning machine: ELM

- Feed-forward neural network with single hidden layer
- Avoids the iterative tuning of the weights used in traditional neural networks
- Suitable for applications that require fast response and realtime predictions

ELM: architecture



Output:
$$y_m = \sum_{i=1}^k \beta_i f(w_i x_d + b_i)$$

Training model	Test datasets			
	Accuracy (%)			F-Score (%)
	Code Red I	RIPE regular	BCNET	Code Red I
LSTMu1	95.22	65.49	57.30	83.17
SVMu1	78.65	69.17	57.22	39.51
Naïve Bayes _u 1	82.03	82.99	79.03	29.52
Decision Treeu1	85.36	89.00	77.22	47.82
ELMu1	80.92	75.81	69.03	36.27
	Nimda	RIPE regular	BCNET	Nimda
LSTMu2	53.94	51.53	50.80	11.81
SVMu2	55.50	89.89	82.08	24.29
Naïve Bayesu2	62.56	82.85	86.25	48.78
Decision Treeu2	58.13	94.19	81.18	26.16
ELMu2	54.42	96.15	91.88	13.72
	Slammer	RIPE regular	BCNET	Slammer
LSTMu3	95.87	56.74	58.55	84.62
SVMu3	93.04	73.92	59.24	75.93
Naïve Bayesu3	83.58	84.79	81.18	51.12
Decision Treeu3	95.89	89.42	77.78	84.34
ELMu3	86.96	78.57	73.47	55.31

SVM, Naïve Bayes, Decision Tree, and ELM results have been reported in:
- Z. Li, Q. Ding, S. Haeri, and Lj. Trajković, "Application of machine learning techniques to detecting anomalies in communication networks: classification algorithms," in Cyber Threat Intelligence, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, pp. 71-92, 2018.

Performance comparison: balanced datasets

Training model	Test datasets				
	Accuracy (%)			F-Score (%)	
	Code Red I	RIPE regular	BCNET	Code Red I	
LSTMb1	56.43	60.48	62.78	26.59	
	Nimda	RIPE regular	BCNET	Nimda	
LSTMb2	56.32	44.27	53.58	65.96	
SVMb2	69.26	51.81	44.86	72.32	
	Slammer	RIPE regular	BCNET	Code Red I	
LSTMb3	82.98	55.00	48.20	58.54	
SVMb3	87.19	63.31	51.11	64.76	

SVM results have been reported in:

[•] Z. Li, Q. Ding, S. Haeri, and Lj. Trajković, "Application of machine learning techniques to detecting anomalies in communication networks: classification algorithms," in *Cyber Threat Intelligence*, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, to appear.

Performance comparison: unbalanced vs. balanced LSTM models

Training model	Test datasets				
	Accuracy (%)			F-Score (%)	
	Code Red I	RIPE regular	BCNET	Code Red I	
LSTMu1	95.22	65.49	57.30	83.17	
LSTM _b 1	56.43	60.48	62.78	26.59	
	Nimda	RIPE regular	BCNET	Nimda	
LSTMu2	53.94	51.53	50.80	11.81	
LSTMb2	56.32	44.27	53.58	65.96	
	Slammer	RIPE regular	BCNET	Code Red I	
LSTMu3	95.87	56.74	58.55	84.62	
LSTMb3	82.98	55.00	48.20	58.54	

Roadmap

- Introduction
- Border Gateway Protocol datasets
- Extraction of features from BGP update messages
- Performance metrics
- Long Short-Term Memory
- Comparison of classification algorithms
- Discussion
- Future work and conclusion
- References

Discussion

- Sources of labeled anomalous datasets:
 - artificial datasets may not contain properties of the real-world data
 - RIPE and BCNET data were collected from deployed networks
- Selection of performance metrics:
 - Accuracy: ratio of correct predictions for the entire dataset
 - F-Score: more suitable because it emphasizes importance of the anomaly class
- Selection of appropriate machine learning approach:
 - application dependent
 - based on algorithm advantages and limitations

Roadmap

- Introduction
- Border Gateway Protocol datasets
- Extraction of features from BGP update messages
- Performance metrics
- Long Short-Term Memory
- Comparison of classification algorithms
- Discussion
- Future work and conclusion
- References

Future work

- Optimize the LSTM performance:
 - use dropout technique in the input layer to learn independent representations of the dataset
- Tune hyperparameters to improve LSTM convergence:
 - number of LSTM cells
 - number of epochs
- Consider other LSTM architectures:
 - Gated Recurrent Unit (GRU): simplified LSTM
 - more efficient
 - requires smaller training dataset

Conclusions

- Classified anomalies in BGP traffic traces using a number of classification models
- Extracted features and created unbalanced and balanced datasets
- Compared the performance of LSTM models to SVM,
 Naïve Bayes, Decision Tree, and ELM classifiers
- Performance of classifiers is influenced by the employed datasets
- No single classifier performs the best across all used datasets
- Machine learning is a feasible approach to successfully classify BGP anomalies

Roadmap

- Introduction
- Border Gateway Protocol datasets
- Extraction of features from BGP update messages
- Performance metrics
- Long Short-Term Memory
- Comparison of classification algorithms
- Discussion
- Future work and conclusion
- References

References: BGP

- Y. Rekhter and T. Li, "A Border Gateway Protocol 4 (BGP-4)," RFC 1771, IETF, Mar. 1995. [Online]. Available: http://tools.ietf.org/rfc/rfc1771.txt [Mar. 2018].
- Y. Rekhter and T. Li, "A Border Gateway Protocol 4 (BGP-4)," RFC 4271, IETF, Jan. 2016. [Online]. Available: http://tools.ietf.org/rfc/rfc5271.txt [Mar. 2018].
- RIPE NCC: RIPE Network Coordination Center. [Online]. Available: http://www.ripe.net/data-tools/stats/ris/ris-raw-data [Mar. 2018].
- BCNET. [Online]. Available: http://www.bc.net [Mar. 2018].
- Bgpdump [Online]. Available: https://bitbucket.org/ripencc/bgpdump/wiki/Home [Mar. 2018].

References: Machine learning algorithms

- C. M. Bishop, Pattern Recognition and Machine Learning. Secaucus, NJ, USA: Springer-Verlag, 2006, pp. 325–358.
- G. E. Hinton, S. Osindero, and Y-W. Teh, "A fast learning algorithm for deep belief nets," *Neural Compt.*, vol. 18, no. 7, pp. 1527–1554, July 2006.
- S. Hochreiter and J. Schmidhuber, "Long short-term memory," *Neural Comput.*, vol. 9, no. 8, pp. 1735–1780, Oct. 1997.
- F. A. Gers, J. Schimidhuber, and F. Cummins, "Learning to forget: Continual prediction with LSTM," *Neural Computation*, vol, 12, no. 10, pp. 2451–2471, Oct. 2000.
- L. Rokach and O. Maimon, "Top-down induction of decision trees classifiers—a survey," *IEEE Trans. Syst., Man, Cybern., Appl. and Rev.*, vol. 35, no. 4, pp. 476–487, Nov. 2005.
- G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: theory and applications," *Neurocomputing*, vol. 70, pp. 489–501, Dec. 2006.

Publications:

- Q. Ding, Z. Li, S. Haeri, and Lj. Trajković, "Application of machine learning techniques to detecting anomalies in communication networks: datasets and feature selection algorithms," in *Cyber Threat Intelligence*, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, pp. 47-70, 2018.
- Z. Li, Q. Ding, S. Haeri, and Lj. Trajković, "Application of machine learning techniques to detecting anomalies in communication networks: classification algorithms," in *Cyber Threat Intelligence*, M. Conti, A. Dehghantanha, and T. Dargahi, Eds., Berlin: Springer, pp. 71-92, 2018.
- Q. Ding, Z. Li, P. Batta, and Lj. Trajković, "Detecting BGP anomalies using machine learning techniques," in *Proc. IEEE Trans. Syst., Man, Cybern.*, Budapest, Hungary, Oct. 2016, pp. 3352–3355.
- P. Batta, M. Singh, Z. Li, Q. Ding, and Lj. Trajković, "Evaluation of support vector machine kernels for detecting network anomalies," *IEEE Int. Symp. Circuits and Systems*, Florence, Italy, May 2018, pp. 1–4.
- H. Ben Yedder, Q. Ding, U. Zakia, Z. Li, S. Haeri, and Lj. Trajković, "Comparison of virtualization algorithms and topologies for data center networks," *The 26th Int. Conf. Comput. Commun., Netw., 2nd Workshop on Netw. Security Anal. Automat.*, Vancouver, Canada, Aug. 2017.
- S. Haeri, Q. Ding, Z. Li, and Lj. Trajković, "Global resource capacity algorithm with path splitting for virtual network embedding," in *Proc. IEEE Int. Symp. Circuits and Systems*, Montreal, Canada, May 2016, pp. 666–669.

Acknowledgements

- Chair:
 - Prof. Ivan V. Bajić
- Senior supervisor:
 - Prof. Ljiljana Trajković
- Supervisor:
 - Prof. Parvaneh Saeedi
- SFU examiner:
 - Prof. Qianping Gu

Thank youl

Questions?

