Algorithms and Tools for Anonymization of the Internet Traffic

> Tanjila Farah tfarah@sfu.ca

Communication Networks Laboratory School of Engineering Science Simon Fraser University

Roadmap

- Introduction
- Collection of network traffic
- Anonymization fields, algorithms, and tools
- Anonym tool
- Conclusion, future work, and references

Roadmap

Introduction

- Collection of network traffic
- Anonymization fields, algorithms, and tools
- Anonym tool
- Conclusion, future work, and references

Motivation

- Internet is the easiest and the fastest medium for communication
- Measurement, characterization, and classification of Internet traces help network security
- Real-time network analysis relies on collection of trace logs
- Sharing traces may reveal the network architecture, user identity, and user information

Anonymization

- Modifies network traces to protect user identity
- Removes the ability to identify the connection between two end-users
- Preserves the usefulness of the datasets
- Considers the type of analysis that may be performed
- Considers the requirements of the company sharing the datasets

Contributions

- Developed code in gawk to parse pcap and mrt input files
- Anonym tool:
 - developed the tool
 - developed the IPv6 address anonymization technique
 - implemented data analysis and visualization options
 - validated the tool performance

MRT : Multi-threaded Routing Toolkit PCAP: Packet Capture gawk: GNU AWK

Roadmap

- Introduction
- Collection of network traffic
- Anonymization fields, algorithms, and tools
- Anonym tool
- Conclusion, future work, and references

Collection of network traffic

- Internet is a collection of ASes exchanging information and delivering data
- Process of delivering data creates network traffic
- Network performance and QoS rely on network traffic characteristics
- Analyzing and understanding the network traffic helps ensure network security and QoS
- Network traffic collection helps:
 - traffic engineering
 - discovering the Internet topology
 - analyzing network security

AS : Autonomous System QoS: Quality of Service

Role of traffic engineering

- Network troubleshooting:
 - deals with issues that disrupt or degrade the performance of a network: incorrect network address assignments and network anomalies
- Protocol debugging:
 - analyzes the existing and new protocols and performance of applications to determine required improvements
- Workload characterization:
 - examines the growth of network traffic volume due to new applications, protocols, and increasing number of users

Role of traffic engineering (cont.)

- Network performance evaluation:
 - estimates the network QoS by measuring traffic throughput and response time
- Capacity planning:
 - deals with network planning and managing by measuring bandwidth usage and availability

Discovering the Internet topology

- Discovering the Internet topology is important for:
 - simulating deployed networks
 - managing networks
 - mapping a network to determine location of the nearest servers and ISPs
 - designing and implementing new topology-aware protocols and algorithms

ISP: Internet Service Provider

Network security analysis

- Monitors policies adopted by network administrators to prevent the intruders from misusing the network
- It encompasses:
 - determining abnormal events: anomalies, attacks, and viruses
 - testing network firewalls
 - controlling access and network usage

Network trace collection

BCNET:

- British Columbia's advance communication network
- collected data are private and are only shared with the CNL
- data are collected in the pcap format
- Cooperative Association for Internet Data Analysis (CAIDA):
 - collects, monitors, and visualizes various Internet data
 - collected data are public
 - data are collected in pcap and text formats

CNL: Communication Networks Laboratory

Network trace collection

- Route Views:
 - project at the University of Oregon
 - provides data and tools to the network administrators
 - collected data are public
 - data are collected in the mrt format
- Réseaux IP Européens (RIPE):
 - supports network operators in Europe, Middle East, Asia, and Africa
 - collected data are public
 - data are collected in the mrt format

Roadmap

- Introduction
- Collection of network traffic
- Anonymization fields, algorithms, and tools
- Anonym tool
- Conclusion, future work, and references

Anonymization fields

- Network traffic logs include data packet headers, which contain various fields:
 - time-stamp
 - IP addresses
 - MAC addresses
 - packet length
 - protocol

IP : Internet Protocol MAC: Media Access Control

(2013) Summary of anonymization best practice techniques [Online]. Available: http://www.caida.org/projects/predict/anonymization/.

Anonymization algorithms

Black marker:

 deletes all the information or replaces the information by a fixed value

Time	IP	Length	Time	IP	Length
0.0534	253.36.88.92	2 143	0.0000	1.1.1.1	0

Enumeration:

 sorts the dataset, chooses a value higher then the first value, and adds the value to all data points

Length	Length
143	203
60	120
1514	1574

Anonymization algorithms (cont.)

Precision degradation:

removes the most precise components of a data field

1.017851	1.017000
1.017852	1.017000
1.017915	1.017000

Prefix-preserving:

 if two IP addresses share the first n bits then their anonymized IP addresses will also share the first n bits

IP un-anonymized		IP anonymized		
112.116.186.8	115.23.40.51	235.251.46.4	240.48.153.85	
112.116.186.8	115.23.40.51	235.251.46.4	240.48.153.85	

Anonymization algorithms (cont.)

Random shift:

shifts each data point by adding a random number

Packet length un-anonymized	Packet length anonymized
143	150
60	230
1514	1674

- Truncation:
 - deletes the n least significant bits from an IP or MAC address

MAC address	Anonymized MAC address
Cisco_e7:a1:c0 (00:1b:0d:e7:a1:c0)	Cisco_0:0:0 (00:1b:0d:0:0:0)
JuniperN_3e:ba:bd(78:19:f7:3e:ba:bd)	JuniperN_0:0:0(78:19:f7:0:0:0)

Anonymization algorithms (cont.)

- Reverse truncation:
 - deletes the n most significant bits from an IP or MAC address

MAC address	Anonymized MAC address
Cisco_e7:a1:c0 (00:1b:0d:e7:a1:c0)	Cisco_e7:a1:c0 (0:0:0:e7:a1:c0)
JuniperN_3e:ba:bd (78:19:f7:3e:ba:bd)	JuniperN_3e:ba:bd (0:0:0:3e:ba:bd)

Anonymization tools

- Cryptography based Prefix-preserving Anonymization: Crypto-PAn
- Anontool
- Framework for Log Anonymization and Information Management: FLAIM

Crypto-PAn

Properties of Crypto-PAn:

- one-to-one mapping
- prefix-preserving anonymization
- consistent across traces
- cryptography-based

Input		Output	
Time	IP address	Time	IP address
0.000010	10.1.3.143	0.000010	117.14.240.136
0.000015	10.1.3.156	0.000015	117.14.240.85

Anontool

- Anontool supports per-field anonymization
- Supports log files: pcap, netflow v5, and netflow v9
- Four-step anonymization process:
 - cooking function
 - assembles the flows according to protocols
 - filtering function
 - distinguishes the flows according to protocol and determine policy for anonymization
 - anonymization function
 - anonymizes the fields according to policy
 - un-cooking function
 - re-assembles the flows in the original format

- Supports an XML based policy
- Parsing modules are written based on the XML policy
- Supports log files: pcap, iptable, nfdump, and pacct
- FLAIM architecture consists of a module and a core:
 - the module provides policies to identify type of the log file
 - the core loads libraries responsible for anonymization

XML: Extensible Markup Language

Roadmap

- Introduction
- Collection of network traffic
- Anonymization fields, algorithms, and tools
- Anonym tool
- Conclusion, future work, and references

Anonym tool: functions

- Parses pcap and mrt files
- Anonymization options:
 - black marker, prefix-preserving, reverse-truncation, precision degradation, random shift, and truncation
- Data analysis options:
 - volume (bytes), volume (packets), volume curve fitting, throughput, empirical distribution, packet length distribution, protocol distribution, boxplot, and PDF and CDF curve fitting

Anonym tool: functions

Options for the K-S test:

- determines if a dataset matches a tested distribution
- provide options to test: normal, gamma, Weibull, exponential, Rayleigh, and lognormal distributions
- Additional options:
 - display anonymization results and analysis graphs
 - clear and upload new file
 - save figures and anonymization results

K-S: Kolmogorov-Smirnov

B. Vujicic, C. Hao, and Lj. Trajković, "Prediction of traffic in a public safety network," in Proc. IEEE International Symposium on Circuits and Systems (ISCAS' 06), Kos, Greece, May 2006, pp. 2637-2640.

Data analysis options

 We analyzed the effect of anonymization on the dataset by using the analysis options implemented in the Anonym tool

Un-anonymized dataset	Volume(bytes)	Volume curve fitting	Volume(pack	tets) Throughput
	Emperical Distr	Packet length o	listribution	Protocol distribution
	Boxplot	Packet length PDF and Cl	DF	

Data analysis option: volume

- Number of bits or packets per second
- Identifies the pattern of traffic flow through a network
- Shown are BGP, TCP, and UDP traffic volume:

Data analysis option: volume

Statistics of packet length:

an enumeration algorithm is applied to the dataset

Statistics	Un-anonymized dataset (bits)	Anonymized dataset (bits)
Minimum	60	160
Maximum	1,514	1,614
Mean	246.2475	346.2475
Median	157	257
Standard deviation	259.4509	259.4509

Data analysis option: volume curve fitting

- Run-sequence: displays a graphical representation of a dataset
- Fitting curves to a dataset: Fourier, Gaussian, Weibull, exponential, polynomial, and sum of sine distributions

Data analysis option: protocol distribution

- Provides an overview of various protocols occupancy in the network
- Classifies IP, UDP, TCP, ICMP, DNS, and BGP traffic

Data analysis option: packet length distribution

- Displays the histogram plot of a dataset
- Indicates appropriate distribution model of a dataset
- Significant percentage of packets are 150 bytes for un-anonymized dataset and 250 bytes for anonymized dataset as shown:

M. Fras, J. Mohorko, and Z. Cucej, "A new goodness of fit test for histograms regarding network traffic packet size process," in *Proc. International Conference on Advanced Technologies for Communications (ATC' 2008)*, Hanoi, Vietnam, Oct. 2008, pp.345-348.

Data analysis option: fitting PDFs and CDFs

- PDF and CDF indicate the probability that the structure of a dataset follow certain distribution
- Provides options to fit thirteen distributions to PDF and CDF distribution curves of a dataset

M. Fras, J. Mohorko, and Z. Cucej, "Packet size process modeling of measured self-similar network traffic with defragmentation method," in *Proc. 15th International Conference on Systems, Signals and Image Processing (IWSSIP' 08)*, Bratislava, Slovakia, June 2008, pp. 253-256.

PDF: Probability Density Function CDF: Cumulative Distribution Function

Anonym tool: GUI

Graphical user interface

Algorithms and Tools for Anonymization of the Internet Traffic

Operational diagram

Prefix-preserving option

Functions: code

Call function for separating IPv4 and IPv6 flows	Call prefix-reserving-function to anonymize IPv4
<pre>iporder=[]; f=fopen(name); f4=fopen(name4,'w'); f6=fopen(name6,'w'); while 1 % For each line line = fgetl(f); if (strfind(line, ':'))</pre>	<pre>v4source= 'v4SColumn.txt'; % Output of decoded IPv4 destination column v4destination='v4DColumn.txt'; % This gives the size of the input file inputsize= size(IPv4source,1); % Time in defind zero because at this point we are not decoding the time data. This need to be fixed.</pre>
<pre>iporder=[iporder 1]; fprintf(f6, '%s\n',line); else iporder=[iporder 0]; fprintf(f4, '%s\n',line); end if (feof(f))</pre>	 % time=0; % Writing the output of IPv4 decode in a files v4SColumn.txt and v4DColumn.txt. % Source and destination is writen in two files because Crypto-PAN takes % input as it this formate (time length, address)
break; end end fclose(f); fclose(f4); fclose(f6); [time4,IPv4source,IPv4destination,protocol4, ipv4pktlength] = ipv4decode(name4); [time6,IPv6s,IPv6d,protocol6,pktlength] = ipv6decode(name6);	<pre>ipv4writefile (v4source,v4destination, time4, ipv4pktlength,IPv4source,IPv4destination,inputsize); v4Sanonymized='v4sourceanonymized.txt'; % IPv4 source address anonymized v4Danonymized='v4destinationanonymized.txt'; % IPv4 sdestination address anonymized [s,s]=dos(['cryto_run.exe ' v4source ' > ' v4Sanonymized]); [s,s]=dos(['cryto_run.exe ' v4destination ' > ' v4Danonymized]);</pre>

Functions: code

Call prefix-preserving-function to anonymize IPv6

IPv4s=IPv6s(:,1:4); IPv4d=IPv6d(:,1:4); lines = size(IPv6s, 1); namev4s='10outv4s.txt'; namev4d='10outv4d.txt'; time=0; ipv6toipv4writefile(namev4s,namev4d, time6, pktlength, IPv4s, IPv4d,lines); namev4sout='10outv4sout.txt'; namev4dout='10outv4dout.txt': [s,s]=dos(['cryto_run.exe ' namev4s ' > ' namev4sout]); [s,s]=dos(['cryto_run.exe ' namev4d ' > ' namev4dout]); [IPv4sout, IPv4dout, timeout, pktlengthout]=ipv4toipv6readfile(namev4sout, namev4dout, lines); Anonymized IPv6 address output nameano='10outv6ano.txt'; writeipv6anon(time6,IPv6s,IPv6d,IPv4sout,IPv4dout,protocol6,pktle ngthout,nameano);

Call precision-degradation-function to anonymize IPv4 flow time-stamps

[IPv4source,IPv4destination, time4, ipv4pktlength]=ipv4readfile(v4Sanonymized, v4Danonymized, inputsize); precision degradation timeanony4=fix(time4*100)/100; nameano='10outtimev4ano.txt'; writeipv4anon(timeanony4,IPv4source,IPv4destination,protocol4,ipv 4pktlength,nameano) [IPv4sout,IPv4dout, timeout, pktlengthout]=ipv4toipv6readfile(namev4sout, namev4dout, lines); precision degradation

Call precision-degradation-function to anonymize IPv6 flow time-stamps

[IPv4sout,IPv4dout, timeout, pktlengthout]=ipv4toipv6readfile(namev4sout, namev4dout, lines); timeanony6=fix(time6*100)/100; Anonymized IPv6 address output nameano='10outv6ano.txt'; writeipv6anon(timeanony6,IPv6s,IPv6d,IPv4sout,IPv4dout,protocol6 ,pktlengthout,nameano);

Implementation of the Anonym tool was validated using various tests:

Fields	Anonym	Anontool	FLAIM
Source 64.251.87.209	0.29.105.18	110.13.240.136	103.51.250.0
Destination 64.251.87.210	0.29.105.17	110.13.246.137	103.51.250.28

The Anonym tool: results

Per-field anonymizatoin results:

Time- stamp	IPv4 and IPv6	Packet length
0.000000 1.178114 2.410144 4.563551	Un-anonymized dataset 2001:4958:10:2::2 2001:4958:10:2::3 2001:4958:10:2::2 2001:4958:10:2::3 64.251.87.209 64.251.87.210 206.47.102.206 206.47.102.201	143 106 228 149
	Anonymized dataset	
0.000000 1.170000 2.410000 4.560000	8:A7:10:2:0:0:0:28:A7:10:2:0:0:0:38:A7:10:2:0:0:0:28:A7:10:2:0:0:0:30.29.105.180.29.105.17240.48.153.6240.48.153.0	243 206 328 249

Roadmap

- Introduction
- Collection of network traffic
- Anonymization fields, algorithms, and tools
- Anonym tool
- Conclusion, future work, and references

Conclusions

- The Anonym tool provides options to anonymize time, IPv4 and IPv6 addresses, MAC addresses, and packet length data
- Supports log files in mrt and pcap formats
- Provides options to analyze the datasets
- Provides options to apply the K-S test on the datasets
- Analysis of un-anonymized and anonymized datasets indicates insignificant variations

Future work

- The Anonym tool may be enhanced to support other log formats: netflow, iptable, and pccat
- Additional anonymization algorithms may be implemented: binning, hash, partitioning, permutation, and random noise addition
- Anonymization of additional fields may be implemented: port numbers, TCP window size, and IP ID number

References

- 1. P. Porras and V. Shmatikov, "Large-scale collection and sanitization of network security data: risks and challenges," in *Proc. Workshop on New Security Paradigms (NSPW '06)*, Germany, Oct. 2007, pp. 57-64.
- J. Xu, J. Fan, M. Ammar, and S. B. Moon, "On the design and performance of prefix-preserving IP traffic trace anonymization," in *Proc. 1st ACM SIGCOMM Workshop on Internet Measurement (IMW' 01)*, San Francisco, CA, USA, Nov. 2001, pp. 263-266.
- 3. A. Slagell, J.Wang, and W. Yurcik, "Network log anonymization: application of Crypto-PAn to Cisco netflows," in *Proc. NSF/AFRL Workshop on Secure Knowledge Management (SKM '04)*, Buffalo, NY, USA, Sept. 2004, pp. 223-228.
- 4. M. Foukarakis, D. Antoniades, S. Antonatos, and E. P. Markatos, "Flexible and high-performance anonymization of netflow records using anontool," in *Proc. Third International Workshop on the Value of Security through Collaboration (SECOVAL' 07)*, Nice, France, Sept. 2007, pp. 33-38.
- 5. D. Koukis, S. Antonatos, D. Antoniades, E. Markatos, and P. Trimintzios, "A generic anonymization framework for network traffic," in *Proc. IEEE International Conference on Communications (ICC' 06)*, Istanbul, Turkey, June 2006, vol. 5, pp. 2302-2309.
- 6. A. Slagell, K. Lakkaraju, and K. Luo, "FLAIM: a multi-level anonymization framework for computer and network logs," in *Proc. 20th conference on Large Installation System Administration (LISA' 06)*, Washington, DC, USA, July 2006, pp. 101-115.
- M. Bishop, B. Bhumiratana, R. Crawford, and K. Levitt, "How to sanitize data," in *Proc. 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE '04)*, Washington, DC, USA, June 2004, pp. 217-222.
- 8. R. Crawford, M. Bishop, B. Bhumiratana, L. Clark, and K. Levitt, "Sanitization models and their limitations," in *Proc. Workshop on New Security Paradigms (NSPW '06)*, Germany, Mar. 2006, pp. 41-56.
- 9. R. Pang, M. , Allman, V. Paxson, and J. Lee, "The devil and packet trace anonymization," *ACM SIGCOMM*, Aug. 2006, vol. 36, pp. 29-38.
- 10. PRISM state of the art on data protection algorithms for monitoring systems. [Online]. Available: http://fp7-prism.eu/images/upload/Deliverables/fp7-prism-wp3.1-d3.1.1-nal.pdf.

References

- 11. T. Farah, S. Lally, R. Gill, N. Al-Rousan, R. Paul, D. Xu, and Lj. Trajković, "Collection of BCNET BGP traffic," in *Proc.* 23rd International Teletraffic Congress (ITC' 11), San Francisco, CA, Sept. 2011, pp. 322-323.
- 12. S. Lally, T. Farah, R. Gill, R. Paul, N. Al-Rousan, and Lj. Trajković, "Collection and characterization of BCNET BGP traffic," in Proc. *2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM' 11)*, Victoria, BC, Canada, Aug. 2011, pp. 830-835.
- 13. S. Lau and Lj. Trajković, "Analysis of traffic data from a hybrid satellite-terrestrial network," in *Proc. Fourth Int. Conf. on Quality of Service in Heterogeneous Wired/Wireless Networks (QShine' 2007)*, Vancouver, BC, Canada, Aug. 2007, pp. 9:1-9:7.
- 14. B. Vujicic, C. Hao, and Lj. Trajković, "Prediction of traffic in a public safety network," in *Proc. IEEE International Symposium on Circuits and Systems (ISCAS' 06)*, Kos, Greece, May 2006, pp. 2637-2640.
- 15. N. Al-Rousan, S. Haeri, and Lj. Trajkovic, "Feature selection for classification of BGP anomalies using Bayesian models," in *Proc. ICMLC 2012*, Xi'an, China, July 2012, pp. 140-147.
- 16. Lj. Trajković, "Analysis of Internet topologies," *Circuits and Systems Magazine*, Sept. 2010, vol. 10, no. 3, pp. 48-54.
- 17. M. Najiminaini, L. Subedi, and Lj. Trajković, "Analysis of Internet topologies: a historical view," in *Proc. IEEE International Symposium on Circuits and Systems (ISCAS' 09)*, Taipei, Taiwan, May 2009, pp. 1697-1700.
- 18. J. Chen and Lj. Trajković, "Analysis of Internet topology data," in *Proc. International Symposium on Circuits and Systems (ISCAS' 04)*, Vancouver, British Columbia, Canada, May 2004, vol. 4, pp. 629-632.
- 19. (2013) BCNET. [Online]. Available: https://wiki.bc.net.
- 20. (2013) University of Oregon Route Views Project. [Online]. Available: http://www.routeviews.org.
- 21. (2013) RIPE (Reseaux IP Europeens). [Online]. Available: http://www.ripe.net.
- 22. (2013) The Corporative Association for Internet Data Analysis. [Online]. Available: http://www.caida.org/data.

Acknowledgements

- Prof. Veselin Jungic, Chair
- Prof. Parvaneh Saeedi, Supervisor
- Prof. Emeritus Stephen Hardy, Examiner
- Prof. Ljiljana Trajković, Senior Supervisor

Acknowledgements

- Toby Wong, BCNET
- CNL mates
- Eva María Cavero Racaj, Universidad de Zaragoza

Thank You!