RED with Dynamic Thresholds for Improved Fairness

Vladimir Vukadinovi¢ and Ljiljana Trajkovic
{vladimir, ljilja}@cs.sfu.ca
Communication Networks Laboratory, Simon Fraser University, Vancouver, BC, Canada

Fair Active Queue Management

e Transmission Control Protocol (TCP) traffic represents vast majority of Internet
traffic. TCP flows are responsive because TCP’s congestion avoidance algorithm
adapts their sending rates based on congestion conditions in the network.

e User Datagram Protocol (UDP) is the most commonly used protocol for real-
time services. Its flows are unresponsive because UDP does not react to
network congestion.

e TCP senders recognize lost packets as a sign of network congestion and
reduces their sending rate. In contrast, UDP senders do not have any
knowledge of congestion and their sending rates will not be adjusted.

» When responsive and unresponsive flows compete for the same output link in a
router, unresponsive flows tend to occupy more than their fair share of the link
capacity.

e One approach to solving the unfairness problem is to employ Active Queue
Management (AQM) algorithms.

e Random Early Detection (RED) [1], the most widely implemented AQM
algorithm, is unable to restrict unresponsive flows because it discards incoming
packets from all flows with equal probabilities.

e Certain AQM algorithms, such as Flow Random Early Detection (FRED) [2],
Longest Queue Drop (LQD) [3], and CHOKe [4], tend to identify and restrict
unresponsive flows by preferentially discarding packets from these flows.

e We introduce a new AQM algorithm, named Random Early Detection with
Dynamic Thresholds (RED-DT), that dynamically adapts queue parameters to
achieve a more fair distribution of the link capacity.

RED-DT Algorithm

e In order to identify unresponsive and greedy flows, RED-DT maintains per-flow
state for active flows. A flow is considered to be active if it has at least one
packet in the queue.

e For each active flow, there is an entry in a flow table that contains
instantaneous queue size ¢, average queue size ¢’ . , and maximum drop
probability 2., . As in RED, instantaneous aggregate queue size q and average
aggregate queue size q,, . are also monitored.

e Similar to RED, RED-DT maintains minimum and maximum queue thresholds,
where min,; = 3maxy, . However, in RED-DT these thresholds are dynamically
adapted upon each packet arrival. If the new packet belongs to flow j max,, is
recalculated as:

maxy, = (1-a Pra(B-q),

where B is the buffer size, g/ .. is the maximum drop probability for flow j and
a is a constant parameter. RED-DT calculates the drop probability for arriving

packets as:

0 ifq., . .<min,
Q..—min, et - -
b == : if min<q., <max
max,-min, max th~Have ir
1 if g, .>maxy

e Unlike RED, which compares the average aggregate queue size q,. with
thresholds, RED-DT compares the average queue size of a particular flow
q.. With thresholds. When a packet is admitted to the queue, maximum drop
probabilities ¢ are updated as:

fHiax
=

q&' e

H?EX(1: R'!}:?EI+ 5) ir .s;-ve >
R!!;?ax T % R!!;?ax

mfﬂ(pminfﬂl;?ax_‘s) if .;ve{ N

where @ is a constant increment, p,.. is RED-defined parameter, and N is the
number of active flows.

e In order to provide early feedback to responsive flows, the maximum drop
probability cannot be smaller than p,.... One choice of the increment dis 0=p,

e Maximum drop probability gradually increases for the flows whose average
queue size is larger than I/NV of the average aggregate queue size q,,.. These
flows are identified as potentially unresponsive (greedy) and their thresholds
are decreased. When the average buffer occupancy of these flows decreases
below q. N, their maximum drop probability gradually decreases and their
thresholds increase. This mechanism aims to distribute the buffer space equally
among active flows.

» Recalculation of thresholds is the major complexity issue in RED-DT. Memory
requirements for storing the per-flow states are limited to the size of the active
flow table.

Simulation Results

e We used ns-2 network simulator [5] to evaluate RED-DT and compare its
performance to RED [1], FRED [2], LQD [3], and CHOKe [4].

e All simulation scenarios employ a common network topology with 16 TCP
senders, 4 UDP senders, and a single bottleneck link.

e To transfer FTP data, TCP New Reno senders use fixed packet size of 500
bytes. UDP senders use 500-byte packets to transfer constant bit-rate streams.

e Default buffer size is 200 packets (80 ms of buffering on a 10 Mbps link).

e Minimum and maximum gueue thresholds for RED, FRED, and CHOKe are 1/4
and 3/4 of the buffer size, respectively.

e UDP rate is 2.5 Mbps, except for the scenario with variable traffic load.

e We calculated Jain’s fairness index [6] from the average throughput achieved
by TCP and UDP flows. The values of the fairness index closer to 1 indicate a
higher degree of fairness.

TCP 1

TCPn

UDP 1

UDP m

100 I

Fairness index

04T —RED-DT
—— FRED
| e 0D

TCP throughput (% link capacity)

— RED

1 1 | |]
0 20 40 60 a0 100 120 0.2
UDP rate (% link capacity)

1 | 1 | |
0 20 40 i 80 100 120
UDP rate (% link capacity)

Influence of the buffer size:

100 1

- = falr share

— REL-DT

— FRED

— |_|'|E|

i PO e e e e | 0.8 i ———

oo
L
|
i

|

|

I

|

I

I

|

o
i
Fairness index

U4p

TCF throughput (% link capacity)

=
=
[

e

|:| | | |] | | | 1 i | i i |
s 100 . - - 0
Buffer size (ms)

Buirer size (ms)
Influence of the parameter «:

i
180 200

100 1

B e e = e -"/”/_’\‘
i —___-——_'...--_ . L.
= 0.95
H
{3
1] St
o @gol &
= g
2 w 09
e LIk}
g, <
4 w
P
|
e
=
= i 0.85 F

|:| __________________________

TCP fair sl
— |_||:|F'
LIDP fair sl
0 - e = . = =8 0.4 1 L 1 I 1
0.2 L 04 5 L U:f 0.8 0.2 0.3 0.4 0.5 0.6 07 0.8
”fd e_liT:_J

References:

[1] S. Floyd and V. Jacobson, “"Random early detection gateways for congestion avoidance,” in IEEF
[ransactions on Networking, vol. 1, no. 4, pp. 397 - 413, Aug. 1993.

[2] D. Lin and R. Morris, "Dynamics of random early detection,” in Proc. of ACM SIGCOMM 3/, Cannes,
France, Oct. 199/, pp. 127 - 13/.

[3] B. Suter, T. V. Lakshman, D. Stiliadis, and A. Choudhury, "Design considerations for supporting TCP with
per-flow queuing,” in Proc. of IFFF INFOCOM 98, San Francisco, CA, Apr. 1998, pp. 299 - 306.

[4] R. Pan, B. Prabhakar, and K. Psounis, "CHOKe: a stateless active gueue management scheme for

approximating fair bandwidth allocation,” in Proc. of IEEE INFOCOM 00, Tel Aviv, Israel, Apr. 2000, pp.
542 - 951,

[5] The Network Simulator - ns-2: http://www.isi.edu/nsnam/ns/.
(6] R. Jain, 7The art of computer systems performance analysis: fechnigues for experimental design,
measurement, simulation and modefing. New York: John Wiley & Sons, 1991.

/N cemmunication
el) netwarks
o laberatory

SAC 2004
March 14 - 17, 2004

http://www.ensc.sfu.ca/~ljilja/cnl

