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Abstract 
 

 Collection of user statistics and network traffic is 
crucial for understanding user behavior and for creating 
network workload models. It is also valuable for the ma-
nagement of commercial wireless networks. In this paper, 
we report on the analysis of billing records collected from 
the Telus Mobility Cellular Digital Packet Data (CDPD) 
network. The longest continuous billing record that we 
examined covered approximately twenty one days, 
spanning the Christmas and New Year holiday seasons. 
We used various tools to graphically illustrate the billing 
data. We observed that network activities exhibit daily 
and weekly cycles. Furthermore, the clustering analysis 
revealed four distinct behavioral classes of users. 
Analysis of billing data provided useful information about 
the usage of an operational wireless network.  
 
 
1. Introduction  
 

A number of recent research reports have been 
devoted to collection and analysis of traces from 
operational wireless networks. Analysis of these traces 
provided useful information about the behavior of 
network users. Collected traces also enabled traffic-based 
performance evaluations of wireless networks.  

In this paper, we present an analysis of a billing record 
obtained from Telus Mobility CDPD network. The record 
lasts approximately twenty one days (from December 22, 
2000 to January 11, 2001). Our objective was to identify 
patterns of user behavior and network activities.   

In order to protect users’ privacy, the mobile Network 
Entity Identifiers (NEIs) (also called User IDs) have been 
sanitized (scrambled). Billing data consist of three types 
of events: registration, deregistration, and IP data [1]. 
Registration events occur when a user (an IP-enabled 
device) attempts to identify itself to the network in order 
to gain access to network services. Deregistration events 
occur when a user leaves a cell. These deregistration 
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events are optional. Data events describe the actual 
network traffic generated by users.  

We performed data extraction in a variety of ways. 
Javatm [2] programs were used to parse the billing records 
and to write billing data as a series of Structured Query 
Language (SQL) statements that load the billing data into 
a MySQL database [3]. 

The main difficulty in analyzing billing records has 
been dealing with its sheer volume. Hence, we used data 
mining and a machine learning technique called 
clustering. Clustering is used for discovering hidden 
patterns and trends in a given data set. It groups data into 
categories with similar behavior. In our analysis, we used 
k-means clustering algorithm from the S-PLUS statistical 
package [4].  

We describe the aggregate network traffic, user 
behavior, and cell activities. Our analysis may provide 
useful information about the access to the CDPD network 
even if the billing record may be short and not 
representative because of holiday seasons. We were also 
able to provide a classification of network users and its 
cells. These results, although preliminary, may help in 
modeling network traffic and in creating workload 
models for commercial wireless networks. 

The remainder of this paper is organized as follows. In 
Section 2, we present an overview of CDPD protocol and 
the CDPD billing data. We present data analysis in 
Section 3. It includes aggregate network characteristics, a 
detailed analysis of user behavior, and additional results 
based on the analysis of cell activities.   Related work is 
described in Section 4. We conclude with Section 5.   
 
2. Background 
 

In this section we present a brief description of CDPD 
protocol and the CDPD billing data.  

 
2.1. CDPD protocol  
 

CDPD [5, 6] is a standard protocol developed for 
commercial public mobile data communication networks. 
The CDPD communication architecture is based on the 



  

Open Systems Interconnection (OSI) Reference Model 
[7].  It deals only with the lower three OSI layers. CDPD 
network’s function is to enable data transmission between 
Mobile End Systems (M-ESs) and Fixed End Systems (F-
ESs). The topology of a simple CDPD network is shown 
in Figure 1 [8]. M-ESs are connected to the backbone 
network through the Mobile Data Base Station (MDBS), 
the Mobile Data Intermediate System (MD-IS) (also 
called a mobile router), and an Intermediate system. The 
network also includes several Fixed End Systems (F-ESs) 
connected to the wired backbone network. 

CDPD is a multiple access protocol. Stations that want 
to transmit data must compete for access in the shared 
communications medium. CDPD shares some 
characteristics with multiple access protocols, such as 
Ethernet (IEEE 802.3), while still having significant 
differences. CDPD differs from other multiple access 
protocols mainly in two aspects: the wireless transmission 
medium and the mechanism for collision detection. 

Mobile Data Base Station (MDBS) communicates 
with M-ESs over the airlink interface, providing data link 
layer and physical layer functions to paired radio channels 
(forward and reverse) within its cell. Forward channel is 
contentionless, and, therefore, always available for the 
MDBS to broadcast data to M-ESs. Multiple M-ESs have 
to compete with each other to access the reverse channel 
for data transmission to the MDBS. 

Although the CDPD network supports multiple 
protocols at the network layer, all CDPD network support 
services are based on International Standards 
Organization (ISO)/OSI protocol suites. The two 
categories of CDPD support services are CDPD network 
support and CDPD network application support services. 
We are in particular interested in CDPD network 
application support services, which include network 
management, message handling, and accounting [1].  
 
Network management services. The CDPD network 
provides comprehensive mobile data communication 
services to subscribers. To ensure high-level network 
availability, the CDPD network is designed to incorporate 
network management services that allow CDPD service 
provider to operate the network. The network 
management services provide timely information to the 
network operator to detect network faults, to exercise 
controls, to correct faults, and to configure the network 
for optimal operation. 
 
Message handling services. Message handling services 
provide a generic message, store, and forward services 
that are useful to other CDPD network support services. 
 
Accounting services. Accounting services provide 
information on how and by whom the CDPD network 
resources are used. The CDPD accounting services collect 

network usage data for every subscriber to enable 
compilation for billing purposes. The collected data may 
include packet count, packet size, source and destination 
addresses, cell ID used by M-ESs, and an approximate 
time of transmission.  
 

 
 

Figure 1. Topology of a CDPD network.  
 
2.2. Description of the CDPD billing data 
 

Analysis of network records often focuses on the 
overall network behavior (network elements, network 
events, and network activity characterization) and on 
traffic characteristics from a user point of view (when, for 
how long, and in which manner customers use the 
network). Records could be session data, transport layer 
data, application layer data, and movement data [9 - 13]. 

The billing records from a CDPD network that we 
analyzed summarize the network activity. They are used 
by the service provider to bill its customers for network 
usage. The structure of the billing record is a set of 
directories and files. Each directory is named after a 
sequence number (e.g., 528/, 529/) and contains up to 100 
data files also named sequentially (e.g., 00074-52800, 
00074-52801, 00074-52802). Each file contains a record 
of approximately fifteen minutes of network activities. A 
file consists of a header that contains timestamp and 
sequencing information, and a series of TMS rows. The 
smallest number of recorded TMS rows in a file is 300 
and the largest is 2,694. Each row represents a single 
event of either registration, deregistration, or IP data type. 
TMS rows include registration and deregistration event 
timestamps, the number of packets and octets transferred, 
as well as the number of discarded packets. The billing 
records we analyzed consisted of 1,888 files. 

The billing record starts at 11:30 AM on December 22, 
2000 and lasts until 6:30 AM on January 11, 2001 
(duration of twenty one days). There is a discontinuity in 
the billing record on January 2, 2001 from 7:30 PM until 
10:30 PM, and the directory 536/ contains only 88 files. 

 
3. Data analysis  

 
The purpose of our analysis is to characterize the 

CDPD network and the behavior of its users. This 



  

characterization deals with network elements, network 
characteristics over time, user behavior, and cell 
activities. 
 
3.1. Aggregate network characteristics 
 
Network elements. A total of 60 unique cell IDs were 
located in the billing record. There were 2,096 unique 
users (user IDs).  Of these 2,096 users, only 1,730 
actually generated IP data events. We note that it is not 
known whether the billing record actually covers the 
entire CDPD network, nor whether all network elements 
were active during the collection period. Hence, above 
numbers may represent minimum values. 

Table 1 shows the breakdown by event type in the 
billing record. The number of deregistration events is an 
order of magnitude smaller than either the numbers of 
registration or IP data events. This is most likely because 
deregistration events are optional and because registration 
events may fail. Most users who generated large number 
of registration events failed to access the network and 
never succeeded in making a connection.  

 
Table 1. Breakdown of events by type. 

Event type Number of events Percentage of total events 

Registration 619,268 39.19 
IP data  889,227 56.27 
Deregistration 71,741 4.54 
Total 1,580,236 100.00 
 

Table 2 shows the registration statistics and the 
possible reasons for rejected registrations. We notice a 
large proportion of suspicious users who may be trying to 
fraudulently use the network.  
 

Table 2. Distribution of registrations. 
Number of registrations 

Rejected Total Accepted 
Suspicious 
users 

No 
credentials  

No 
reasons 

619,268 
(100%) 

166,525 
(26.8%) 

152,200 
(24.5%) 

152,772 
(24.6%) 

147,771 
(23.8%) 

 
Another aspect of network behavior of interest is the 

percentage of aggregate discarded packets (Table 3). This 
percentage is fairly low, and it would be even lower if the 
control packets were included in the calculation. 

 
Table 3. Discarded packets. 

Data packets Discarded  Percentage 

21,046,695 237,712 1.13% 
 
Number of network users over time. The first aspect of 
the network’s dynamic behavior that we investigated was 

the number of network users over time. Figures 2 and 3 
show the time series. In Figure 2 (and in all subsequent 
figures) the discontinuity in the billing record is 
represented by zero number of users and it is marked (a 
gray star).  
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Figure 2. Number of network users over time 
(December 22, 2000 to January 11, 2001). 
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Figure 3. Daily cycle of network users (January 
8, 2000: 12 AM to January 10, 2001: 12 AM). 

 
Two cycles may be observed in Figure 2. The first is a 
daily cycle between peaks and valleys within a day. In 
general, the peaks occur around 5:00 PM and the valleys 
around 5:30 AM (Figure 3). The second cycle (weekly) is 
slightly irregular, but clearly visible: there are two ranges 
of visible peaks. The higher peaks tend to fall on 
weekdays and the smaller ones on weekends and 
holidays.  We observed numerous low peaks in the first 
half of the collection period. Those additional low peaks 
occur between December 23 and December 26, and again 
between December 29 and January 1. The next pair of 
low peaks appears between January 6 and 7, which is the 
first “regular workweek” weekend of the year. It is 
possible that these irregularities are due to holiday 
seasons. Unfortunately, the billing records were not long 
enough to enable us to predict the usage pattern. 
Nevertheless, this reduced activity on weekends matches 
the behavior reported in past studies [9 - 13].  

 



  

Growth of users over time. Figure 4 shows daily and 
cumulative number of network users during the collection 
period (twenty one days). The average number of unique 
users in the network is approximately 272 per day, with 
standard deviation 91.2. The number of the daily network 
users grew approximately by 7. We notice a decrease of 
the growth in number of users on weekends and on 
holidays. This is illustrated in Figure 4 with data plots 
falling under the regression lines. 
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Figure 4. Cumulative and daily growth of users 
(December 22, 2000 to January 11, 2001). 
Dashed lines represent regression lines. 

 
Data traffic over time. An alternative way of measuring 
the network utilization is to observe the number of data 
packets, data octets, and discarded packets over time. 
Figure 5 shows the number of data packets over time. The 
network seems to have more activity (peaks) throughout 
certain days. Note the increased activity at the beginning 
of the trace. Again, the number of data packets over time 
exhibits the same periodicities (daily and weekly) as the 
number of network users over time. The first cycle, 
shown in Figure 6 (depicting two days), is a cycling 
between peaks and valleys.  Generally, the peaks occur 
around 5:00 PM and the valleys occur around 6:00 AM.  
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Figure 5. Number of data packets over time 
(December 22, 2000 to January 11, 2001). 
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Figure 6. Daily cycle of data packets (January 8, 
2000: 12 AM to January 10, 2001: 12 AM). 

 
When data octets (as opposed to packets) are plotted 

over time (Figure 7), the increased activity at the 
beginning of the trace is absent. However, the two cycles 
appear again. When discarded packets are plotted over 
time (Figure 8), the two cycles that appear in Figures 5 
and 7, disappear. Nevertheless, closer examination of the 
number of discarded packets over time shows that cycles 
are present and most peaks occur around 12:00 AM 
(Figure 9).  
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Figure 7. Number of data octets over time 
(December 22, 2000 to January 11, 2001). 
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Figure 8. Number of discarded packets over time 
(December 22, 2000 to January 11, 2001). 
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Figure 9. Daily cycle of discarded packets 
(December 24, 2000: 12 PM to December 26, 

2000: 12 PM). 

Snapshot of network characteristics over time. Figure 
10 illustrates the summary of network characteristics over 
time: number of unique users, data packets, data octets, 
control packets, control octets, and discarded packets. 
Figure 10 is a symmetric matrix of graphs. Their x and y 
variables are shown on the diagonal. It describes the 
inter-relationships between these variables. For example, 
the first graph in the first column shows the number of 
unique users vs. time. The first graph in the first row is its 
rotated mirror image. Among other observations, we 
notice the cyclic pattern of the number of users, data 
packets, and data octets over time. The proportionality 
between the number of control packets and control octets 
is also clearly observable.  
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Figure 10. Matrix of graphs summarizing network characteristics over time (number of network 
users, data packets, data octets, control packets, control octets, and discarded packets) and their 

inter-relationships.
  

3.2. User behavior 
 
Events per user. In this section, we consider the events 
in the billing record by user ID (mobile NEI). Figure 11 
shows the number of total events per user. In Figure 11, 
(and in all subsequent figures) the user IDs are not shown 
due to lack of space. It can be seen that a few users 
(approximately ten) account for the majority of events. 
Figures 12, 13, and 14 show the breakdown of events per 
user by event type. Only a small number of users account 
for the majority of registration (Figure 12), deregistration 

(Figure 13), or IP data events (Figure 14). The 
disproportionate number of total events is due to the large 
number of registration events for a few users. There are 
users whose registrations are always accepted. 
Nevertheless, there are also 366 users who have 
registered with the network never gaining access to the 
system. 

Several cases of unusual user behavior are shown in 
Table 4.  These users account for 60.75% of all the 
registration events. User 61.131.154.9 alone accounts for 
6.06% of the total number of events in the entire record. It 



  

might be that some users are trying to fraudulently gain 
access to the network because their user IDs differ from 
the IDs of authorized users. User IDs of subscribed users 
commence with 37, 59, or 91. For example, user 
59.206.117.22 with the most deregistration events (Figure 
13) has only one less registration event than the number 
of deregistration events (2,136 vs. 2,137) with all 
registrations accepted. 
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Figure 11. Number of total events (sum of 
registration, deregistration, and IP data events) 

per user. 
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Figure 12. Number of registration events per 
user. Approximately ten users account for the 

majority of events. 
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Figure 13. Number of deregistration events per 
user. The user 59.206.117.22 has the most 

deregistration events (2,137). 
 

IP data events are shown in Figure 14. While there are 
still a few users that appear as outliers in the number of IP 
data events that they generate, events are far more evenly 
distributed. 
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Figure 14. Number of IP data events per user. 
Data events are far more evenly distributed. 

 
Table 4. Users with unusual behavior. 

 
User IDs 

Registr. 
events 

Deregistr. 
events 

Registr. 
accepted 

Registr. 
accepted 
 % 

59.206.117.22 2,136 2,137 2,136 100.00 
102.133.238.133 2,190 0 0 0.00 
91.171.227.151 2,611 0 0 0.00 
59.207.111.139 2,895 0 0 0.00 
59.207.215.20 4,623 56 56 1.21 
59.206.117.28 5,024 7 380 7.56 
59.207.215.117 4,899 1 8 0.16 
59.207.206.47 5,225 0 0 0.00 
59.207.211.210 6,720 9 9 0.13 
59.206.118.178 12,328 0 0 0.00 
247.33.244.20 26,421 0 0 0.00 
59.206.118.180 26,901 0 0 0.00 
59.206.127.247 27,019 37 37 0.14 
59.207.211.23 29,373 50 74 0.25 
59.206.118.147 30,299 0 0 0.00 
59.207.206.36 31,042 0 0 0.00 
91.171.159.54 60,598 101 102 0.17 
61.131.154.9 95,838 0 0 0.00 

 
Data traffic per user. Data packets, octets, and discarded 
packets were plotted over time in Figures 5, 7, and 8. 
Figure 15 shows the number of discarded packets per 
user. The motivation is to locate users whose packets 
were unfairly discarded. Specific examples of inequity in 
terms of discarded packets are shown in Table 5. We 
notice that some users have over 10% of discarded 
packets, while other users have very low packet loss. 
These listed users represent the extremes in terms of 
packet loss. Note that user 59.207.209.71 sends almost 



  

five times more packets (with no loss) than user 
59.206.125.155 (with more than 30% loss). Further 
examination of these two users’ personal records may 
explain this discrepancy.  
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Figure 15. Number of discarded packets per 
user. Discarded packets are unfairly distributed 

among users. 
 

Table 5. Inequity of discarded packets per 
user. 

User IDs 
 

Data  
packets 

Control 
packets 

Disc. 
packets 

% Disc. 
packets  

Users with high data and low percentage of loss 

59.207.209.71 285,223 98 0 0.00 
59.206.125.156 395,176 4,039 3,806 0.96 
59.206.120.20 447,523 5,237 9,474 2.12 
59.207.209.151 1,926,522 194 308 0.02 
59.207.209.164 1,984,159 42 660 0.03 

Users with low data and high percentage of loss 

59.206.120.6 100,553 1,696 11,358 11.30 
59.206.125.71 4,238 204 504 11.89 
59.206.125.213 115,911 1244 18,282 15.77 
59.206.125.208 8,244 251 2,158 26.18 
59.206.125.245 74,767 2,181 30,966 41.42 
59.206.125.155 60,342 2,586 29,871 49.50 

 
Mobility of users. Figure 16 shows the number of unique 
cells visited by each user. It shows that most users move 
around (at least a bit). The average number of cells visited 
is 9.41, with standard deviation 9.05, minimum 1, and 
maximum 47. Figure 17 shows the number of network 
users grouped by the number of visited cells. From the 
2,096 recorded users, 78.58 % move between multiple 
cells. There were 449 stationary users (21.42%). This 
observation regarding the mobility of users matches the 
behavior found in similar studies of wireless network 
access by Tang and Baker [9] who found that 58% of the 
wireless users moved between multiple locations during 
the data collection. Hutchins and Zegura [13] also 

observed 64% wireless users who moved between 
multiple access points. 
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Figure 16. Number of cells visited by each user. 
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Figure 17. Number of network users grouped by 
their range of mobility. 

 
Clustering of users. We used k-means clustering 

algorithm to find possible classification of users. K-means 
is an iterative algorithm, where the number of clusters k is 
supplied in advance [4, 10, 14]. We used eight variables 
when clustering network users: number of cell visited, 
data packets, control packets, discarded packets, IP data 
events, deregistration events, registration events, and total 
events. The total population is 2,096 users. Figure 18 
shows a matrix of graphs that represents these variables 
and their inter-relationships. The best clustering results 
(Table 6) are those providing four distinct classes of 
users: class 1 (96.7% of users) consists of customers with 
relatively low network usage, class 2 (2.6% of users) 
consists of customers having medium network usage, 
class 3 (0.5% of users) consists of customers having 
relatively high network usage, and class 4 (only users 
59.207.209.164 and 59.207.209.151) consists customers 
having exceptional behavior. 

We also experimented with other clustering tools 
available in S-PLUS. K-means algorithm proved to be 
more efficient and produced results that best matched 
graphical analysis of the CDPD data. 
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Figure 18. Matrix of graphs showing the variables used in the clustering analysis of users. Data 
plots may give an insight for the possible number of classes to be used in k-means clustering 

algorithm. One class counting for only two users is easily observable. 
 

Table 6.  K-means clustering results for the classification of users (center values). 
Cluster 
ID 

Unique 
users 

Cells 
visited 

Data 
packets 

Control 
packets 

Disc. 
packets 

IP Data 
events 

Deregistr. 
events 

Registr. 
events 

Total 
events 

Network 
usage 

1 2,028 9.3 4,541.0 116.2 23.7 356.6 32.7 300.1 689.6 Low 
2 55 11.4 90,768.0 391.3 2,734.7 1,775.3 72.7 153.7 2,001.8 Medium 
3 11 10.7 267,608.0 19,138.0 3,469.4 5,678.7 101.0 167.4 5,947.2 High 
4 2 9.0 1,955,340.5 118.0 484.0 3,226.0 143.5 379.0 3,748.5 Very high 

 
 
3.3. Cell activities 
 
Events per cell. There are 60 unique cell IDs that appear 
in the billing record. In all subsequent figures, we show 
only 30 cell IDs due to lack of space. Figure 19 shows the 
total number of events per cell (cell IDs are ordered by 
their identification numbers). Figure 20 shows the 
breakdown by event type. A few cells are significantly 
busier than others. A geographical network diagram may 
have provided the reason for this behavior. The lack of 
correlation between different types of events is fairly 
visible.  

In general, most events occurring in most cells are IP 
data and registration events. This indicates less than 50% 
overhead (in terms of events, not the actual bits). 
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Figure 19. Total number of events (sum of 
registration, deregistration, and IP data events) 

per cell. 
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Figure 20. Breakdown of events by type: 
registration, deregistration, and IP data events 

per cell.  
 

Cell user density. Figure 21 shows the number of 
network users per cell. The distribution of users among 
cells varies. The average number of users in a cell is 
329.05, with standard deviation 183.03, minimum 28, and 
maximum 860. 
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Figure 21. Number of network users per cell.  
 

Clustering of cells. We employed k-means clustering 
algorithm to classify cell activities using five variables:  
number of total events, IP data events, deregistration 
events, registration events, and network users. Figure 22 
shows these variables. The best clustering results (Table 
7) produced three distinct classes consisting of 37 (62%), 
15 (25%), and 8 (13%) cells. 
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Figure 22. Matrix of graphs showing the variables used in cell clustering analysis. 

 
Table 7.  K-means clustering results for the classification of cells (center values). 

Cluster 
ID 

Number of 
cells 

Network 
users 

Total events IP Data 
events 

Deregistration 
events 

Registration 
events 

Cell activities  

1 37 238.67 10,115.57 6,624.486 596.567 2,894.514 Low 
2 15 448.00 36,276.73 22,877.867 1,589.20 11,809.667 Medium  
3 8 524.00 82,726.13 37,619.125 3,228.75 41,878.25 High 

  



  

4. Related work 
 

Most closely related to our work are studies of access 
wireless networks and user behavior. Hutchins and 
Zegura [13] described an analysis of data collected from a 
campus area network providing wireless 802.11b access 
capabilities. They presented an analysis of 138 days of 
session data, 54 days of transport layer flow data, and 
movement data taken from 109 wireless access points 
spread across 18 buildings. They observed linear growth 
in number of users and noticed daily behavioral cycles, 
with a peak usage time in early evening and minimum 
usage in early morning. Hutchings et al., [11, 12] also 
analyzed data sets of several months of RADIUS 
authentication data [15] taken from a large national dial-
up Internet Service Provider. They noticed differences in 
number of network users on weekends and weekdays. 
Our findings in a CDPD network show similar trends.  

Tang and Baker [10] described an analysis of a 12-
week study of the local-area wireless network located at 
Stanford University. Their study consisted of 74 users 
utilizing 13 wireless access points (within the single 
campus building) to campus and Internet resources. They 
found that more users are active on fewer days, while 
fewer users are active on many days. Tang and Baker [9] 
also presented an analysis of seven weeks of data from a 
metropolitan-area wireless network, Metricom’s Ricochet 
Network service. Among other findings, they reported 
that more than half of the users in the study move 
between multiple locations during the data collection. Our 
observations are comparable.  
 
5. Conclusions 
 

Analysis of the CDPD billing records yielded some 
interesting data, despite the fact that the billing records 
contain only a high-level description of the network 
usage. Our analysis shows that CDPD network users have 
cyclic behavior. Two cycles of periodicity are observable. 
The first is a daily period between peaks and valleys. In 
general, the peaks occur around 5:00 PM and the valleys 
around 5:30 AM. The second cycle is a weekly cycle 
between two ranges of peaks: the higher peaks appear on 
weekdays and the smaller on weekends and holidays. A 
small subset of users accounts for a large number of 
rejected registration events, packet loss, and control 
packets. High number of rejected registrations may 
originate from users who attempt to use the network 
fraudulently. Clustering analysis with k-means algorithm 
revealed that it was possible to classify network users and 
cell activities. Analysis of longer billing records and 
using more powerful visualization and clustering tools 
may provide additional insights. 

Although the billing record we examined may not be 
representative, our analysis provided useful information 

about the access to an operational wireless network. It 
may also be useful for modeling network traffic and for 
creating workload models for commercial wireless 
networks access. This type of analysis may also prove 
useful for better management of wireless networks.  

 
6. Acknowledgments 

 
We would like to thank Telus Mobility for providing 

the billing records. Special thanks are due to S. Petrovic, 
K. McNair, and P. Chan for initial contributions to this 
research project. 
 
7. References 
 
[1] CDPD System Specification, Release 1.1, CDPD Forum, 

pp. 600-1, 600-2 and pp. 630-1 – 630-44, January 1995. 
[2] Javatm programming language: http://java.sun.com. 
[3] MySQL: http://www.mysql.com. 
[4] S-PLUS: http://www.insightful.com. 
[5] J. Agosta and T. Russell, CDPD: Cellular Digital Packet 

Data Standards and Technology. Reading, MA: McGraw-
Hill, New York, 1996. 

[6] M. Sreetharan and R. Kumar, Cellular Digital Packet 
Data. Norwood, MA: Artech House, 1996. 

[7] J. Walrand and P. Varaiya, High-Performance 
Communication Networks, 2nd edition, San Francisco, CA: 
Morgan-Kaufmann, 2000. 

[8] M. Jiang, M. Nikolic, S. Hardy, and Lj. Trajkovic, “Impact 
of self-similarity on wireless data network performance,” 
in Proc. Int. Conference on Communications 2001, 
Helsinki, Finland, June 2001, pp. 477-481. 

[9] D. Tang and M. Baker, “Analysis of a metropolitan-area 
wireless network,” in Proc. MOBICOM 1999, Seattle, WA, 
USA, August 1999, pp. 13-23. 

[10] D. Tang and M. Baker, “Analysis of a local-area wireless 
network,” in Proc. MOBICOM 2000, Boston, MA, USA, 
August 2000, pp. 1-10. 

[11] R. Hutchins, E. W. Zegura, A. Liashenko, and P. H. 
Enslow, “Internet user access via dial-up networks – traffic 
characterization and statistics,” in Proc. Int. Conference on 
Network Protocols 2001, Riverside, CA, USA, November 
2001, pp. 314-322. 

[12] R. Hutchins, E. W. Zegura, A. Liashenko, and P. H. 
Enslow, “Usage characteristics of dial-in Internet users: a 
national study,” 2001: 
http://citeseer.nj.nec.com/458891.html. 

[13] R. Hutchins and E. W. Zegura, “Measurements from a 
wireless campus network,” in Proc. Int. Conference on 
Communications 2002, New York City, NY, USA, May 
2002. 

[14] S. Russell and P. Norvig, Artificial Intelligence: A Modern 
Approach. Upper Saddle River, NJ: Prentice-Hall, 1995. 

[15] C. Rigney, A. Rubens, W. Simpson, and S. Willens, 
“Remote authentication dial in user service (RADIUS),” 
Internet RFC 2138, April 1997.  

 


