
Global Resource Capacity Algorithm with
Path Splitting for Virtual Network Embedding

Soroush Haeri, Qingye Ding, Zhida Li, and Ljiljana Trajković
Simon Fraser University

Vancouver, British Columbia, Canada
Email: {shaeri, qingyed, zhidal, ljilja}@sfu.ca

Abstract—Network virtualization enables support and de-
ployment of new services and applications that the current
Internet architecture is unable to support. Virtual Network
Embedding (VNE) problem that addresses efficient mapping of
virtual network elements onto a physical infrastructure (substrate
network) is one of the main challenges in network virtualization.
The Global Resource Capacity (GRC) is a VNE algorithm
that utilizes for virtual link mapping a modified version of
Dijkstra’s shortest path algorithm. In this paper, we propose
the GRC-M algorithm that utilizes the Multicommodity Flow
(MCF) algorithm. MCF enables path splitting and yields to higher
substrate resource utilizations. Simulation results show that MCF
significantly enhances performance of the GRC algorithm.

I. INTRODUCTION

Rapid development of Internet applications has led to
increasing demands on the current Internet infrastructure.
Network virtualization [1], [2] plays an important role in
efficient deployment of these applications. It allows multiple
virtual networks to operate on a common substrate network and
enables running applications economically using virtual com-
ponents. Infrastructure Providers (InPs) and Service Providers
(SPs) are the main components of the virtualized network
architecture [3]. InPs own and operate substrate networks while
SPs assign computing resources from multiple InPs to virtual
networks (VNs). Virtual Private Networks (VPNs), Virtual
Local Area Networks (VLANs), and Virtual Machines (VMs)
benefit from enabling virtualization.

Substrate Networks (SNs) consist of physical nodes that are
interconnected via physical links. Virtual networks consist of
virtual nodes that are interconnected via virtual links. Virtual
Network Embedding (VNE) problem deals with embedding
virtual nodes and links into substrate nodes and paths, re-
spectively. Limited substrate resources make finding profitable
virtual network embeddings challenging. Furthermore, since
VNRs need to be served as they arrive, in the absence of
an accurate model for the arrival processes of VN Requests
(VNRs), finding a VNE solution is even more challenging [4].

VNE problem may be reduced to the multiway separator
problem, which is NP-hard [5], [6]. It may be divided into
Virtual Node Mapping (VNoM) and Virtual Link Mapping
(VLiM) subproblems. The VNE algorithms may be categorized
into three classes depending on the method employed to solve
these two subproblems: uncoordinated, coordinated two-stage,
and coordinated one-stage algorithms [7]. In the coordinated
two-stage approach, VNoM is first solved while considering
the virtual link constrains. The VLiM is then solved by using
the VNoM solution as the input. Even though the one-stage

algorithms often find better solutions, they are computation-
ally more complex and may only be used for solving small
VNEs. Solving a VNE in two stages makes the problem more
tractable and enables considering larger networks. Coordina-
tion between VNoM and VLiM was proposed to enhance the
solutions identified by two-stage algorithms [4].

The Global Resource Capacity (GRC) [8], D-Vine [4], and
R-Vine [4] are examples of coordinated two-stage algorithms.
The GRC algorithm relies on a node-ranking approach to solve
the VNoM subproblem. The rank of a node is calculated by
considering the CPU capacity of the node and the bandwidth of
the incident links [8]. After calculating the ranks for substrate
and virtual nodes, the GRC algorithm employs a large-to-
large and small-to-small [9] mapping scheme to embed virtual
nodes onto substrate nodes. After completing the VNoM as-
signments, a modified Dijkstra’s algorithm is used to calculate
the shortest path between mapped nodes in order to complete
VLiM. D-Vine and R-Vine algorithms formulate the VNoM
problem as a Mixed Integer Program (MIP). They employ
a rounding-based approach to solve the Linear Programming
(LP) relaxation of the proposed MIP. The Multicommodity
Flow (MCF) [5] algorithm is then employed to solve the VLiM
subproblem. MCF treats nodes and links of VNRs as com-
modities and flows, respectively. When solving VLiM, MCF
may use path splitting [6]. It has been shown that utilizing
MCF results in better substrate resource utilizations [4].

In this paper, we propose the GRC-M algorithm, a coor-
dinated two-stage algorithm that combines GRC and MCF for
solving VNE problems. We aim to increase an InP’s profit by
maximizing the acceptance ratio of VNRs while minimizing
the VNR embedding costs. The results show that GRC-M
improves the VNR acceptance ratio by up to 25% and 10%
compared to GRC and both Vine algorithms, respectively.

The remainder of this paper is organized as follows. In
Section II, we introduce the VNE problem and its objectives
and describe metrics for measuring VNE performance. GRC
and MCF formulation for solving VNoM and VLiM are pre-
sented in Section III. In Section IV, we compare performance
of the GRC-M with GRC, R-Vine, and D-Vine algorithms. We
conclude with Section V.

II. DESCRIPTION OF VIRTUAL NETWORK EMBEDDING

Let Gs(Ns,Es) denote an SN graph, where Ns represents
the set of substrate nodes {ns1,ns2, ...,nsk} and Es is the set
of substrate links {es1, es2, ..., esk}. Nodes and links possess
multiple resources: nodes possess CPU capacity and links

possess bandwidth. We denote by C(ns) the CPU capacity of a
substrate node ns. The bandwidth of a substrate link is denoted
by B(es). The ith VNR is denoted by Ψi(G

Ψi ,ωΨi , ξΨi),
where GΨi is the VN graph, ωΨi is the arrival time of the
VNR, and ξΨi is the VNR’s life-time.

Let GΨi(NΨi ,EΨi) denote the graph of the ith virtual
network request, where NΨi = {nΨi

1 ,nΨi
2 , ...,nΨi

k } and
EΨi = {eΨi

1 , eΨi
2 , ..., eΨi

k } are the sets of virtual nodes and
links, respectively. We assume that C(nΨi) and L(nΨi) denote
the CPU requirement and the location preference of a virtual
node nΨi , respectively, while B(eΨi) denotes the bandwidth
requirement of a virtual link eΨi .

A substrate node ns may be used for embedding a virtual
node nΨi if:

C(ns) ≥ C(nΨi) (1)

and

d
(
L(ns),L(nΨi)

)
≤ δΨi , (2)

where d(., .) is the Euclidean distance and δΨi is its upper
limit.

The objective of a virtual network embedding algorithm
is to maximize an InP’s revenue while minimizing the cost
of embeddings. The average revenue is directly proportional
to the acceptance ratio. Furthermore, increasing the node and
link utilizations simultaneously may generate additional profit.
Note that high node utilization is always desirable because it
is a result of high acceptance ratio while the link utilization
should be maintained as low as possible.

Revenue: The revenue R(GΨi) is the weighted sum of the
VNR’s CPU and bandwidth requirements defined as:

R(GΨi) = ωc
∑

nΨi∈NΨi

C(nΨi) + ωb
∑

eΨi∈EΨi

B(eΨi), (3)

where ωc and ωb are unit prices of the requested CPU and
bandwidth, respectively. InPs generate revenue only if the VNR
is accepted. Note that this revenue only depends on the VNR’s
resource requirements.

Cost: The cost of a VNE C(GΨi) depends on the allocated
substrate resources. It is calculated as:

C(GΨi) =
∑

nΨi∈NΨi

C(nΨi) +
∑

eΨi∈EΨi

∑
es∈Es

fe
Ψi

es , (4)

where fe
Ψi

es is the bandwidth of the substrate link es that is
allocated for the virtual link eΨi .

Acceptance Ratio: The acceptance ratio is calculated as:

pτa =
|Ψa(τ)|
|Ψ(τ)|

, (5)

where |Ψa(τ)| and |Ψ(τ)| denote the number of accepted
VNRs and the number of VNRs that arrived in the time interval
τ , respectively.

Node and Link Utilizations: Node utilization U(Ns) is
calculated as:

U(Ns) = 1−

∑
ns∈Ns

C(ns)∑
ns∈Ns

Cmax(ns)
, (6)

where C(ns) is the available CPU resource of a substrate node
ns and Cmax(ns) is the maximum CPU resource of the node.
Similarly, link utilization U(Es) is calculated as:

U(Es) = 1−

∑
es∈Es

B(es)∑
es∈es

Bmax(es)
, (7)

where B(es) is the available bandwidth of a substrate link es
and Bmax(es) is the maximum bandwidth of the link.

III. GRC-M ALGORITHM

GRC-M employs the GRC algorithm [8] for solving VNoM
while employing the MCF [5] algorithm for solving VLiM.
GRC algorithm is effective in calculating the embedding
potential of substrate nodes. The MCF algorithm enables path
splitting, which improves resources utilization.

A. GRC Algorithm for Node Mapping

Let Adj(nsi) denote the set of substrate nodes adjacent to
nsi and es(nsi ,n

s
j) denote the substrate link that connects the

substrate nodes nsi and nsj . The GRC algorithm first calculates
the embedding capacity r(nsi) of a substrate node nsi as:

r(nsi) = (1−d)Ĉ(nsi)+d
∑

ns
j∈Adj(ns

i)

B
(
es(nsi ,n

s
j)
)
× r(nsj)∑

ns
k∈Adj(n

s
j)

B
(
es(nsj ,n

s
k)
) ,

(8)
where 0 < d < 1 is a constant damping factor and Ĉ(nsi) is
the normalized CPU resources of nsi :

Ĉ(nsi) =
C(nsi)∑

ns∈Ns C(ns)
. (9)

We assume that an SN consists of p nodes. The vector form
of the embedding capacity of substrate nodes is:

r = (1− d)ĉ + dMr, (10)

where ĉ =
(
Ĉ(ns1), . . . , Ĉ(nsp)

)T
, r =

(
r(ns1), . . . , r(nsp)

)T
,

and M is a p × p square matrix. The mij element of M is
calculated as:

mij =


B
(
es(nsi ,n

s
j)
)∑

ns
k∈Adj(n

s
j)

B
(
es(nsj ,n

s
k)
) ∀ es(nsi ,nsj) ∈ Es

0 otherwise

.

(11)

The GRC algorithm iteratively calculates the embedding
capacity vector r by initially setting r0 = ĉ and calculating
rk+1 as:

rk+1 = (1− d)c + dMrk, (12)

where r0 is the result of r after k iterations. The iterative
process is terminated when:

|rk+1 − rk| < σ, (13)

where σ << 1 is a predefined stopping threshold. Similar
procedure is used to calculate embedding capacity of virtual
nodes.

When the embedding capacity vectors r for substrate and
virtual nodes are calculated, the nodes are ranked based on
their capacity. The GRC algorithm then performs the embed-
ding by matching the substrate and virtual nodes with the
highest ranks, provided that the substrate node satisfies the
virtual node CPU requirement. Otherwise, the substrate node
with the second highest rank is selected. The VNR is denied if
no substrate node satisfies the virtual node CPU requirement.

B. MCF Algorithm for Link Mapping

The output of the GRC algorithm is a node mapping that
is used as the input to the MCF algorithm [5] to find the
virtual link mapping. A flow is a commodity ki = (si, ti, di),
where si, ti, and di are the flow source, destination, and
demand, respectively. Let us assume that the virtual nodes
nΨi
a and nΨi

b are mapped by GRC onto substrate nodes nsa
and nsb , respectively. A virtual link eΨi(nΨi

a ,nΨi

b) between
the virtual nodes nΨi

a and nΨi

b may be viewed as a flow
between the substrate nodes nsa and nsb . It may be denoted
as a commodity keΨi

(
seΨi = nsa, teΨi = nsb, deΨi = B(eΨi)

)
.

MCF may be formulated as the linear program with the
following objective and constraints:

Objective:

minimize
∑
es∈Es

1

B(es) + ε

∑
eΨi∈EΨi

fe
Ψi

es , (14)

where ε << 1 and fe
Ψi

es is the bandwidth of the substrate link
es that is allocated for the virtual link eΨi .

Capacity constraint:∑
eΨi∈EΨi

[
fe

Ψi

es(ns
j ,ns

k) + fe
Ψi

es(ns
k,ns

j)

]
≤ B(es(nsj ,n

s
k))

∀nsj ,nsk ∈ Ns. (15)

Flow conservation constraint:∑
ns
j∈Ns

[
fe

Ψi

es(ns
j ,ns

k) − f
eΨi

es(ns
k,ns

j)

]
= 0

∀eΨi ∈ EΨi , ∀nsk ∈ Ns \ {seΨi , teΨi}. (16)

Demand satisfaction constraints:∑
ns
j∈Ns

[
fe

Ψi

es(s
eΨi

,ns
j) − f

eΨi

es(ns
j ,s

eΨi
)

]
= deΨi

∀eΨi ∈ EΨi , (17)

∑
ns
j∈Ns

[
fe

Ψi

es(t
eΨi

,ns
j) − f

eΨi

es(ns
j ,t

eΨi
)

]
= −deΨi

∀eΨi ∈ EΨi . (18)

This MCF formulation is used in order to compare perfor-
mance of the proposed GRC-M algorithm with R-Vine and
D-vine algorithms that use similar formulation.

IV. PERFORMANCE EVALUATION

We compare performance of the GRC-M algorithm with
GRC [8], R-Vine [4], and D-Vine [4] algorithms that have
been proposed in the literature. We compare performance of
these algorithms by considering acceptance ratio, revenue to
cost ratio, and average node and link utilizations.

A. Simulation Environment

Simulations were performed using a Dell Optiplex-790
with 16 GB memory and the Intel Core i7 2600 processor.
We have developed VNE-Sim, a discrete-event VNE simulator
written in C++. It is based on the discrete event system spec-
ification (DEVS) framework [10] and employs the Adevs li-
brary [11]. Discrete-event systems may be modeled, designed,
analyzed, and simulated using the DEVS framework. We use
the GNU Scientific Library [12] to generate random numbers
and the required probability distributions. Substrate and virtual
network topologies and resources as well as parameters of the
GRC and Vine algorithms are adopted from the literature [4],
[8], [9].

The Boston University Representative Topology Generator
(BRITE) [13] has been used to generate the substrate and VNR
graphs. The substrate graph is composed of 50 nodes that are
randomly placed on a 25×25 grid. Each node is connected to
a maximum of 5 other nodes, resulting in a substrate network
graph with 221 edges. Node connections are generated based
on the Waxman algorithm [14] with the parameter α = 0.5
and the exponential parameter β = 0.2 [13], [15]. The VNR
graphs are generated using a similar process. The number of
nodes in each VNR graph is uniformly distributed between 3
and 10 [4]. Each virtual node is connected to a maximum of
3 other nodes. The CPU capacity of substrate nodes and the
bandwidth of substrate links are uniformly distributed between
50 and 100 units. The CPU requirements of the virtual nodes
are uniformly distributed between 2 and 20 units while the
bandwidth requirements of the virtual links are uniformly dis-
tributed between 0 and 50 units [4]. The maximum allowable
distance δ for embedding VNR nodes is uniformly distributed
between 15 and 25 distance units. We assume that the VNRs
arrive according to Poisson distribution with a mean arrival rate
of λ requests per unit time. Their life-times are exponentially
distributed with a mean 1

µ = 1, 000 generating VNR traffic
of λ/µ Erlangs. Each simulation lasted 50,000 time units [8],
[9]. Performance of the four algorithms was compared using
VNR arrival rates between 1 and 8 requests per 100 time units
generating traffic loads of 10, 20, 30, 40, 50, 60, 70, and 80
Erlangs [8].

B. Simulation Results

Simulation results are shown in Fig. 1. GRC-M achieves
the highest acceptance ratio in all scenarios while its revenue to
cost ratio decreases quickly. The substrate network resources
become scarce at higher VNR traffic loads. Therefore, there is
a higher likelihood of embedding virtual nodes onto substrate

10 20 30 40 50 60 70 80

0.4

0.6

0.8

Traffic load (Erlang)

A
cc

ep
ta

nc
e

ra
tio

p
a

GRC-M

GRC

R-Vine

D-Vine

10 20 30 40 50 60 70 80

0.5

0.55

0.6

0.65

Traffic load (Erlang)

R
ev

en
ue

to
co

st
ra

tio

GRC-M

GRC

R-Vine

D-Vine

10 20 30 40 50 60 70 80
0

20

40

60

Traffic load (Erlang)

A
ve

ra
ge

no
de

ut
ili

za
tio

n
(%

)

GRC-M

GRC

R-Vine

D-Vine

10 20 30 40 50 60 70 80
0

20

40

60

80

Traffic load (Erlang)
A

ve
ra

ge
lin

k
ut

ili
za

tio
n

(%
)

GRC-M

GRC

R-Vine

D-Vine

Fig. 1. Performance of the algorithms with various VNR traffic loads. Shown are performance metrics as functions of the VNR traffic load.

nodes that are further apart, which results in more costly em-
beddings and, consequently, smaller revenue to cost ratios [8].
Although high acceptance and revenue to cost ratios are
desirable for VNE algorithms, achieving both simultaneously
is not feasible. Therefore, the two ratios should be considered
at the same time. For example, consider the R-Vine and D-Vine
algorithms at 80 Erlangs. Their acceptance ratios are similar
while D-Vine has a 5% higher revenue to cost ratio. Therefore,
in this case D-Vine performs better than R-Vine. GRC-M has
the highest substrate node and link utilizations. Its average
node utilization is high as a result of the high acceptance ratio.
The high link utilization of GRC-M contributes to the fast
decreasing trend of its revenue to cost ratio.

V. CONCLUSION

In this paper, we proposed an improved virtual network
embedding algorithm named GRC-M that employs the Global
Resource Capacity for virtual node mapping while using
the Multicommodity Flow algorithm for link mappings. We
compare GRC-M with GRC, R-Vine, and D-Vine algorithms
in terms of acceptance ratio, revenue to cost ratio, and average
node and link utilizations. Simulation results show that while
GRC-M achieves revenue to cost ratios comparable to the Vine
algorithms, it enables embedding additional virtual network
requests onto a substrate network.

REFERENCES

[1] T. Anderson, L. Peterson, S. Shenker, and J. S. Turner, “Overcoming
the Internet impasse through virtualization,” Computer, vol. 38, no. 4,
pp. 34–41, Apr. 2005.

[2] N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in
your spare time,” Comput. Commun. Rev., vol. 37, no. 1, pp. 61–64,
Jan. 2007.

[3] N. M. M. K. Chowdhury and R. Boutaba, “Network virtualization: state
of the art and research challenges,” IEEE Commun. Mag., vol. 47, no. 7,
pp. 20–26, July 2009.

[4] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual
network embedding algorithms with coordinated node and link map-
ping,” IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[5] D. G. Andersen, “Theoretical approaches to node assignment,”
Dec. 2002, Unpublished Manuscript. [Online]. Available:
http://repository.cmu.edu/compsci/86/.

[6] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” Comput.
Commun. Rev., vol. 38, no. 2, pp. 19–29, Mar. 2008.

[7] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: a survey,” IEEE Commun. Surveys &
Tutorials, vol. 15, no. 4, pp. 1888–1906, Feb. 2013.

[8] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc.
IEEE INFOCOM, Toronto, ON, Canada, Apr. 2014, pp. 1–9.

[9] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
Comput. Commun. Rev., vol. 41, no. 2, pp. 38–47, Apr. 2011.

[10] A. M. Uhrmacher, “Dynamic structures in modeling and simulation: a
reflective approach,” ACM Trans. on Modeling and Comput. Simulation,
vol. 11, no. 2, pp. 206–232, Apr. 2001.

[11] J. J. Nutaro, Building Software for Simulation: Theory and Algorithms,
with Applications in C++. Hoboken, NJ, USA: John Wiley & Sons,
Inc., 2010.

[12] (2015, July) GLS-GNU Scientific Library. [Online]. Available:
http://www.gnu.org/software/gsl/.

[13] (2015, July) Boston University Representative Internet Topology
Generator. [Online]. Available: http://www.cs.bu.edu/brite/.

[14] B. M. Waxman, “Routing of multipoint connections,” IEEE J.Sel. Areas
Commun., vol. 6, no. 9, pp. 1617–1622, Dec. 1988.

[15] E. W. Zegura, K. L. Calvert, and M. J. Donnahoo, “A quantitative
comparison of graph-based models for Internet topology,” IEEE/ACM
Trans. Netw., vol. 5, no. 6, pp. 770–783, Dec. 1997.

