STAT 270 Lecture 34 Fall 2015 30 November 2015

- I did theory for confidence intervals.
- The relevant slides in "Inference for 1 Sample" are 1-47.
- Relevant problems: none new for this lecture.
- Handwritten slides.
- Key jargon, ideas:
 - If θ is a parameter (in this course μ , p, $\mu_1 \mu_2$ or $p_1 p_2$) and $\hat{\theta}$ is the corresponding estimate $(\bar{X}, \hat{p} = X/n, \bar{X} \bar{Y})$ or $\hat{p}_1 \hat{p}_2$) then

$$\frac{\hat{\theta} - \theta}{\text{Estimated SE}}$$

is an exact or approximate pivotal quantity.

- For normally distributed populations and any size sample

$$\frac{\bar{X} - \mu}{s/\sqrt{n}}$$

is an exact pivot with a Student's t distribution with $\nu=n-1$ degrees of freedom.

- For large sample sizes (roughly $n \ge 30$ for a one-sample mean, $n \ge 30$ and $m \ge 30$ for a two sample mean, $np \ge 5$ and $n(1-p) \ge 5$ for one-sample proportion, and so on) the pivot is approximately normal.
- You find a critical value $z_{\alpha/2}$ (for the normal distribution) or $t_{\alpha/2,\nu}$ (for the t distribution) such that

$$P(-\text{crit val} \leq \text{pivot} \leq \text{crit val}) = 1 - \alpha$$

to get a level $1 - \alpha$ confidence interval.

You solve the inequalities to get

$$\hat{\theta}$$
 – crit val × Est SE < θ < $\hat{\theta}$ + crit val × Est SE

for your interval.

– For a difference between 2 population means in 2 small samples you can use the t curve with n+m-2 degrees of freedom provided you believe the two populations have the same SD, σ , and you estimate this SD with the pooled sample standard deviation:

$$s_{\text{pooled}} = \sqrt{\frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}}.$$