Purposes of These Notes

- Describe two samples inference problems
- Tests for equality of two means.
- Confidence interval for difference of two means.
- Tests for equality of two proportions.
- Confidence interval for difference of two proportions.
- Scientific issues surrounding the techniques.

- Common experimental design: get a sample of people.
- Split group into two groups at random.
- Put n in group 1, m in group 2.
- Give new treatment to group 1; control treatment to group 2.

- Observe responses X_1, \ldots, X_n in group 1; Y_1, \ldots, Y_m in group two.
- Question of interest: compare treatment mean to control mean.
- Introduce notation. X population mean, SD are μ_1 and σ_1 .
- Subscript 2 for *Y*.
- Give confidence interval for $\mu_1 \mu_2$.
- Test: $H_0: \mu_1 = \mu_2$ or $H_0: \mu_1 \leq \mu_2$.

Methodology

- All methods based on distribution of $\bar{X} \bar{Y}$.
- Mean and SD:

$$E(\bar{X} - \bar{Y}) = \mu_1 - \mu_2$$

$$\sigma_{\bar{X} - \bar{Y}} = \sqrt{\operatorname{Var}(\bar{X} - \bar{Y})} = \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}$$

ullet If n and m large, or population distributions normal,

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}$$

has approximately a N(0,1) distribution.

- Standard error usually has to be estimated.
- Just replace σ_i by s_i .
- ullet If n and m large can ignore impact of estimation.

Confidence intervals for $\mu_1 - \mu_2$

- Three procedures in use.
- Large sample normal approximation:

$$\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{m}}$$

ullet Normal populations, approximate t distribution

$$\bar{X} - \bar{Y} \pm t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{m}}$$

where df ν is estimated from the data; see STAT 285.

• Normal populations, equal variances $\sigma_1 = \sigma_2 = \sigma$:

$$\bar{X} - \bar{Y} \pm t_{\alpha/2,\nu} \sqrt{\frac{s^2}{n} + \frac{s^2}{m}}$$

where df $\nu=n+m-2$ and s^2 is pooled variance estimate:

$$s^{2} = \frac{n-1}{n+m-2}s_{1}^{2} + \frac{m-1}{n+m-2}s_{2}^{2}$$

(a weighted average of two estimates of σ^2).

Hypothesis tests for $\mu_1 - \mu_2$

- Three procedures in use.
- All based on statistics of form

$$T = \frac{\bar{X} - \bar{Y}}{\hat{\sigma}_{\bar{X} - \bar{Y}}}$$

• Issues:

- One tailed versus two
- How to estimate standard error
- Null distribution

Hypothesis tests for $\mu_1 - \mu_2$, II

• Normal populations, equal variances $\sigma_1 = \sigma_2 = \sigma$. Use t distribution and

$$\hat{\sigma}_{\bar{X} - \bar{Y}} = \sqrt{\frac{s^2}{n} + \frac{s^2}{m}}$$

where degrees of freedom $\nu = n + m - 2$ and s^2 is pooled variance estimate.

Normal populations, unequal variances. Use
 t distribution and

$$\hat{\sigma}_{\bar{X}-\bar{Y}} = \sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{m}}$$

where degrees of freedom ν estimated from data as for CI.

ullet Large Samples. Previous suggestion or replace t with normal.

Two sample inference for proportions

- Two independent sets of Bernoulli trials.
- X is $Binomial(n, p_1)$ and Y is $Binomial(m, p_2)$
- Confidence intervals for $p_1 p_2$.
- Hypothesis tests: $H_0: p_1 = p_2$ or $H_0: p_1 \le p_2$.
- One-sided or two sided alternatives.

ullet All based on $\hat{p}_1 - \hat{p}_2 = X/n - Y/m$ which has

$$E(\hat{p}_1 - \hat{p}_2) = p_1 - p_2$$

$$\sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\operatorname{Var}(\hat{p}_1 - \hat{p}_2)} = \sqrt{\frac{p_1(1 - p_1)}{n} + \frac{p_2(1 - p_2)}{m}}$$

• Replace standard error with appropriate estimate: either using \hat{p}_1 and \hat{p}_2 OR for testing $p_1 = p_2 = p$ (with p not specified) use

$$\hat{p}_1 = \hat{p}_2 = \hat{p} = \frac{X + Y}{n + m}.$$

Make normal approximation even after estimation of SE.

Salk Polio Vaccine Example

- n=m=200,000. X is number of polio cases in vaccine group. Y is number in control group.
- ullet Model: assume X and Y independent.
- Mildly controversial. Polio is contagious.
- Assume each treated child has prob p_1 of getting polio. Control child prob is p_2 .
- Does the vaccine work?

- Hypothesis testing problem. $H_0: p_1 = p_2$ vs $H_a: p_1 < p_2$.
- Clearly one-sided.
- Observe X = 54, Y = 142.
- Pooled estimate of p is $\hat{p} = 196/400,000 = 4.8 \times 10^{-4}$ so

$$T = \frac{54/2000000 - 142/200000}{\sqrt{\hat{p}(1-\hat{p})\frac{1}{200000} + \frac{1}{200000}}} = -6.29.$$

- *P*-value from normal curve is 1.6×10^{-10} .
- Overwhelming evidence against assertion vaccine doesn't work.

Devore text Page 286 Q 67

- Compression strength in pounds of boxes.
- Two methods to compare: fixed and floating.

Method	Sample Size	Sample Mean	Sample
Fixed	10	807	27
Floating	10	757	41

- Published article concludes "the difference between the compression strength using fixed and floating platen method was found to be small compared to normal variation strength between identical boxes"
- Agree or not?

- Main practical issue: what statistical analysis is relevant.
- We will measure the difference between the two methods by estimating the difference in average strength between the two methods.
- We will give a confidence interval, then interpret.

The interval

- Introduce notation: samples of n=10 and m=10 from two populations, means μ_1 (for fixed method) and μ_2 (for floating); SDs σ_1 and σ_2 .
- ullet Confidence interval for $\mu_1 \mu_2$ is

$$\bar{X} - \bar{Y} + t_{0.025,\nu} \sqrt{\frac{27^2}{10} + \frac{41^2}{10}}$$

• Pooled or not? df ν ?.

- Fact: estimated Standard Error is the same whether we pool or not.
- Formula for ν simplifies because n=m:

$$\nu = 9 \frac{(s_1^2 + s_2^2)^2}{s_1^4 + s_2^4} = 15.6$$

- For $\nu=15$ get multiplier 2.131. For $\nu=16$ get 2.12. For $\nu=15.6$ get 1.125. No important difference.
- If you believed $\sigma_1 = \sigma_2$ you would use 18 df. No important difference.

Results and interpretation relative to question

Interval is

 $50 \pm 2.12 \times 15.52$ or 17.1 to 82.9.

- Is that small compared to normal variation?
- No.
- Normal variation is summarized by the SDs of 27 and 41.
- This interval is of similar sized numbers.
 (Numbers not unlike 27 and 41.)

Clear difference between methods?

- We could also ask if there is definitely a difference. I think this is not the way to answer the question asked. But Devore's book argues it is.
- Different views of 'small compared to'.
- Test H_0 : $\mu_1 = \mu_2$ against two sided alternative.
- Borrow almost all arithmetic from CI:

$$T = \frac{807 - 757}{15.52} = 3.22$$

with $\nu = 15$ df.

- Get *P* value from student's *t* curve. In tables: area to right of 3.22 is between 0.002 and 0.003.
- Closer to 0.003.
- Double to get P. A bit smaller than 0.006.
- From computer with $\nu = 15.6$ get 0.0055.
- Either way it is quite clear that there is a difference in mean compression strength between the two methods.
- So the claim in the paper is not credible, whatever it means.