Categorical Covariates

- Examples: variables SCHOOL (Med school yes or no) and REGION in SENIC.
- Called Factors, possible values called levels; e.g. YES or NO are 2 levels of factor SCHOOL.
- Simplest situation when effects additive:
- Intercepts depend on levels of categorical covariates but not slopes of other variables.
- ▶ Idea is: effect of NURSES is measured by corresponding slope.
- Interpretation simplest if slope same for hospitals in all 4 regions.
- See assignment 3 for simplest example.
- If slope depends on level of categorical covariate then factor interacts with continuous covariate, otherwise effects called additive.

Fitting models with categorical covariates

- Suppose a categorical variable has K levels.
- ▶ Relabel the data as $Y_{i,j}$ where j runs from 1 to n_i and i runs from 1 to K.
- ▶ Here n_i is the number of observations with the categorical variable at level i.
- We fit the model

$$Y_{i,j} = \beta_{0,i} + x_{i,j}^T \beta + \epsilon_{i,j}$$

- ▶ Now β is vector of slopes for, say, p continuous covariates.
- $\triangleright \beta_{0,i}$ is the intercept which depends on the level i of the categorical variable.

- ► This model does not have a column of 1's in the design matrix.
- ▶ It can be fitted by specifying /NOINT in SAS, for example.
- Common, however, to reparametrize in such a way that the model has a column of 1's
- ▶ Hypothesis of no effect of factor, that is, $H_o: \beta_{0,1} = \cdots = \beta_{0,K}$ becomes hypothesis that coefficients of some columns of design matrix are 0.
- ▶ Usually done by defining β_0 to be a weighted average of the intercepts, that is,

$$\beta_0 = \sum n_i \beta_{0,i} / \sum n_i \,,$$

- ▶ Or by defining β_0 to be the intercept for level 1 of the factor, that is, $\beta_0 = \beta_{0,1}$.
- ▶ In either case define new parameters $\alpha_i = \beta_{0,i} \beta_0$.

► The model equation is now

$$Y_{i,j} = \beta_0 + \alpha_i + x_{i,j}^T \beta + \epsilon_{i,j}.$$

▶ In either case the α_i satisfy a linear restriction: either

$$\sum n_i \alpha_i = 0$$

or

$$\alpha_1 = 0$$
.

- ▶ If we forget about this linear restriction then our linear reparametrization increases the number of columns of the design matrix by 1 but without increasing the rank of X i
- \triangleright So new X^TX would be singular.
- SAS does the algebra without worrying about this
- It finds 1 of infinitely many possible solutions to the normal equations.

- ▶ I usually suggest the definition of β_0 as an average intercept.
- ▶ Then I eliminate α_K by writing

$$\alpha_K = -\sum_{i=1}^{K-1} \frac{n_i}{n_K} \alpha_i$$

- \blacktriangleright This changes the rows of the design matrix corresponding to observations at level K.
- ▶ The other definition of β_0 as $\beta_{0,1}$ is called corner point coding
- ▶ Column of design matrix corresponding to α_1 is dropped.

Example

- Consider a small version of the car mileage example on assignment 3.
- ▶ Imagine we have only the 5 data points below.

VE	EHICLE 1	VEHICLE 2			
Mileage	Emission Rate	Mileage	Emission Rate		
0	50	0	40		
1000	56	1100	49		
2000	58				

► For the model equation

$$Y_{i,j} = \beta_{0,i} + \beta_1 x_{ij} + \epsilon_{i,j}$$

we have $n_1 = 3$, $n_2 = 2$.

► The $x_{i,j}$ are the 5 numbers 0, 1000, 2000, 0, 1100.

► For this parametrization the design matrix is

$$X_a = \left[egin{array}{cccc} 1 & 0 & 0 \ 1 & 0 & 1000 \ 1 & 0 & 2000 \ 0 & 1 & 0 \ 0 & 1 & 1100 \ \end{array}
ight]$$

For the parametrization

$$Y_{i,j} = \beta_0 + \alpha_i + \beta_1 x_{ij} + \epsilon_{i,j}$$

the design matrix is that above with an extra column of 1's:

$$X_b = \left[egin{array}{ccccc} 1 & 1 & 0 & 0 \ 1 & 1 & 0 & 1000 \ 1 & 1 & 0 & 2000 \ 1 & 0 & 1 & 1100 \ \end{array}
ight]$$

▶ Since columns 2 and 3 add together to give the first column the matrix has rank 4 and X^TX is singular.

- ▶ Define parameters $\beta_0 = (3\beta_{0,1} + 2\beta_{0,2})/5$, $\alpha_1 = \beta_{0,1} \beta_0$ and $\alpha_2 = \beta_{0,2} \beta_0$.
- ▶ Then $3\alpha_1 + 2\alpha_2 = 0$.
- As a result we can write the model equations as

$$Y_{1,j} = \beta_0 + \alpha_1 + \beta_1 x_{1j} + \epsilon_{1,j}$$

and

$$Y_{2,j} = \beta_0 - 3\alpha_1/2 + \beta_1 x_{2j} + \epsilon_{2,j}$$

► Then the design matrix is

$$X_c = \left[egin{array}{cccc} 1 & 1 & 0 \ 1 & 1 & 1000 \ 1 & 1 & 2000 \ 1 & -rac{3}{2} & 0 \ 1 & -rac{3}{2} & 1100 \ \end{array}
ight]$$

► Alternatively corner point coding leads to the design matrix

$$X_d = \left[egin{array}{cccc} 1 & 0 & 0 \ 1 & 0 & 1000 \ 1 & 0 & 2000 \ 1 & 1 & 0 \ 1 & 1 & 1100 \ \end{array}
ight]$$

- ► All these design matrixes have the same column spaces
- So they must give same fitted values, same residuals and the same error sum of squares.
- ► Hypothesis of no "Vehicle" effect (two cars have same intercept) is tested either by a *t*-test or by an *F*-test.
- ▶ t test is for the parameter which is the difference of intercepts
- ► F test is extra sum of squares F-test comparing with the restricted model in which just 1 straight line is fitted.
- ▶ One important point is that in all the parametrizations the parameter "difference of intercepts" has the same estimate.
- ▶ This is true even for the matrix X_b for which $X_b^T X_b$ is singular.

Factors with more than two levels

SAS Code adding two categorical variables, SCHOOL and REGION, to our model.

```
proc glm data=scenic;
  class School Region;
  model Risk = Culture Stay Nurses
     Nratio School Region;
run ;
proc glm data=scenic;
  class School Region;
  model Risk = Culture Stay
    Nurses School Region;
run ;
proc glm data=scenic;
  class School Region;
  model Risk = Culture Stay Nurses Region;
run ;
```



```
Values
          Class Levels
          SCHOOL
                          1 2 3 4
          REGION
Dependent Variable: RISK
          Sum of
                    Mean
          Squares Square F Pr > F
Source
      DF
       8 110.9440 13.8680 15.95 0.0001
Model
Error 104 90.4358
                    0.8696
Total 112 201.3798
 R-Square C.V. Root MSE RISK Mean
 0.550919 21.41305 0.9325101 4.3548673
```


Source	DF	Type I SS	Mean Squar	e F	Pr > F
CULTURE	1	62.9634	62.9631	72.41	0.0001
STAY	1	27.7388	27.7388	31.90	0.0001
NURSES	1	7.0137	7.0137	8.07	0.0054
NRATIO	1	5.9748	5.9748	6.87	0.0101
SCHOOL	1	1.2488	1.2488	1.44	0.2335
REGION	3	6.0047	2.0016	2.30	0.0815

Source	DF	Type 3 SS	Mean Squar	e F	Pr > F
CULTURE	1	27.4386	27.4386	31.55	0.0001
STAY	1	26.4490	26.4490	30.42	0.0001
NURSES	1	6.3902	6.3902	7.35	0.0079
NRATIO	1	1.7448	1.7448	2.01	0.1596
SCHOOL	1	2.2195	2.2195	2.55	0.1132
REGION	3	6.0047	2.0016	2.30	0.0815


```
Sum of Mean
          Squares
                  Square F 	 Pr > F
Source
      DF
        109.1992
                  15.5999 17.77
                               0.0001
Model
      105 92.1806 0.8779
Error
Total 112 201.3798
    R-Square C.V. Root MSE RISK Mean
    0.542255 21.51544 0.9369689 4.3548673
          Type I SS Mean Square F Pr > F
       DF
Source
        1 62.9631 62.9631
                             71.72 0.0001
CULTURE
STAY
        1 27.7388 27.7388
                             31.60 0.0001
        1 7.0137 7.0137 7.99 0.0056
NURSES
SCHOOL 1 2.1654 2.1654 2.47 0.1193
        3 9.3181 3.1060 3.54 0.0173
REGION
```


Source	DF	Type 3 SS	Mean Square	F	Pr > F
CULTURE	1	32.6368	32.6368	37.18	0.0001
STAY	1	24.7063	24.7063	28.14	0.0001
NURSES	1	8.9907	8.9908	10.24	0.0018
SCHOOL	1	3.1958	3.1958	3.64	0.0591
REGION	3	9.3181	3.1060	3.54	0.0173

		Sum o	f	Mean					
Source	DF	Square	s So	quare]	F	Pr >	F	
Model	6	106.003	4 1	7.667	2 19	.64	0.000)1	
Error	106	95.376	5 (0.899	8				
C Totl	112	201.379	8						
	R-Sc	quare	C.V	. R	oot M	SE	RISH	K Mean	
	.5263	385 21	.781	75 0	.9485	663	4.35	548673	
Source	DF	Type I	SS	Mean	Squa	re	F	Pr > F	1
CULTURE	1	62.96	31	62.9	631	69	.98	0.0001	
STAY	1	27.73	88	27.7	388	30	.83	0.0001	
NURSES	1	7.01	37	7.0	137	7	.79	0.0062)
REGION	3	8.28	77	2.7	626	3	.07	0.0310)
Source	DF	Type 3	SS	Mean	Squa	re	F	Pr > F	1
CULTURE	1	30.50	32	30.5	032	33	.90	0.0001	
STAY	1	22.98	97	22.9	897	25	.55	0.0001	
NURSES	1	5.85	04	5.8	504	6	.50	0.0122	•
REGION	3	8.28	77	2.7	626	3	.07	0.0310)

Conclusions

- ► Type I, II, III and IV sums of squares terminology
- Look at type III SS to see which effects can be deleted from full model.
- BUT, can only delete one at a time.
- ▶ Notice that NRATIO is least significant so drop it and refit.
- After refitting SCHOOL is not quite significant so delete and rerun.
- All remaining effects significant.
- ▶ Notice that *F*-test for REGION has 3 degrees of freedom.
- ▶ What is being tested is $\beta_{0,1} = \cdots = \beta_{0,4}$ where these are 4 intercepts.
- ▶ Under the restricted model where this hypothesis is assumed there is 1 intercept compared to 4 intercepts in the full model.
- ► The difference of 3 is the degrees of freedom associated with the sum of squares for REGION.

SAS sum of squares types

- Type III sums of squares are extra SS.
- ► They compare a model with all the effects in the model statement in proc glm to a model with one of those effects removed (but all the others still there).
- ► The TYPE I SS are also called sequential SS.
- ➤ They compare models which include all the factors down to a certain line in the table with the model including all the factors down to that line but not including the line.
- Example: Type I SS for SCHOOL in first model compares a model with CULTURE, STAY, NURSES and NRATIO to a model with all those variables plus SCHOOL.
- ▶ Neither model includes the line lower than SCHOOL in the table neither model includes REGION.
- ► All TYPE I *F*-statistics use ESS from whole model fitted by GLM in denominator.
- ▶ So denominator estimate of σ^2 in Type I SS test for Schools is ESS from a model including REGION and all other variables.

Categorical covariates summary

- ightharpoonup Data $Y_{i,j}$; i labels level of covariate.
- Additive Model:

$$Y_{i,j} = \beta_{0,i} + x_{i,j}^T \beta + \epsilon_{i,j}$$

Alternative form of same model:

$$Y_{i,j} = \beta_0 + \alpha_i + x_{i,j}^T \beta + \epsilon_{i,j}.$$

▶ Possible linear restrictions on α_i 's.

$$\sum n_i \alpha_i = 0$$

or

$$\alpha_1 = 0$$
.

