
Fitting Linear Models

Requires assumptions about ǫis. Usual assumptions:

1. ǫ1, . . . , ǫn are independent. (Sometimes we assume only that
Cov(ǫi , ǫj) = 0 for i 6= j ; that is we assume the errors are
uncorrelated.)

2. Homoscedastic errors; all variances are equal:

Var(ǫ1) = Var(ǫ2) = · · · = σ2

3. Normal errors: ǫi ∼ N(0, σ2).

Remember: we already have assumed E(ǫi ) = 0.
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Notes

◮ Assumptions 1, 2 and 3 permit Maximum Likelihood
Estimation.

◮ Assumptions 1 and 2 justify least squares.

◮ Assumption 3 can be replaced by other error distributions, but
not in this course.

◮ With normal errors maximum likelihood estimates are the
same as least squares estimates.

◮ Assumption 2 — Homoscedastic errors — can be relaxed; see
STAT 402 “Generalized Linear Models” or “weighted least
square”.

◮ Assumption 1 can be relaxed; see STAT 804 for Time Series
models.
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Motivation for Least Squares

Choose β̂ to make fitted values µ̂ = X β̂ as close to Y s as
possible.
There are many possible choices for “close”:

◮ Mean Absolute Deviation: minimize

1

n

∑
|Yi − µ̂i |

◮ Least Median of Squares: minimize

median{|Yi − µ̂i |2}
◮ Least squares: minimize∑

(Yi − µ̂i)
2

WE DO LS = least squares.
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To minimize
∑

(Yi − µ̂i)
2 take derivatives with respect to each β̂j

and set them equal to 0:

∂

∂β̂j

n∑
i=1

(Yi − µ̂i)
2 =

n∑
i=1

∂

∂β̂j

(Yi − µ̂i)
2

=
n∑

i=1

[
∂

∂µ̂i
(Yi − µ̂i)

2

]
∂µ̂i

∂β̂j

But
∂

∂µ̂i
(Yi − µ̂i)

2 = −2(Yi − µ̂i)

and

µ̂i =

p∑
j=1

xij β̂j

so
∂µ̂i

∂β̂j

= xij
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Thus
∂

∂β̂j

n∑
i=1

(Yi − µ̂i)
2 = −2

n∑
i=1

xij(Yi − µ̂i)
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Normal Equations

Set this equal to 0; Get so-called normal equations:

n∑
i=1

Yixij =
n∑

i=1

µ̂ixij j = 1, . . . , p

Finally remember that µ̂i =
∑p

k=1 xik β̂k to get

∑
Yixij =

n∑
i=1

p∑
k=1

xijxik β̂k (1)
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◮ Formula looks dreadful

◮ but it’s just a bunch of matrix-vector multiplications written
out in summation notation.

◮ Note that it is a set of p linear equations in p unknowns
β̂1, . . . , β̂p.
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Normal equations in vector matrix form

First
n∑

i=1

xijxik

is the dot product between the jth and kth columns of X . Another
way to view this is as the jkth entry in the matrix XTX :

XTX =


x11 x21 · · · xn1

x12 x22 · · · xn2
...

... · · · ...
x1p x2p · · · xnp


 x11 · · · x1p

... · · · ...
xn1 · · · xnp



Richard Lockhart STAT 350: Fitting Linear Models



The jkth entry in this matrix product is clearly

x1jx1k + x2jx2k + · · · + xnjxnk

so that the right hand side of (1) is

p∑
k=1

(XTX )jk β̂k

which is just the matrix product

((XT X )β̂)j
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Now look at the left hand side of (1), namely,
∑n

i=1 Yixij which is
just the dot product of Y and the jth column of X or the jth entry
of XTY :

x11 x21 · · · xn1

x12 x22 · · · xn2
...

... · · · ...
x1p x2p · · · xnp




Y1

Y2
...

Yn

 =

 x11Y1 + x21Y2 + · · · + xn1Yn
...

x1pY1 + x2pY2 + · · · + xnpYn


So the normal equations are

(XTY )j = (XTX β̂)j

or just
XTY = XTX β̂

Last formula is usual way to write the normal equations.

Richard Lockhart STAT 350: Fitting Linear Models



Solving Normal Equations for β̂
Let’s look at the dimensions of the matrices first.

◮ XT is p × n,

◮ Y is n × 1,

◮ XTX is a p × n matrix multiplied by a n × p matrix which
just produces a p × p matrix.

◮ If the matrix XTX has rank p then XTX is not singular and
its inverse (XT X )−1 exists. So solve

XTY = XTX β̂

for β̂ by multiplying both sides by (XTX )−1 to get

β̂ = (XT X )−1XTY

This is the ordinary least squares estimator.
See assignment 1 for an example with rank(X ) < p.
See chapter 5 in the text for a review of matrices and vectors.
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Normal Equations for Simple Linear Regression

Thermoluminescence Example

See Introduction for the framework. Here I consider two models:

◮ a straight-line model,

Yi = β1 + β2Di + ǫi

◮ a quadratic model,

Yi = β1 + β2Di + β3D
2
i + ǫi .
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First, general theoretical formulas, then numbers and arithmetic:

X =

 1 D1
...

...
1 Dn



XTX =

[
1 · · · 1
D1 · · · Dn

]  1 D1
...

...
1 Dn

 =

[
n

∑n
i=1 Di∑n

i=1 Di
∑n

i=1 D2
i

]

(XTX )−1 =
1

n
∑

D2
i − (

∑
Di)2

[ ∑n
i=1 D2

i −∑n
i=1 Di

−∑n
i=1 Di n

]
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XTY =

[
1 · · · 1
D1 · · · Dn

] Y1
...

Yn

 =

[ ∑n
i=1 Yi∑n

i=1 DiYi

]

(XTX )−1XTY =


P

Yi
P

D2
i −

P
Di

P
DiYi

n
P

D2
i −(

P
Di )2

n
P

DiYi−(
P

DI )(
P

Yi )
n

P
D2

i −(
P

Di )2


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So

(XTX )−1XTY =


Ȳ

P
D2

i −D̄
P

DiYiP
(Di−D̄)2

P
(Di−D̄)(Yi−Ȳ )P

(Di−D̄)2



=


Ȳ [

P
D2

i −nD̄2]−D̄[
P

DiYi−D̄Ȳ ]
n

P
D2

i −(
P

Di )2

SDY
SDD



=

 Ȳ − SDY
SDD

D̄

SDY
SDD


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The data are

Dose Count

0 27043
0 26902
0 25959

150 27700
150 27530
150 27460
420 30650
420 30150
420 29480
900 34790
900 32020

1800 42280
1800 39370
1800 36200
3600 53230
3600 49260
3600 53030
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The design matrix for the linear model is

X =



1 27043
1 26902
1 25959
1 27700
1 27530
1 27460
1 30650
1 30150
1 29480
1 34790
1 32020
1 42280
1 39370
1 36200
1 53230
1 49260
1 53030


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◮ Compute XTX in Minitab or Splus or R.

◮ That matrix has 4 numbers each of which is computed as the
dot product of 2 columns of X .

◮ For instance the first column dotted with itself produces
12 + · · · + 12 = 17.

◮ Here is an example S session which reads in the data, produces
the design matrices for the two models and computes XTX .
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[36]skekoowahts% S

# The data are in a file called linear. The !

# tells S that what follows is not an S command but a standard

# UNIX (or DOS) command

#

> !more linear

Dose Count

0 27043

0 26902

0 25959

150 27700

150 27530

150 27460

420 30650

420 30150

420 29480

900 34790

900 32020

1800 42280

1800 39370

1800 36200

3600 53230

3600 49260

3600 53030

#
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# The function help(function) produces help for
# a function such as
# > help(read.table)
#
# Read in the data from a file. The file has 18 lines:
# 17 lines of data and a first line which has the names
# of the variables. The function read.table reads such
# data and header=T warns S that the first line is
# variable names. The first argument of read.table is
# a character string containing the name of the file
# to read from.
#
> dat <- read.table("linear",header=T)
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> dat
Dose Count

1 0 27043
2 0 26902
3 0 25959
4 150 27700
5 150 27530
6 150 27460
7 420 30650
8 420 30150
9 420 29480

10 900 34790
11 900 32020
12 1800 42280
13 1800 39370
14 1800 36200
15 3600 53230
16 3600 49260
17 3600 53030
#
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# the design matrix has a column of 1s and also
# a column consisting of the first column of dat
# which is just the list of covariate values
# The notation dat[,1] picks out the first column of dat
#
> design.mat <- cbind(rep(1,17),dat[,1])
#
# To print out an object you type its name!
#
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> design.mat
[,1] [,2]

[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 1 150
[5,] 1 150
[6,] 1 150
[7,] 1 420
[8,] 1 420
[9,] 1 420

[10,] 1 900
[11,] 1 900
[12,] 1 1800
[13,] 1 1800
[14,] 1 1800
[15,] 1 3600
[16,] 1 3600
[17,] 1 3600
#
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# Compute X^T X -- uses %*% to multiply matrices
# and t(x) to compute the transpose of a matrix x.
#
> xprimex <- t(design.mat)%*% design.mat
> xprimex

[,1] [,2]
[1,] 17 19710
[2,] 19710 50816700
#
# Compute X^T Y
#
> xprimey <- t(design.mat)%*% dat[,2]
> xprimey

[,1]
[1,] 593054
[2,] 882452100
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#
# Next compute least squares estimates by solving
# normal equations
#
> solve(xprimex,xprimey)

[,1]
[1,] 26806.734691
[2,] 6.968012
#
# solve(A,b) computes solution of Ax=b for A a
# square matrix and b a vector. Note x=A^{-1}b.
#
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#
# The next piece of code regresses the variable
# Count on Dose taking the data from dat.
#
> lm( Count~Dose,data=dat)
Call:
lm(formula = Count ~ Dose, data = dat)

Coefficients:
(Intercept) Dose

26806.73 6.968012

Degrees of freedom: 17 total; 15 residual
Residual standard error: 1521.238
#
# Notice the estimates agree with our calculations
# Residual standard error is usual estimate of sigma
# namely the square root of the Mean Square for Error.
#
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#
# Now add a third column to fit the quadratic model
#
> design.mat2_cbind(design.mat,design.mat[,2]^2)
#
# Here is X^T X
#
> t(design.mat2)%*% design.mat2

[,1] [,2] [,3]
[1,] 17 19710 5.081670e+07
[2,] 19710 50816700 1.591544e+11
[3,] 50816700 159154389000 5.367847e+14
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#
# Here is X^T Y
#
> t(design.mat2)%*% dat[,2]

[,1]
[1,] 5.930540e+05
[2,] 8.824521e+08
[3,] 2.469275e+12
#
# But the following illustrates the dangers
# of doing computations blindly on the computer.
# The trouble is that the design matrix has a
# third column which is so much larger that
# the first two.
#
> solve(t(design.mat2)%*% design.mat2,

t(design.mat2)%*% dat[,2])
Error in solve.qr(a, b): apparently singular matrix
Dumped
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#
# However, good packages know numerical techniques
# which avoid the danger.
#
> lm(Count ~ Dose+Dose^2,data=dat)
Call:
lm(formula = Count ~ Dose + Dose^2, data = dat)

Coefficients:
(Intercept) Dose I(Dose^2)

26718.11 7.240314 -7.596867e-05

Degrees of freedom: 17 total; 14 residual
Residual standard error: 1571.277
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#
# WARNING: you can’t tell from the size of the
# estimate of an estimate such as that of beta_3
# whether or not it is important -- you have to
# compare it to values of the corresponding
# covariate and to its standard error
#
> q()
# Used to quit S: pay attention to () --
# that part is essential!
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