
STAT 350

Assignment 6 Solutions

1. For the Nitrogen Output in Wallabies data set from Assignment 3 do forward, back-
ward, stepwise and all subsets regression.

Here is code for all the methods and with all subsets done both using Cp and using
adjusted R2.

data nit;

infile ’nit.dat’ ;

input nitexc weight dryin wetin nitin ;

proc reg data=nit;

model nitexc = weight dryin wetin

nitin /selection=FORWARD;

run ;

proc reg data=nit;

model nitexc = weight dryin wetin

nitin /selection=BACKWARD;

run ;

proc reg data=nit;

model nitexc = weight dryin wetin

nitin /selection=STEPWISE;

run ;

proc reg data=nit;

model nitexc = weight dryin wetin

nitin /selection=CP;

run ;

proc reg data=nit;

model nitexc = weight dryin wetin

nitin /selection=ADJRSQ;

run ;

The conclusion of the output

Forward Selection Procedure for Dependent Variable NITEXC

Step 1 Variable NITIN Entered R-square = 0.95152988 C(p) = 0.19478831

DF Sum of Squares Mean Square F Prob>F

Regression 1 176039.65105472 176039.65105472 451.52 0.0001

Error 23 8967.30894528 389.88299762

Total 24 185006.96000000
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Parameter Standard Type II

Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 101.08658320 7.35602243 73626.68406474 188.84 0.0001

NITIN 0.64694573 0.03044597 176039.65105472 451.52 0.0001

Bounds on condition number: 1, 1

--------------------------------------------------------------------------------

Step 2 Variable WETIN Entered R-square = 0.95383292 C(p) = 1.18772819

DF Sum of Squares Mean Square F Prob>F

Regression 2 176465.72840308 88232.86420154 227.27 0.0001

Error 22 8541.23159692 388.23779986

Total 24 185006.96000000

Parameter Standard Type II

Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 88.74785286 13.87826796 15876.06942341 40.89 0.0001

WETIN 0.02934402 0.02801072 426.07734836 1.10 0.3062

NITIN 0.63199810 0.03356537 137640.57608325 354.53 0.0001

Bounds on condition number: 1.220562, 4.882248

--------------------------------------------------------------------------------

No other variable met the 0.5000 significance level for entry into the model.

Summary of Forward Selection Procedure for Dependent Variable NITEXC

Variable Number Partial Model

Step Entered In R**2 R**2 C(p) F Prob>F

1 NITIN 1 0.9515 0.9515 0.1948 451.5192 0.0001

2 WETIN 2 0.0023 0.9538 1.1877 1.0975 0.3062

Backward Elimination Procedure for Dependent Variable NITEXC

Step 0 All Variables Entered R-square = 0.95426223 C(p) = 5.00000000

DF Sum of Squares Mean Square F Prob>F
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Regression 4 176545.15437710 44136.28859428 104.32 0.0001

Error 20 8461.80562290 423.09028114

Total 24 185006.96000000

Parameter Standard Type II

Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 111.02503203 92.09694447 614.87158016 1.45 0.2421

WEIGHT -0.00594399 0.02807714 18.96195525 0.04 0.8345

DRYIN -0.06000511 0.24052534 26.33224358 0.06 0.8055

WETIN 0.04783734 0.09083460 117.34499123 0.28 0.6042

NITIN 0.64809282 0.06471880 42427.40669891 100.28 0.0001

Bounds on condition number: 18.81062, 144.3604

--------------------------------------------------------------------------------

Step 1 Variable WEIGHT Removed R-square = 0.95415974 C(p) = 3.04481775

DF Sum of Squares Mean Square F Prob>F

Regression 3 176526.19242186 58842.06414062 145.70 0.0001

Error 21 8480.76757814 403.84607515

Total 24 185006.96000000

Parameter Standard Type II

Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 91.84916426 16.26623043 12876.34024832 31.88 0.0001

DRYIN -0.08200363 0.21193002 60.46401878 0.15 0.7027

WETIN 0.05721277 0.07748286 220.18641282 0.55 0.4684

NITIN 0.65159457 0.06112979 45884.38908641 113.62 0.0001

Bounds on condition number: 15.29972, 84.5105

--------------------------------------------------------------------------------

Step 2 Variable DRYIN Removed R-square = 0.95383292 C(p) = 1.18772819

DF Sum of Squares Mean Square F Prob>F

Regression 2 176465.72840308 88232.86420154 227.27 0.0001

Error 22 8541.23159692 388.23779986

Total 24 185006.96000000

Parameter Standard Type II
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Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 88.74785286 13.87826796 15876.06942341 40.89 0.0001

WETIN 0.02934402 0.02801072 426.07734836 1.10 0.3062

NITIN 0.63199810 0.03356537 137640.57608325 354.53 0.0001

Bounds on condition number: 1.220562, 4.882248

--------------------------------------------------------------------------------

Step 3 Variable WETIN Removed R-square = 0.95152988 C(p) = 0.19478831

DF Sum of Squares Mean Square F Prob>F

Regression 1 176039.65105472 176039.65105472 451.52 0.0001

Error 23 8967.30894528 389.88299762

Total 24 185006.96000000

Parameter Standard Type II

Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 101.08658320 7.35602243 73626.68406474 188.84 0.0001

NITIN 0.64694573 0.03044597 176039.65105472 451.52 0.0001

Bounds on condition number: 1, 1

--------------------------------------------------------------------------------

All variables left in the model are significant at the 0.1000 level.

Summary of Backward Elimination Procedure for Dependent Variable NITEXC

Variable Number Partial Model

Step Removed In R**2 R**2 C(p) F Prob>F

1 WEIGHT 3 0.0001 0.9542 3.0448 0.0448 0.8345

2 DRYIN 2 0.0003 0.9538 1.1877 0.1497 0.7027

3 WETIN 1 0.0023 0.9515 0.1948 1.0975 0.3062

Stepwise Procedure for Dependent Variable NITEXC

Step 1 Variable NITIN Entered R-square = 0.95152988 C(p) = 0.19478831

DF Sum of Squares Mean Square F Prob>F
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Regression 1 176039.65105472 176039.65105472 451.52 0.0001

Error 23 8967.30894528 389.88299762

Total 24 185006.96000000

Parameter Standard Type II

Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 101.08658320 7.35602243 73626.68406474 188.84 0.0001

NITIN 0.64694573 0.03044597 176039.65105472 451.52 0.0001

Bounds on condition number: 1, 1

--------------------------------------------------------------------------------

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

Summary of Stepwise Procedure for Dependent Variable NITEXC

Variable Number Partial Model

Step Entered Removed In R**2 R**2 C(p) F Prob>F

1 NITIN 1 0.9515 0.9515 0.1948 451.5192 0.0001

N = 25 Regression Models for Dependent Variable: NITEXC

C(p) R-square Variables in Model

In

0.19479 0.95152988 1 NITIN

1.18773 0.95383292 2 WETIN NITIN

1.56524 0.95296959 2 DRYIN NITIN

1.82386 0.95237815 2 WEIGHT NITIN

3.04482 0.95415974 3 DRYIN WETIN NITIN

3.06224 0.95411990 3 WEIGHT WETIN NITIN

3.27735 0.95362796 3 WEIGHT DRYIN NITIN

5.00000 0.95426223 4 WEIGHT DRYIN WETIN NITIN

103.27980 0.72493353 3 WEIGHT DRYIN WETIN

109.49540 0.70614534 2 DRYIN WETIN

183.76950 0.53171499 1 DRYIN

183.96969 0.53583097 2 WEIGHT DRYIN

314.82815 0.23657226 2 WEIGHT WETIN

324.50973 0.20985779 1 WETIN

414.13333 0.00489861 1 WEIGHT
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--------------------------------------

N = 25 Regression Models for Dependent Variable: NITEXC

Adjusted R-square Variables in Model

R-square In

0.94963591 0.95383292 2 WETIN NITIN

0.94942249 0.95152988 1 NITIN

0.94869409 0.95296959 2 DRYIN NITIN

0.94804889 0.95237815 2 WEIGHT NITIN

0.94761113 0.95415974 3 DRYIN WETIN NITIN

0.94756560 0.95411990 3 WEIGHT WETIN NITIN

0.94700338 0.95362796 3 WEIGHT DRYIN NITIN

0.94511468 0.95426223 4 WEIGHT DRYIN WETIN NITIN

0.68563831 0.72493353 3 WEIGHT DRYIN WETIN

0.67943128 0.70614534 2 DRYIN WETIN

0.51135477 0.53171499 1 DRYIN

0.49363378 0.53583097 2 WEIGHT DRYIN

0.17550378 0.20985779 1 WETIN

0.16716974 0.23657226 2 WEIGHT WETIN

-.03836666 0.00489861 1 WEIGHT

--------------------------------------

is that BACKWARD and STEPWISE settle for the model containing only Nitrogen
Intake as a predictor. The forward selection method also includes Wet Intake because
of the very high level of α (0.5) to enter. The all subsets method using Cp would
settle on the model using only nitrogen intake but the adjusted R2 method also includes
Wet Intake. However, overall there seems little reason to include Wet Intake since it
improves the fit very little and is not very significant at all.

2. Suppose X1, X2, X3 are independent N(µ, σ2) random variables, so that Xi = µ+ σZi

with Z1, Z2, Z3 independent standard normals.

(a) If XT = (X1, X2, X3) and ZT = (Z1, Z2, Z3) express X in the form AZ + b for a
suitable matrix A and vector b.

We have A = σI and bT = [µ, µ, µ].

(b) Show that X is MVN3(µX ,ΣX) and identify µX and ΣX .

The definition of MVN is that X be of the form AZ + b and then µX = b and
ΣX = AAT . So µT

x = [µ, µ, µ] and ΣX = σ2I.

(c) Let Yi = Xi − X̄ for i = 1, 2, 3 and Y4 = X̄. Show that Y ∼MVN4(µY ,ΣY ) and
find µY and ΣY .
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The definition of MVN is that X be of the form AZ+b. Then if Y = BX we have
Y = B(AZ + b) = (BA)Z + Bb so that Y is MVN with mean µY = Bb = E(Y )
and ΣY = (BA)(BA)T = BAATBT . In this case we find

µY = E(Y ) =


0
0
0
µ


and

B =


2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3
1/3 1/3 1/3


So

ΣY = σ2BBT =


2/3 −1/3 −1/3 0
−1/3 2/3 −1/3 0
−1/3 −1/3 2/3 0

0 0 0 1/3

 .

(d) In class I may have stated that the if the covariance between two components
of a multivariate normal vector is 0 then the components are independent, but
I indicated a proof only when the multivariate normal distribution in question
has a density. In this case the variance matrix is singular so there is no density.
However, in terms of the original Z it is possible to find two independent functions
of Z such that Y1, Y2, Y3 are a function of the first function while Y4 is a function
of the second.

i. Let U1 = (Z1 − Z2)/
√

2, U2 = (Z1 + Z2 − 2Z3)/
√

6 and U3 = (Z1 + Z2 +
Z3)/3. Show that U = (U1, U2, U3)

T has a multivariate normal distribution
and identify the mean and variance of U .
We have U = AZ where

A =

 1/
√

2 −1/
√

2 0

1/
√

6 1/
√

6 −2/
√

6
1/3 1/3 1/3


Thus U is multivariate normal with mean 0 and variance covariance matrix
AAT . Multiply this out to check this is

Σ = AAT =

 1 0 0
0 1 0
0 0 1/3


ii. Use the result in class, for multivariate normals which have a density to show

that (U1, U2) is independent of U3.
Since the variance covariance matrix is not singular we need only check that
Cov(U1, U3) = Cov(U2, U3) = 0. These two entries in Σ are, indeed, 0.
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iii. Express Y3 as a function of U .
We have

Y3 = X3 − X̄ = σ(Z3 − Z̄).

Now
3U3 −

√
6U2 = 3Z3

and
Z̄ = U3.

Thus
Y3 = σ(U3 −

√
6U2/3− U3) = −σ

√
6U2/3.

iv. Use the fact that if X1 and X2 are independent then so are G(X1) and H(X2)
for any functions G and H to show that Y1, Y2, Y3 is independent of Y4.
We see that Y4 is a function of U3. I claim that Y1, Y2 and Y3 are each
functions of U1, U2. You did Y3 in the last part. Notice that

Y2 = X2 − X̄ = σ(Z2 − Z̄)

and
Y1 = X1 − X̄ = σ(Z1 − Z̄).

Write
2U3 +

√
6U2/3 = Z1 + Z2

and then
2U3 +

√
6U2/3 +

√
2U1 = 2Z1

and
2U3 +

√
6U2/3−

√
2U1 = 2Z2

These show
Z1 − Z̄ =

√
6U2/6 +

√
2U1/2

and
Z2 − Z̄ =

√
6U2/6−

√
2U1/2

so both Y1 and Y2 are functions of U1 and U2.
Since Y1, Y2, Y3 is a function of U1, U2 and Y4 is a function of U3 we see the
desired independence.

v. Express the sample variance of the Xi, i = 1, 2, 3 in terms of U and use this
to show that (n − 1)s2

X/σ
2 has a χ2 distribution on 2 degrees of freedom

(with n = 3). Note: in fact the sample variance of X1, X2 is a function of U1.
Generalizations of this idea can be used to develop an identity of the form

(n− 1)s2
n = (n− 2)s2

n−1 + U2
n

for a suitable Un where s2
n is the sample variance for X1, . . . , Xn.
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The sample variance is

s2 =
Y 2

1 + Y 2
2 + Y 2

3

2
Replace each Yi by the formulas in the previous part to get that

2s2

σ2
= (Z1 − Z̄)2 + (Z2 − Z̄)2 + (Z3 − Z̄)2

Write this in terms of U1 and U2 to get

2s2

σ2
=
{√

6U2/6 +
√

2U1/2
}2

+
{√

6U2/6−
√

2U1/2
}2

+
{√

6U2/3
}2

= U2
1 +U2

2

This is a sum of squares of two independent normals each with mean 0 and
variance 1 so we are done.

3. In class I discussed the general formula for a multivariate normal density. Suppose that
Z1 and Z2 are independent standard normal variables. Assume that X1 = aZ1+bZ2+c
and X2 = dZ1+eZ2+f . Find the joint density of X1 and X2 by evaluating the formulas
I gave in class. Express P (X1 ≤ t) as a double integral. I want to see the integrand
and the limits of integration but you need not try to do the integral.

The density in class was

1

2π
√
det(AAT )

exp
[
−1

2
(x− µ)T Σ−1(x− µ)

]

where Σ = AAT .

The entries in µ are c and f and we have

A =

[
a b
d e

]

Then

Σ = AAT =

[
a2 + b2 ad+ be
ad+ be d2 + e2

]
and

(AAT )−1 =

 d2+e2

(ae−bd)2
− ad+be

(ae−bd)2

− ad+be
(ae−bd)2

a2+b2

(ae−bd)2


Putting together all the algebra gives

f(x1, x2) =
1

2π|ae− bd|
exp

[
−1

2

q(x1, x2, a, b, c, d, e, f)

(ae− bd)2

]
.

where the exponent is the quadratic function

q(x1, x2, a, b, c, d, e, f) = [(x1 − c)2(d2 + e2)

−2(ad+ be)(x1 − c)(x2 − f)

+(x2 − f)2(a2 + b2)] .
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To compute P (X1 ≤ t) we take the joint density of X1 and X2 and integrate it over
the set of (x1, x2) such that x1 ≤ t to get

P (X1 ≤ t) =
∫ ∞
−∞

∫ t

−∞
f(x1, x2)dx1dx2 .

4. Power and sample size calculations must be done before the data are gathered. How-
ever: pilot studies are often used to determine the size of the unknown parameters
which are needed for these calculations. Use the Sand and Fibre Hardness data dis-
cussed in class as follows.

(a) Consider the model

Yi = β0 + β1Si + β2Fi + β3F
2
i + εi

Fit this model to get estimates of all the βs and of σ. Use these fitted values as
if they were the true parameter values in the following.

i. Compute the power of a two sided t test (at the 5% level) of the hypothesis
that β3 = 0 for

β3 ∈ {−0.006,−0.003, 0, 0.003, 0.006}.

We need the non-centrality parameter

δ =
β3

σ
√
aT (XTX)−1a

where aT = [0 0 0 1]. We get β3 values from the question and the denominator
from the standard error of β̂3. I find that standard error to be 0.001995. This
gives δ values equal to -3,-1.5,0,1.5,3 (close enough).
Turning to Table B.5 with 14 degrees of freedom for error I get powers 0.8,
somewhere between 0.15 and 0.46, 0.05, somewhere between 0.15 and 0.46
and 0.8. The “somewheres” are, I guess in the range of 0.3-0.35.

ii. Find a number m of copies of the basic design (each combination of Sand and
Fibre tried twice) to guarantee that the power of the t-test of the hypothesis
β3 = 0 is 0.9 when the true parameter values are as in the fit above.
The fitted value of β3 is -0.003733 and the corresponding value of δ is just the
t statistic in the computer output for testing β3 = 0. This is −1.871 though
we use 1.871 in the tables because our tests are to be two sided. We need
1.871

√
m to give us a power of 0.9. For large numbers of degrees of freedom

for error this power is about half way between the figure under δ = 4 and the
figure under δ = 3 so we solve 1.871

√
m = 3.5 and get m = 3.5. We would

have to use m = 4 giving δ = 3.74 and a power closer to 0.95. However we
could treat the basic design as having 9 points and try 63 points in total (7 at
each combination of S and F) and get a power quite close to 0.9.
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(b) Now consider the model

Yi = β0 + β1Si + β2Fi + β3F
2
i + β4S

2
i + β5SiFi + εi

Fit this model to get estimates of all the βs and of σ. Use these fitted values as
if they were the true parameter values in the following.

Find a number m of copies of the basic design (each combination of Sand and
Fibre tried twice) to guarantee that the power of the F -test of the hypothesis
β3 = β4 = β5 = 0 is 0.9 when the true parameter values are as in this fit.

We can use table B.11 on page 1338 since we will have 3 numerator degrees
of freedom for this F test. We will have 18m − 6 degrees of freedom for error
and so will need a φ, in the notation of the table, quite close to 2. This makes
δ2 = (p+1)22 = 16. The estimates are β̂3 = −0.003733, β̂4 = −0.004815 and β̂5 =
−0.001000. To get our value of δ2 for the basic design I regress β̂3F

2+β̂4S
2+β̂5SF

on S and F and find the error sum of squares is 27.58. Divide this by σ̂2 = 6.77
to find

δ2 = 4.07

.

I need to get up to 16 so I need m = 4.
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