STAT 450: Statistical Theory

Expectation, moments

Two elementary definitions of expected values:

Defn: If X has density f then

$$E(g(X)) = \int g(x)f(x) dx.$$

Defn: If X has discrete density f then

$$E(g(X)) = \sum_{x} g(x)f(x).$$

FACT: If Y = g(X) for a smooth g

$$E(Y) = \int y f_Y(y) dy$$
$$= \int g(x) f_Y(g(x)) g'(x) dy$$
$$= E(g(X))$$

by the change of variables formula for integration. This is good because otherwise we might have two different values for $E(e^X)$.

In general, there are random variables which are neither absolutely continuous nor discrete. See STAT 801 for general definition of E.

Defn: We call X integrable if

$$E(|X|) < \infty$$
.

Facts: E is a linear, monotone, positive operator:

- 1. Linear: E(aX + bY) = aE(X) + bE(Y) provided X and Y are integrable.
- 2. Positive: $P(X \ge 0) = 1$ implies $E(X) \ge 0$.
- 3. Monotone: $P(X \ge Y) = 1$ and X, Y integrable implies $E(X) \ge E(Y)$.

Major technical theorems:

Monotone Convergence: If $0 \le X_1 \le X_2 \le \cdots$ and $X = \lim X_n$ (which has to exist) then

$$E(X) = \lim_{n \to \infty} E(X_n) .$$

Dominated Convergence: If $|X_n| \leq Y_n$ and \exists rv X such that $X_n \to X$ (technical details of this convergence later in the course) and a random variable Y such that $Y_n \to Y$ with $E(Y_n) \to E(Y) < \infty$ then

$$E(X_n) \to E(X)$$
.

Often used with all Y_n the same rv Y.

Theorem: With this definition of E if X has density f(x) (even in \mathbb{R}^p say) and Y = g(X) then

$$E(Y) = \int g(x)f(x)dx.$$

(Could be a multiple integral.) If X has pmf f then

$$E(Y) = \sum_{x} g(x) f(x) .$$

Firts conclusion works, e.g., even if X has a density but Y doesn't.

Defn: The r^{th} moment (about the origin) of a real rv X is $\mu'_r = E(X^r)$ (provided it exists). We generally use μ for E(X).

Defn: The r^{th} central moment is

$$\mu_r = E[(X - \mu)^r].$$

We call $\sigma^2 = \mu_2$ the variance.

Defn: For an \mathbb{R}^p valued random vector X

$$\mu_X = E(X)$$

is vector whose i^{th} entry is $E(X_i)$ (provided all entries exist).

Defn: The $(p \times p)$ variance covariance matrix of X is

$$Var(X) = E\left[(X - \mu)(X - \mu)^t \right]$$

which exists provided each component X_i has a finite second moment.

Moments and probabilities of rare events are closely connected as will be seen in a number of important probability theorems.

Example: Markov's inequality

$$\begin{split} P(|X - \mu| \geq t) &= E[1(|X - \mu| \geq t)] \\ &\leq E\left[\frac{|X - \mu|^r}{t^r}1(|X - \mu| \geq t)\right] \\ &\leq \frac{E[|X - \mu|^r]}{t^r} \end{split}$$

Intuition: if moments are small then large deviations from average are unlikely.

Special Case: Chebyshev's inequality

$$P(|X - \mu| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$$

Example moments: If Z is standard normal then

$$E(Z) = \int_{-\infty}^{\infty} z e^{-z^2/2} dz / \sqrt{2\pi}$$
$$= \frac{-e^{-z^2/2}}{\sqrt{2\pi}} \Big|_{-\infty}^{\infty}$$
$$= 0$$

and (integrating by parts)

$$\begin{split} E(Z^r) &= \int_{-\infty}^{\infty} z^r e^{-z^2/2} dz / \sqrt{2\pi} \\ &= \frac{-z^{r-1} e^{-z^2/2}}{\sqrt{2\pi}} \bigg|_{-\infty}^{\infty} \\ &+ (r-1) \int_{-\infty}^{\infty} z^{r-2} e^{-z^2/2} dz / \sqrt{2\pi} \end{split}$$

so that

$$\mu_r = (r-1)\mu_{r-2}$$

for $r \geq 2$. Remembering that $\mu_1 = 0$ and

$$\mu_0 = \int_{-\infty}^{\infty} z^0 e^{-z^2/2} dz / \sqrt{2\pi} = 1$$

we find that

$$\mu_r = \left\{ \begin{array}{ll} 0 & r \text{ odd} \\ (r-1)(r-3)\cdots 1 & r \text{ even} \,. \end{array} \right.$$

If now $X \sim N(\mu, \sigma^2)$, that is, $X \sim \sigma Z + \mu$, then $E(X) = \sigma E(Z) + \mu = \mu$ and

$$\mu_r(X) = E[(X - \mu)^r] = \sigma^r E(Z^r).$$

In particular, we see that our choice of notation $N(\mu, \sigma^2)$ for the distribution of $\sigma Z + \mu$ is justified; σ is indeed the variance.

Similarly for $X = \sim MVN(\mu, \Sigma)$ we have $X = AZ + \mu$ with $Z \sim MVN(0, I)$ and

$$E(X) = \mu$$

and

$$Var(X) = E \{ (X - \mu)(X - \mu)^t \}$$

$$= E \{ AZ(AZ)^t \}$$

$$= AE(ZZ^t)A^t$$

$$= AIA^t = \Sigma.$$

Note use of easy calculation: E(Z) = 0 and

$$Var(Z) = E(ZZ^t) = I$$
.

Moments and independence

Theorem: If X_1, \ldots, X_p are independent and each X_i is integrable then $X = X_1 \cdots X_p$ is integrable and

$$E(X_1 \cdots X_p) = E(X_1) \cdots E(X_p).$$