STAT 450: Statistical Theory

Statistical Inference

Definition: A **model** is a family $\{P_{\theta}; \theta \in \Theta\}$ of possible distributions for some random variable X. (Our data set is X, so X will generally be a big vector or matrix or even more complicated object.)

We will assume throughout this course that the true distribution P of X is in fact some P_{θ_0} for some $\theta_0 \in \Theta$. We call θ_0 the true value of the parameter. Notice that this assumption will be wrong; we hope it is not wrong in an important way. If we are very worried that it is wrong we enlarge our model putting in more distributions and making Θ bigger.

Our goal is to observe the value of X and then guess θ_0 or some property of θ_0 . We will consider the following classic mathematical versions of this:

- 1. Point estimation: we must compute an estimate $\hat{\theta} = \hat{\theta}(X)$ which lies in Θ (or something close to Θ).
- 2. Point estimation of a function of θ : we must compute an estimate $\hat{\phi} = \hat{\phi}(X)$ of $\phi = g(\theta)$.
- 3. Interval (or set) estimation. We must compute a set C = C(X) in Θ which we think will contain θ_0 .
- 4. Hypothesis testing: We must choose between $\theta_0 \in \Theta_0$ and $\theta_0 \notin \Theta_0$ where $\Theta_0 \subset \Theta$.
- 5. Prediction: we must guess the value of an observable random variable Y whose distribution depends on θ_0 . Typically Y is the value of the variable X in a repetition of the experiment.
- Several schools of statistical thinking. Main schools of thought summarized roughly as follows:

 Neyman Pearson: A statistical procedure is evaluated by its long run frequency performance. Imagine repeating the data collection exercise many times, independently. Quality of procedure measured
- by its average performance when true distribution of X values is P_{θ} as random just like X. Compute conditional law of anknown quantities given knowns. In particular ask how procedure will work on the data we actually got no averaging over data we
- **Likelihood**. Try to combine previous 2 by looking only at actual data while trying to avoid treating θ as random. We use Neyman Pearson approach to evaluate quality of likelihood and other methods.