STAT 450: Statistical Theory

Probability Definitions

Probability Space (or **Sample Space**): ordered triple (Ω, \mathcal{F}, P) .

- Ω is a set (possible outcomes); elements are ω called elementary outcomes.
- \mathcal{F} is a family of subsets (events) of Ω with the property that \mathcal{F} is a σ -field (or Borel field or σ -algebra):
 - 1. The empty set \emptyset and Ω are members of \mathcal{F} .
 - 2. $A \in \mathcal{F}$ implies $A^c = \{ \omega \in \Omega : \omega \notin A \} \in \mathcal{F}$
 - 3. A_1, A_2, \cdots all in \mathcal{F} implies $A = \bigcup_{i=1}^{\infty} A_i$.
- P a function, domain \mathcal{F} , range a subset of [0, 1] satisfying:
 - 1. $P(\emptyset) = 0$ and $P(\Omega) = 1$.
 - 2. Countable additivity: A_1, A_2, \cdots pairwise disjoint $(j \neq k \ A_j \cap A_k = \emptyset)$

$$P(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Axioms guarantee can compute probabilities by usual rules, including approximation. Consequences of axioms:

$$A_i \in \mathcal{F} \text{ implies } \cap_i A_i \in \mathcal{F}$$

$$A_1 \subset A_2 \subset \cdots$$
 all in \mathcal{F} implies $P(\cup A_i) = \lim_{n \to \infty} P(A_n)$

$$A_1 \supset A_2 \supset \cdots$$
 all in \mathcal{F} implies $P(\cap A_i) = \lim_{n \to \infty} P(A_n)$

Vector valued random variable: function $X: \Omega \mapsto \mathbb{R}^p$ such that, writing $X = (X_1, \dots, X_p)$,

$$P(X_1 \le x_1, \dots, X_p \le x_p)$$

is defined for any constants (x_1, \ldots, x_p) . Formally the notation

$$X_1 \leq x_1, \ldots, X_p \leq x_p$$

is a subset of Ω or **event**:

$$\{\omega \in \Omega : X_1(\omega) \le x_1, \dots, X_p(\omega) \le x_p\}$$

Remember X is a function on Ω so X_1 is also a function on Ω .

In almost all of probability and statistics the dependence of a random variable on a point in the probability space is hidden! You almost always see X not $X(\omega)$.

Jargon and notation: we write $P(X \in A)$ for $P(\{\omega \in \Omega : X(\omega) \in A\})$ and define the **distribution** of X to be the map

$$A \mapsto P(X \in A)$$

which is a probability on the set R^p with the Borel σ -field rather than the original Ω and \mathcal{F} .

Cumulative Distribution Function (CDF) of X: function F_X on \mathbb{R}^p defined by

$$F_X(x_1,\ldots,x_n) = P(X_1 \le x_1,\ldots,X_n \le x_n)$$

- Properties of F_X (usually just F) for p=1:

 1. $0 \le F(x) \le 1$.

 2. $x > y \Rightarrow F(x) \ge F(y)$ (monotone non-decreasing).

 3. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$ 4. $\lim_{x \to y} F(x) = F(y)$ (right continuous).

 5. $\lim_{x \to y} F(x) = F(y 1)$ exists.

 6. F(x) F(x 1) = F(x 1).

7. $F_X(t) = F_Y(t)$ for all t implies that X and Y have the same distribution, that is, $P(X \in A) = P(Y \in A)$ for any (Borel) set A.

The distribution of a random variable X is **discrete** (we also call the random variable discrete) if there is a countable set x_1, x_2, \cdots such that

$$P(X \in \{x_1, x_2 \cdots \}) = 1 = \sum_{i} P(X = x_i)$$

In this case the discrete density or probability mass function of X is

$$f_X(x) = P(X = x)$$

Distribution of rv X is absolutely continuous if there is a function f such that

$$P(X \in A) = \int_{A} f(x)dx \tag{1}$$

for any (Borel) set A. This is a p dimensional integral in general. Equivalently

$$F(x) = \int_{-\infty}^{x} f(y) \, dy$$

Def'n: Any function f satisfying (1) is a **density** of X.

For most values of x we then have F is differentiable at x and

$$F'(x) = f(x) .$$

Example: X is Uniform[0,1].

$$F(x) = \begin{cases} 0 & x \le 0 \\ x & 0 < x < 1 \\ 1 & x \ge 1 \end{cases}$$

$$f(x) = \begin{cases} 1 & 0 < x < 1 \\ \text{undefined} & x \in \{0, 1\} \\ 0 & \text{otherwise} \end{cases}$$

Example: X is exponential.

$$F(x) = \begin{cases} 1 - e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

$$f(x) = \begin{cases} e^{-x} & x > 0\\ \text{undefined} & x = 0\\ 0 & x < 0 \end{cases}$$