
Hypothesis Testing

Problem: choose, on basis of data X, between

two alternatives.

Formally: choose between 2 hypotheses: Ho :

θ ∈ Θ0 or H1 : θ ∈ Θ1 where Θ0 and Θ1 are

a partition of the model Pθ; θ ∈ Θ. That is

Θ0 ∪ Θ1 = Θ and Θ0 ∩ Θ1 = {}.

Make desired choice using rejection or critical

region of test:

R = {X : we choose Θ1 if we observe X}

Neyman Pearson approach to hypothesis test-

ing: treat two hypotheses asymmetrically.

Hypothesis Ho is referred to as the null hy-

pothesis (because traditionally it has been the

hypothesis that some treatment has no effect).
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Definition: power function of test with critical

region R is

π(θ) = Pθ(X ∈ R)

Optimality theory: problem of finding best R.

Good R: π(θ) small for θ ∈ Θ0 and large for

θ ∈ Θ1.

There is a trade off: can be made in many

ways.

Jargon:

Type I error: error made when θ ∈ Θ0 but we

choose H1, that is, X ∈ R.

The other kind of error, when θ ∈ Θ1 but we

choose H0 is called a Type II error.

Defn: The level or size of a test is

α ≡ max
θ∈Θo

π(θ).

(Worst case probability of Type I error.)
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The other error probability is denoted β and

defined as

β(θ) = Pθ(X 6∈ R) for θ ∈ Θ1

Notice: β will depend on θ.

Simple versus Simple testing

Finding best test is easiest when hypotheses

very precise.

Definition: A hypothesis Hi is simple if Θi

contains only a single value θi.

The simple versus simple testing problem arises

when we test θ = θ0 against θ = θ1 so that Θ

has only two points in it. This problem is of

importance as a technical tool, not because it

is a realistic situation.

Suppose that the model specifies that if θ = θ0
then the density of X is f0(x) and if θ = θ1
then the density of X is f1(x). How should we

choose R?
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Minimize α + β, the total error probability:

Pθ0(X ∈ R) + Pθ1(X 6∈ R)

Write as integral:
∫

[f0(x)1(x ∈ R) + {1 − 1(x ∈ R)}f1(x)]dx

For each x put x in R or not in such a way as

to minimize integral.

But for each x the quantity

f0(x)1(x ∈ R) + {1 − 1(x ∈ R)}f1(x)

can be chosen either to be f0(x) or f1(x).

Solution: put x ∈ R iff f1(x) > f0(x). Note

can rephrase condition in terms of likelihood

ratio f1(x)/f0(x).
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Theorem: For each fixed λ the quantity β+λα

is minimized by R which has

R =

{

x :
f1(x)

f0(x)
> λ

}

.

Neyman-Pearson: two kinds of errors might

have unequal consequences.

So: pick the more serious kind of error, label

it Type I and require rule to hold probability

α of Type I error at or below prespecified level

α0.

Typically: α0 = 0.05, chiefly for historical rea-

sons.

Neyman-Pearson solution: minimize β subject

to constraint α ≤ α0.

Usually equivalent to constraint α = α0.

Most Powerful Level α0 test maximizes 1−β

subject to α ≤ α0.
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The Neyman Pearson Lemma

Theorem: In testing f0 against f1 the proba-

bility β of a type II error is minimized, subject

to α ≤ α0 by the rejection region:

R =

{

x :
f1(x)

f0(x)
> λ

}

where λ is the largest constant such that

P0

{

f1(x)

f0(x)
≥ λ

}

= α0

Example: If X1, . . . , Xn are iid N(µ,1) and we

have µ0 = 0 and µ1 > 0 then

f1(X1, . . . , Xn)

f0(X1, . . . , Xn)
=

exp{µ1

∑

Xi − nµ2
1/2 − µ0

∑

Xi + nµ2
0/2}

which simplifies to

exp{µ1

∑

Xi − nµ2
1/2}
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Now choose λ so that

P0(exp{µ1

∑

Xi − nµ2
1/2} > λ) = α0

Rewrite the probability as

P0(
∑

Xi > [log(λ) + nµ2
1/2]/µ1) =

1 − Φ([log(λ) + nµ2
1/2]/[n1/2µ1])

Notation: zα: upper α critical point of N(0,1)

distribution.

Then

zα0 = [log(λ) + nµ2
1/2]/[n1/2µ1]

which you can solve to get a formula for λ in

terms of zα0, n and µ1.

Rejection region looks complicated: reject if a

complicated statistic is larger than λ which has

a complicated formula.

But re-expressed rejection region as
∑

Xi√
n

> zα0
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Key point: rejection region same for any µ1 >

0.

Definition: In the general problem of testing

Θ0 against Θ1 level of critical region R is

α = sup
θ∈Θ0

Pθ(X ∈ R).

The power function is

π(θ) = Pθ(X ∈ R).

A test with rejection region R is Uniformly

Most Powerful at level α0 if

1. the test has level α ≤ αo

2. If R∗ is another rejection region with level

α ≤ α0 then for every θ ∈ Θ1 we have

Pθ(X ∈ R∗) ≤ Pθ(X ∈ R).
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Application of the NP lemma: In the N(µ,1)

model consider Θ1 = {µ > 0} and Θ0 = {0}
or Θ0 = {µ ≤ 0}. The UMP level α0 test of

H0 : µ ∈ Θ0 against H1 : µ ∈ Θ1 is

R∗ == {x : n1/2X̄ > zα0}

Proof: For either choice of Θ0 this test has

level α0 because for µ ≤ 0 we have

Pµ(n
1/2X̄ >zα0)

= Pµ(n
1/2(X̄ − µ) > zα0 − n1/2µ)

= P (N(0, 1) > zα0 − n1/2µ)

≤ P (N(0, 1) > zα0)

= α0

(Notice use of µ ≤ 0.

Key idea: critical point fixed by behaviour on

edge of null hypothesis.
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Now suppose R is any other level α0 critical

region:

P0((X1, . . . , Xn) ∈ R) ≤ α0.

Fix a µ > 0. According to the NP lemma

Pµ{(X1, . . . , Xn) ∈ R} ≤ Pµ{(X1, . . . , Xn) ∈ Rλ}

where

Rλ = {x : fµ(x1, . . . , xn)/f0(x1, . . . , xn) > λ}

for a suitable λ.

But we just checked that this test had a rejec-

tion region of the form

R∗ = n1/2X̄ > zα0

The NP lemma produces the same test for ev-

ery µ > 0 chosen as an alternative.

So this test is UMP level α0.
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Proof of the Neyman Pearson lemma:

Lagrange Multipliers

Suppose you want to minimize f(x) subject to

g(x) = 0. Consider first the function

hλ(x) = f(x) + λg(x)

If xλ minimizes hλ then for any other x

f(xλ) ≤ f(x) + λ[g(x) − g(xλ)]

Now suppose you can find a value of λ such

that the solution xλ has g(xλ) = 0. Then for

any x we have

f(xλ) ≤ f(x) + λg(x)

and for any x satisfying the constraint g(x) = 0

we have

f(xλ) ≤ f(x)

This proves that for this special value of λ the

quantity xλ minimizes f(x) subject to g(x) = 0.

Notice that to find xλ you set the usual partial

derivatives equal to 0; then to find the special

xλ you add in the condition g(xλ) = 0.
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Proof of NP lemma

Rλ = {x : f1(x)/f0(x) ≥ λ} minimizes λα + β.

As λ increases from 0 to ∞ level of Rλ de-

creases from 1 to 0.

Ignore technical problem: f1(X)/f0(X) might

be discrete.

There is thus a value λ0 where level = α0.

According to theorem above test minimizes α+

λ0β. Suppose R∗ is some other test with level

α∗ ≤ α0. Then

λ0α + β ≤ λ0αR∗ + βR∗

We can rearrange this as

βR∗ ≥ β + (α − αR∗)λ0

Since

αR∗ ≤ α0 = α

the second term is non-negative and

βR∗ ≥ β

which proves the Neyman Pearson Lemma.
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General phenomenon: for any µ > µ0, likeli-

hood ratio fµ/f0 is an increasing function of
∑

Xi.

Rejection region of NP test is thus always a

region of the form
∑

Xi > k.

Value of constant k determined by requirement

that test have level α0; this depends on µ0 not

on µ1.

Definition: The family fθ; θ ∈ Θ ⊂ R has

monotone likelikelood ratio with respect to a

statistic T (X) if for each θ1 > θ0 the likelihood

ratio fθ1(X)/fθ0(X) is a monotone increasing

function of T (X).

Theorem: For a monotone likelihood ratio

family the Uniformly Most Powerful level α test

of θ ≤ θ0 (or of θ = θ0) against the alternative

θ > θ0 is

R = {xT (x) > tα}
where P0(T (X) > tα) = α0.
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Usual application: one parameter exponential

family.

Almost any other problem: method doesn’t

work and there is no uniformly most powerful

test.

For instance: testing µ = µ0 against the two

sided alternative µ 6= µ0 there is no UMP level

α test.
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