STAT 801

Problems: Assignment 3

- 1. Suppose X_1, \ldots, X_n are iid real random variables with density f. Let $X_{(1)}, \ldots, X_{(n)}$ be the X's arranged in increasing order.
 - (a) Find the joint density of $X_{(1)}, \ldots, X_{(n)}$
 - (b) Suppose $f = 1_{[0,1]}$. Prove that $(X_{(1)}/X_{(k)}, \ldots, X_{(k-1)}/X_{(k)})$ is independent of $(X_{(k)}, \ldots, X_{(n)})$.
 - (c) Again with $f = 1_{[0,1]}$ find the density of $X_{(k)}$.
 - (d) Again with $f = 1_{[0,1]}$ find the density of $X_{(k)} X_{(j)}$.
- 2. Suppose X_1, \ldots, X_{n+1} are iid exponential. Let $S_m = \sum_{i=1}^m X_i$.
 - (a) Find the joint density of $(X_1/S_{n+1}, \ldots, X_n/S_{n+1})$.
 - (b) Find the joint density of $(S_1/S_{n+1}, \ldots, S_n/S_{n+1})$.
- 3. Suppose $X_1, ..., X_n$ are iid $N(\mu, \sigma^2)$. Let $\bar{X}_m = (X_1 + \cdots + X_m)/m$. Let $S_m^2 = \sum_{1}^{m} (X_i \bar{X}_m)^2$.
 - (a) Develop a recurrence relation for S_m and \bar{X}_m , expressing S_m and \bar{X}_m in terms of X_m , S_{m-1} and \bar{X}_{m-1} .
 - (b) Find the joint density of $(\bar{X}_n, S_2^2, \dots, S_n^2)$.
 - (c) Generate data from N(0,1). By adding 10^k to the data for some large values of k compare the numerical performance of these recurrence relations to that of the one pass formula using $T_1 = \sum_{i=1}^{n} X_i$, $T_2 = \sum_{i=1}^{n} X_i^2$ and the usual computing formulas for the sample variance.
- 4. Compute the characteristic function, cumulants and the first 5 central moments for the $Poisson(\lambda)$ distribution. You may feel free to use MAPLE to help take derivatives or whatever.
- 5. Compute the characteristic function, cumulants and the first 5 central moments for the Gamma distribution with shape parameter α and scale parameter β . You may feel free to use MAPLE to help take derivatives or whatever.