Independence, conditional distributions

So far density of X specified explicitly. Often modelling leads to a specification in terms of marginal and conditional distributions.

Def'n: Events A and B are independent if

$$P(AB) = P(A)P(B)$$
.

(Notation: AB is the event that both A and B happen, also written $A \cap B$.)

Def'n: A_i , i = 1, ..., p are independent if

$$P(A_{i_1} \cdots A_{i_r}) = \prod_{j=1}^r P(A_{i_j})$$

for any $1 \le i_1 < \cdots < i_r \le p$.

Example:
$$p = 3$$

 $P(A_1A_2A_3) = P(A_1)P(A_2)P(A_3)$
 $P(A_1A_2) = P(A_1)P(A_2)$
 $P(A_1A_3) = P(A_1)P(A_3)$
 $P(A_2A_3) = P(A_2)P(A_3)$.

All these equations needed for independence!

Example: Toss a coin twice.

$$A_1 = \{ \text{first toss is a Head} \}$$

 $A_2 = \{ \text{second toss is a Head} \}$
 $A_3 = \{ \text{first toss and second toss different} \}$

Then $P(A_i) = 1/2$ for each i and for $i \neq j$

$$P(A_i \cap A_j) = \frac{1}{4}$$

but

$$P(A_1 \cap A_2 \cap A_3) = 0 \neq P(A_1)P(A_2)P(A_3)$$
.

Def'n: X and Y are **independent** if

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B)$$
 for all A and B .

Def'n: Rvs X_1, \ldots, X_p independent:

$$P(X_1 \in A_1, \cdots, X_p \in A_p) = \prod P(X_i \in A_i)$$
 for any A_1, \dots, A_p .

Theorem:

1. If X and Y are independent then for all x, y

$$F_{X,Y}(x,y) = F_X(x)F_Y(y).$$

2. If X and Y are independent with joint density $f_{X,Y}(x,y)$ then X and Y have densities f_X and f_Y , and

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

3. If X and Y independent with marginal densities f_X and f_Y then (X,Y) has joint density

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

- 4. If $F_{X,Y}(x,y) = F_X(x)F_Y(y)$ for all x,y then X and Y are independent.
- 5. If (X,Y) has density f(x,y) and there exist g(x) and h(y) st f(x,y) = g(x)h(y) for (almost) **all** (x,y) then X and Y are independent with densities given by

$$f_X(x) = g(x) / \int_{-\infty}^{\infty} g(u) du$$

$$f_Y(y) = h(y) / \int_{-\infty}^{\infty} h(u) du$$
.

Proof:

1: Since X and Y are independent so are the events $X \leq x$ and $Y \leq y$; hence

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y).$$

2: Suppose X and Y real valued.

Asst 2: existence of $f_{X,Y}$ implies that of f_X and f_Y (marginal density formula). Then for any sets A and B

$$P(X \in A, Y \in B) = \int_{A} \int_{B} f_{X,Y}(x,y) dy dx$$
$$P(X \in A) P(Y \in B) = \int_{A} f_{X}(x) dx \int_{B} f_{Y}(y) dy$$
$$= \int_{A} \int_{B} f_{X}(x) f_{Y}(y) dy dx$$

Since
$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

$$\int_{A} \int_{B} [f_{X,Y}(x,y) - f_{X}(x)f_{Y}(y)]dydx = 0$$

It follows (measure theory) that the quantity in [] is 0 (almost every pair (x, y)).

3: For any A and B we have

$$P(X \in A, Y \in B)$$

$$= P(X \in A)P(Y \in B)$$

$$= \int_{A} f_{X}(x)dx \int_{B} f_{Y}(y)dy$$

$$= \int_{A} \int_{B} f_{X}(x)f_{Y}(y)dydx$$

Define $g(x,y) = f_X(x)f_Y(y)$; we have proved that for $C = A \times B$

$$P((X,Y) \in C) = \int_C g(x,y) dy dx$$

To prove that g is $f_{X,Y}$ we need only prove that this integral formula is valid for an arbitrary Borel set C, not just a rectangle $A \times B$.

Use monotone class argument: collection C of sets C for which identity holds has closure properties which guarantee that C includes the Borel sets.

4: Another monotone class argument.

5: We are given

$$P(X \in A, Y \in B) = \int_{A} \int_{B} g(x)h(y)dydx$$
$$= \int_{A} g(x)dx \int_{B} h(y)dy$$

Take $B = R^1$ to see that

$$P(X \in A) = c_1 \int_A g(x) dx$$

where $c_1 = \int h(y)dy$. So c_1g is the density of X. Since $\int \int f_{X,Y}(xy)dxdy = 1$ we see that $\int g(x)dx \int h(y)dy = 1$ so that $c_1 = 1/\int g(x)dx$. Similar argument for Y.

Theorem: If X_1, \ldots, X_p are independent and $Y_i = g_i(X_i)$ then Y_1, \ldots, Y_p are independent. Moreover, (X_1, \ldots, X_q) and (X_{q+1}, \ldots, X_p) are independent.

Conditional probability

Def'n: P(A|B) = P(AB)/P(B) if $P(B) \neq 0$.

Def'n: For discrete X and Y the conditional probability mass function of Y given X is

$$f_{Y|X}(y|x) = P(Y = y|X = x)$$

= $f_{X,Y}(x,y)/f_X(x)$
= $f_{X,Y}(x,y)/\sum_t f_{X,Y}(x,t)$

For absolutely continuous X P(X = x) = 0 for all x. What is P(A|X = x) or $f_{Y|X}(y|x)$? Solution: use limit

$$P(A|X=x) = \lim_{\delta x \to 0} P(A|x \le X \le x + \delta x)$$

If, e.g., X,Y have joint density $f_{X,Y}$ then with $A=\{Y\leq y\}$ we have

$$P(A|x \le X \le x + \delta x)$$

$$= \frac{P(A \cap \{x \le X \le x + \delta x\})}{P(x \le X \le x + \delta x)}$$

$$= \frac{\int_{-\infty}^{y} \int_{x}^{x + \delta x} f_{X,Y}(u, v) du dv}{\int_{x}^{x + \delta x} f_{X}(u) du}$$

Divide top, bottom by δx ; let $\delta x \to 0$. Denom converges to $f_X(x)$; numerator converges to

$$\int_{-\infty}^{y} f_{X,Y}(x,v) dv$$

Define conditional cdf of Y given X = x:

$$P(Y \le y | X = x) = \frac{\int_{-\infty}^{y} f_{X,Y}(x,v) dv}{f_X(x)}$$

Differentiate wrt y to get def'n of conditional density of Y given X=x:

$$f_{Y|X}(y|x) = f_{X,Y}(x,y)/f_X(x);$$

in words "conditional = joint/marginal".