Monte Carlo

Given rvs X_1, \ldots, X_n ; distbn specified.

Statistic $T(X_1, \ldots, X_n)$ whose dstbn wanted.

To compute P(T > t):

- 1. Generate X_1, \ldots, X_n from the density f.
- 2. Compute $T_1 = T(X_1, ..., X_n)$.
- 3. Repeat N times getting T_1, \ldots, T_N .
- 4. Estimate p = P(T > t) as $\hat{p} = M/N$ where M is number of repetitions where $T_i > t$.
- 5. Estimate accuracy of \hat{p} using $\sqrt{\hat{p}(1-\hat{p})/N}$.

Note: accuracy inversely proportional to \sqrt{N} .

Next: tricks to make method more accurate. Warning: tricks only change constant — SE still inversely proportional to \sqrt{N} .

Generating the Sample

Transformation

Basic computing tool: pseudo uniform random numbers — variables U which have (approximately) a Uniform[0,1] distribution.

Other dstbns generated by transformation:

Exponential: $X = -\log U$ has an exponential distribution:

$$P(X > x) = P(-\log(U) > x)$$
$$= P(U \le e^{-x}) = e^{-x}$$

Pitfall: Random uniforms generated on computer sometimes have only 6 or 7 digits.

Consequence: tail of generated dstbn grainy.

Explanation: suppose U multiple of 10^{-6} .

Largest possible value of X is $6 \log(10)$.

Improved algorithm:

- Generate U a Uniform[0,1] variable.
- Pick a small ϵ like 10^{-3} say. If $U > \epsilon$ take $Y = -\log(U)$.
- If $U \le \epsilon$: conditional dstbn of Y-y given Y > y is exponential. Generate new U'. Compute $Y' = -\log(U')$. Take $Y = Y' \log(\epsilon)$.

Resulting Y has exponential distribution.

Exercise: check by computing P(Y > y).

General technique: inverse probability integral transform.

If Y is to have cdf F:

Generate $U \sim Uniform[0, 1]$.

Take $Y = F^{-1}(U)$:

$$P(Y \le y) = P(F^{-1}(U) \le y)$$
$$= P(U \le F(y)) = F(y)$$

Example: X exponential. $F(x) = 1 - e^{-x}$ and $F^{-1}(u) = -\log(1 - u)$.

Compare to previous method. (Use U instead of 1-U.)

Normal: $F = \Phi$ (common notation for standard normal cdf).

No closed form for F^{-1} .

One way: use numerical algorithm to compute F^{-1} .

Alternative: Box Müller

Generate U_1, U_2 two independent Uniform[0,1] variables.

Define

$$Y_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$$

and

$$Y_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$$
.

Exercise: (use change of variables) Y_1 and Y_2 are independent N(0,1) variables.

Acceptance Rejection

Suppose: can't calculate F^{-1} but know f.

Find density g and constant c such that

- 1) $f(x) \leq cg(x)$ for each x and
- 2) G^{-1} is computable or can generate observations W_1, W_2, \ldots independently from g.

Algorithm:

- 1) Generate W_1 .
- 2) Compute $p = f(W_1)/(cg(W_1)) \le 1$.
- 3) Generate uniform[0,1] random variable U_1 independent of all W_5 .
- 4) Let $Y = W_1$ if $U_1 \le p$.
- 5) Otherwise get new W, U; repeat until you find $U_i \leq f(W_i)/(cg(W_i))$.
- 6) Make Y be last W generated.

This Y has density f.

Markov Chain Monte Carlo

Recently popular tactic, particularly for generating multivariate observations.

Theorem Suppose W_1, W_2, \ldots is an (ergodic) Markov chain with stationary transitions and the stationary initial distribution of W has density f. Then starting the chain with any initial distribution

$$\frac{1}{n}\sum_{i=1}^n g(W_i) \to \int g(x)f(x)dx.$$

Estimate things like $\int_A f(x)dx$ by computing the fraction of the W_i which land in A.

Many versions of this technique including Gibbs Sampling and Metropolis-Hastings algorithm.

Technique invented in 1950s: Metropolis et al.

One of the authors was Edward Teller "father of the hydrogen bomb".

Importance Sampling

If you want to compute

$$\theta \equiv E(T(X)) = \int T(x)f(x)dx$$

you can generate observations from a different density g and then compute

$$\hat{\theta} = n^{-1} \sum T(X_i) f(X_i) / g(X_i)$$

Then

$$E(\widehat{\theta}) = n^{-1} \sum E \left\{ T(X_i) f(X_i) / g(X_i) \right\}$$
$$= \int \left\{ T(x) f(x) / g(x) \right\} g(x) dx$$
$$= \int T(x) f(x) dx$$
$$= \theta$$

Variance reduction

Example: estimate dstbn of sample mean for a Cauchy random variable.

Cauchy density is

$$f(x) = \frac{1}{\pi(1+x^2)}$$

Generate U_1, \ldots, U_n uniforms.

Define $X_i = \tan^{-1}(\pi(U_i - 1/2))$.

Compute $T = \bar{X}$.

To estimate p = P(T > t) use

$$\widehat{p} = \sum_{i=1}^{N} 1(T_i > t)/N$$

after generating N samples of size n.

Estimate is unbiased.

Standard error is $\sqrt{p(1-p)/N}$.

Improvement: $-X_i$ also has Cauchy dstbn.

Take $S_i = -T_i$.

Remember that S_i has same dstbn as T_i .

Try (for t > 0)

$$\tilde{p} = \left[\sum_{i=1}^{N} 1(T_i > t) + \sum_{i=1}^{N} 1(S_i > t)\right]/(2N)$$

which is the average of two estimates like \hat{p} .

The variance of \tilde{p} is

$$(4N)^{-1} Var(1(T_i > t) + 1(S_i > t))$$

= $(4N)^{-1} Var(1(|T| > t))$

which is

$$\frac{2p(1-2p)}{4N} = \frac{p(1-2p)}{2N}$$

Variance has extra 2 in denominator and numerator is also smaller – particularly for p near 1/2.

So need only half the sample size to get the same accuracy.

Regression estimates

Suppose $Z \sim N(0,1)$. Compute

$$\theta = E(|Z|)$$
.

Generate N iid N(0,1) variables Z_1, \ldots, Z_N .

Compute $\hat{\theta} = \sum |Z_i|/N$.

But know $E(Z_i^2) = 1$.

Also: $\widehat{\theta}$ is positively correlated with $\sum Z_i^2/N$.

So we try

$$\tilde{\theta} = \hat{\theta} - c(\sum Z_i^2/N - 1)$$

Notice that $E(\tilde{\theta}) = \theta$ and

$$Var(\tilde{\theta}) = Var(\tilde{\theta}) - 2cCov(\hat{\theta}, \sum Z_i^2/N) + c^2Var(\sum Z_i^2/N)$$

The value of c which minimizes this is

$$c = \frac{\operatorname{Cov}(\hat{\theta}, \sum Z_i^2/N)}{\operatorname{Var}(\sum Z_i^2/N)}$$

Estimate c by regressing $|Z_i|$ on Z_i^2 !