Optimality theory for point estimates

Why bother doing the Newton Raphson steps?

Why not just use the method of moments estimates?

Answer: method of moments estimates not usually as close to right answer as MLEs.

Rough principle: A good estimate $\hat{\theta}$ of θ is usually close to θ_0 if θ_0 is the true value of θ . Closer estimates, more often, are better estimates.

This principle must be quantified if we are to "prove" that the mle is a good estimate. In the Neyman Pearson spirit we measure average closeness.

Definition: The **Mean Squared Error** (MSE) of an estimator $\hat{\theta}$ is the **function**

$$MSE(\theta) = E_{\theta}[(\hat{\theta} - \theta)^2]$$

Standard identity:

$$MSE = Var_{\theta}(\hat{\theta}) + Bias_{\hat{\theta}}^{2}(\theta)$$

where the bias is defined as

$$Bias_{\widehat{\theta}}(\theta) = E_{\theta}(\widehat{\theta}) - \theta$$
.

Primitive example: I take a coin from my pocket and toss it 6 times. I get HTHTTT. The MLE of the probability of heads is

$$\hat{p} = X/n$$

where X is the number of heads. In this case I get $\hat{p} = \frac{1}{3}$.

Alternative estimate: $\tilde{p} = \frac{1}{2}$.

That is, \tilde{p} ignores data; guess coin is fair.

The MSEs of these two estimators are

$$MSE_{\mathsf{MLE}} = \frac{p(1-p)}{6}$$

and

$$MSE_{0.5} = (p - 0.5)^2$$

If 0.311 then 2nd MSE is smaller than first.

For this reason I would recommend use of \tilde{p} for sample sizes this small.

Same experiment with a thumbtack: tack can land point up (U) or tipped over (O).

If I get UOUOOO how should I estimate p the probability of U?

Mathematics is identical to above but is \tilde{p} is better than \hat{p} ?

Less reason to believe $0.311 \le p \le 0.689$ than with a coin.