Definition: A test ϕ of Θ_0 against Θ_1 is unbiased level α if it has level α and, for every $\theta \in \Theta_1$ we have

$$\pi(\theta) \geq \alpha$$
.

When testing a point null hypothesis like $\mu=\mu_0$ this requires that the power function be minimized at μ_0 which will mean that if π is differentiable then

$$\pi'(\mu_0) = 0$$

Example: $N(\mu, 1)$: data $X = (X_1, ..., X_n)$. If ϕ is any test function then

$$\pi'(\mu) = \frac{\partial}{\partial \mu} \int \phi(x) f(x, \mu) dx$$

Differentiate under the integral and use

$$\frac{\partial f(x,\mu)}{\partial \mu} = \sum (x_i - \mu) f(x,\mu)$$

to get the condition

$$\int \phi(x)\bar{x}f(x,\mu_0)dx = \mu_0\alpha_0$$

Minimize $\beta(\mu)$ subject to two constraints

$$E_{\mu_0}(\phi(X)) = \alpha_0$$

and

$$E_{\mu_0}(\bar{X}\phi(X)) = \mu_0 \alpha_0.$$

Fix two values $\lambda_1>0$ and λ_2 and minimize

$$\lambda_1 \alpha + \lambda_2 E_{\mu_0} [(\bar{X} - \mu_0) \phi(X)] + \beta$$

The quantity in question is just

$$\int [\phi(x)f_0(x)(\lambda_1 + \lambda_2(\bar{x} - \mu_0)) + (1 - \phi(x))f_1(x)]dx.$$

As before this is minimized by

$$\phi(x) = \begin{cases} 1 & \frac{f_1(x)}{f_0(x)} > \lambda_1 + \lambda_2(\bar{x} - \mu_0) \\ 0 & \frac{f_1(x)}{f_0(x)} < \lambda_1 + \lambda_2(\bar{x} - \mu_0) \end{cases}$$

The likelihood ratio f_1/f_0 is simply

$$\exp\{n(\mu_1 - \mu_0)\bar{X} + n(\mu_0^2 - \mu_1^2)/2\}$$

and this exceeds the linear function

$$\lambda_1 + \lambda_2(\bar{X} - \mu_0)$$

for all \bar{X} sufficiently large or small. That is,

$$\lambda_1 \alpha + \lambda_2 E_{\mu_0} [(\bar{X} - \mu_0) \phi(X)] + \beta$$

is minimized by a rejection region of the form

$$\{\bar{X} > K_U\} \cup \{\bar{X} < K_L\}$$

Satisfy constraints: adjust K_U and K_L to get level α and $\pi'(\mu_0)=0$. 2nd condition shows rejection region symmetric about μ_0 so test rejects for

$$\sqrt{n}|\bar{X} - \mu_0| > z_{\alpha/2}$$

Mimic Neyman Pearson lemma proof to check that if λ_1 and λ_2 are adjusted so that the unconstrained problem has the rejection region given then the resulting test minimizes β subject to the two constraints.

A test ϕ^* is a Uniformly Most Powerful Unbiased level α_0 test if

- 1. ϕ^* has level $\alpha \leq \alpha_0$.
- 2. ϕ^* is unbiased.
- 3. If ϕ has level $\alpha \leq \alpha_0$ and ϕ is unbiased then for every $\theta \in \Theta_1$ we have

$$E_{\theta}(\phi(X)) \leq E_{\theta}(\phi^*(X))$$

Conclusion: The two sided z test which rejects if

$$|Z| > z_{\alpha/2}$$

where

$$Z = n^{1/2}(\bar{X} - \mu_0)$$

is the uniformly most powerful unbiased test of $\mu = \mu_0$ against the two sided alternative $\mu \neq \mu_0$.

Nuisance Parameters

The *t*-test is UMPU.

Suppose X_1, \ldots, X_n iid $N(\mu, \sigma^2)$. Test $\mu = \mu_0$ or $\mu \leq \mu_0$ against $\mu > \mu_0$. Parameter space is two dimensional; boundary between the null and alternative is

$$\{(\mu, \sigma); \mu = \mu_0, \sigma > 0\}$$

If a test has $\pi(\mu, \sigma) \leq \alpha$ for all $\mu \leq \mu_0$ and $\pi(\mu, \sigma) \geq \alpha$ for all $\mu > \mu_0$ then $\pi(\mu_0, \sigma) = \alpha$ for all σ because the power function of any test must be continuous. (Uses dominated convergence theorem; power function is an integral.)

Think of $\{(\mu, \sigma); \mu = \mu_0\}$ as parameter space for a model. For this parameter space

$$S = \sum (X_i - \mu_0)^2$$

is complete and sufficient. Remember definitions of both completeness and sufficiency depend on the parameter space.

Suppose $\phi(\sum X_i, S)$ is an unbiased level α test. Then we have

$$E_{\mu_0,\sigma}(\phi(\sum X_i,S)) = \alpha$$

for all σ . Condition on S and get

$$E_{\mu_0,\sigma}[E(\phi(\sum X_i,S)|S)] = \alpha$$

for all σ . Sufficiency guarantees that

$$g(S) = E(\phi(\sum X_i, S)|S)$$

is a statistic and completeness that

$$q(S) \equiv \alpha$$

Now let us fix a single value of σ and a $\mu_1 > \mu_0$. To make our notation simpler I take $\mu_0 = 0$. Our observations above permit us to condition on S = s. Given S = s we have a level α test which is a function of \bar{X} .

If we maximize the conditional power of this test for each s then we will maximize its power. What is the conditional model given S=s? That is, what is the conditional distribution of \bar{X} given S=s? The answer is that the joint density of \bar{X}, S is of the form

$$f_{\bar{X},S}(t,s)=h(s,t)\exp\{\theta_1t+\theta_2s+c(\theta_1,\theta_2)\}$$
 where $\theta_1=n\mu/\sigma^2$ and $\theta_2=-1/\sigma^2$.

This makes the conditional density of \bar{X} given S=s of the form

$$f_{\bar{X}|s}(t|s) = h(s,t) \exp\{\theta_1 t + c^*(\theta_1,s)\}$$

Note disappearance of θ_2 and null is $\theta_1=0$. This permits application of NP lemma to the conditional family to prove that UMP unbiased test has form

$$\phi(\bar{X}, S) = 1(\bar{X} > K(S))$$

where K(S) chosen to make conditional level α . The function $x\mapsto x/\sqrt{a-x^2}$ is increasing in x for each a so that we can rewrite ϕ in the form

$$\phi(\bar{X}, S) = \frac{1(n^{1/2}\bar{X}/\sqrt{n[S/n - \bar{X}^2]/(n-1)} > K^*(S))}{1(n^{1/2}\bar{X}/\sqrt{n[S/n - \bar{X}^2]/(n-1)} > K^*(S))}$$

for some K^* . The quantity

$$T = \frac{n^{1/2}\bar{X}}{\sqrt{n[S/n - \bar{X}^2]/(n-1)}}$$

is the usual t statistic and is exactly independent of S (see Theorem 6.1.5 on page 262 in Casella and Berger). This guarantees that

$$K^*(S) = t_{n-1,\alpha}$$

and makes our UMPU test the usual t test.

Optimal tests

- A good test has $\pi(\theta)$ large on the alternative and small on the null.
- For one sided one parameter families with MLR a UMP test exists.
- For two sided or multiparameter families the best to be hoped for is UMP Unbiased or Invariant or Similar.
- Good tests are found as follows:
 - 1. Use the NP lemma to determine a good rejection region for a simple alternative.
 - 2. Try to express that region in terms of a statistic whose definition does not depend on the specific alternative.
 - If this fails impose an additional criterion such as unbiasedness. Then mimic the NP lemma and again try to simplify the rejection region.